Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Metal Catalyst-Free One-pot Synthesis of Carboxamide Derivatives via Ugi-4CC Reaction and Its Anti-tubercular Study

Author(s): Bhumit L. Gondaliya, Dharmarajan Sriram, Saiprasad D. Varakala, Piyush V. Dholaria, Gautam K. Dhuda and Khushal M. Kapadiya*

Volume 21, Issue 2, 2024

Published on: 22 September, 2022

Page: [226 - 235] Pages: 10

DOI: 10.2174/1570180819666220806104115

Price: $65

Abstract

Background: A new series of ten composites with sulphur based carboxylic acid and benzylamine were synthesized by Ugi 4-components reaction (Ugi-4CR) and screened for antituberculosis activity against the Mycobacterium tuberculosis H37Rv strain.

Objective: Target compounds were isolated, purified, identified, and characterized by MS, FT-IR, 1HNMR, APT, and 13C-NMR then the antituberculosis activity was examined by Microplate Alamar Blue Assay (MABA) method.

Methods: This study was based on the articulation of carboxamide linkage bearing S-linkage in the core unit by reacting four different units, i.e., 2-(pyrimidin-2-ylthio)acetic acid, aromatic aldehyde, benzylamine and tertiary butyl isocyanide at RT in an atom economy route of synthesis. The desired product (5a- 5j) was synthesized via one-pot and Metal-free conditions.

Results: Compounds (5a-5j) synthesized in good yields and compared to MIC values of Isoniazid 0.05 (μg/mL), Rifampicin 0.1 (μm/mL), and Ethambutol 1.56 (μg/mL) as a positive control.

Conclusion: Synthesized compounds give excellent yield. Among the ten derivatives, compound 5f has comparable antituberculosis activity.

Keywords: Ugi-4CR reaction, metal-free reaction, carboxamide linkage, Mycobacterium tuberculosis, MABA assay, linkage.

Graphical Abstract

[1]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[2]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[3]
Galliford, C.V.; Scheidt, K.A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed., 2007, 46(46), 8748-8758.
[http://dx.doi.org/10.1002/anie.200701342] [PMID: 17943924]
[4]
Zeydi, M.M.; Kalantarian, S.J.; Kazeminejad, Z. Overview on developed synthesis procedures of coumarin heterocycles. J. Indian Chem. Soc., 2020, 17(12), 3031-3094.
[http://dx.doi.org/10.1007/s13738-020-01984-1]
[5]
Al-Shareeda, Z.A.; Abramovich, R.A.; Potanina, O.G.; Alhejoj, H.M.; Ivanov, U.V. Promising drug discovery for choline derivatives via UGI reaction and their inhibition activity on ache enzyme. Int. J. Pharm. Qual. Assur., 2021, 12(3), 260-262.
[6]
Ibarra, I.A.; Islas-Jácome, A.; González-Zamora, E. Synthesis of polyheterocycles via multicomponent reactions. Org. Biomol. Chem., 2018, 16(9), 1402-1418.
[http://dx.doi.org/10.1039/C7OB02305G] [PMID: 29238790]
[7]
Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via Multicomponent Reactions. Chem. Rev., 2019, 119(3), 1970-2042.
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567]
[8]
Fernández-Bolaños, J.G.; López, Ó.; Ulgar, V.; Maya, I.; Fuentes, J. Synthesis of O -unprotected glycosyl selenoureas. A new access to bicyclic sugar isoureas. Tetrahedron Lett., 2004, 45(21), 4081-4084.
[http://dx.doi.org/10.1016/j.tetlet.2004.03.143]
[9]
Hassan, H. Recent progress in the chemistry of allenes. Curr. Org. Synth., 2007, 4(4), 413-439.
[http://dx.doi.org/10.2174/157017907782408798]
[10]
Jordan, A.; Stoy, P.; Sneddon, H.F. Chlorinated solvents: Their advantages, disadvantages, and alternatives in organic and medicinal chemistry. Chem. Rev., 2021, 121(3), 1582-1622.
[http://dx.doi.org/10.1021/acs.chemrev.0c00709] [PMID: 33351588]
[11]
Pandit, C.; Dholaria, P.; Kapadiya, K. Anticancer evaluation of 1,5-disubstituted tetrazoles using Ugi-azide four-component reactions (UA-4CRs). Asia. J. Org. Med. Chem., 2019, 4(4), 216-221.
[12]
Simon, C.; Constantieux, T.; Rodriguez, J. Utilisation of 1,3-Dicarbonyl Derivatives in Multicomponent Reactions. Eur. J. Org. Chem., 2004, 2004(24), 4957-4980.
[http://dx.doi.org/10.1002/ejoc.200400511]
[13]
Lefebvre, C.A.; Forcellini, E.; Boutin, S.; Côté, M.F. C-Gaudreault, R.; Mathieu, P.; Lagüe, P.; Paquin, J.F. Synthesis of novel substituted pyrimidine derivatives bearing a sulfamide group and their in vitro cancer growth inhibition activity. Bioorg. Med. Chem. Lett., 2017, 27(2), 299-302.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.052] [PMID: 27903409]
[14]
Guillemont, J.; Meyer, C.; Poncelet, A.; Bourdrez, X.; Andries, K. Diarylquinolines, synthesis pathways and quantitative structure–activity relationship studies leading to the discovery of TMC207. Future Med. Chem., 2011, 3(11), 1345-1360.
[http://dx.doi.org/10.4155/fmc.11.79] [PMID: 21879841]
[15]
Rahal, M.; Graff, B.; Toufaily, J.; Hamieh, T.; Noirbent, G.; Gigmes, D.; Dumur, F.; Lalevée, J. 3-carboxylic acid and formyl-derived coumarins as photoinitiators in photo-oxidation or photo-reduction processes for photopolymerization upon visible light: Photocomposite synthesis and 3D printing applications. Molecules, 2021, 26(6), 1753.
[http://dx.doi.org/10.3390/molecules26061753] [PMID: 33800978]
[16]
Kakuchi, R. Multicomponent reactions in polymer synthesis. Angew. Chem. Int. Ed., 2014, 53(1), 46-48.
[http://dx.doi.org/10.1002/anie.201305538] [PMID: 24302633]
[17]
Meldrum, B.S.; Rogawski, M.A. Science 2002 CohenOn the origin of interictal activity in human temporal lobe epilepsy in vitro. Neuro., 2007, 4, 18-61.
[18]
Mitchell, H.A.; Weinshenker, D. Good night and good luck: Norepinephrine in sleep pharmacology. Biochem. Pharmacol., 2010, 79(6), 801-809.
[http://dx.doi.org/10.1016/j.bcp.2009.10.004] [PMID: 19833104]
[19]
Anzini, M.; Valenti, S.; Braile, C.; Cappelli, A.; Vomero, S.; Alcaro, S.; Ortuso, F.; Marinelli, L.; Limongelli, V.; Novellino, E.; Betti, L.; Giannaccini, G.; Lucacchini, A.; Daniele, S.; Martini, C.; Ghelardini, C.; Di Cesare Mannelli, L.; Giorgi, G.; Mascia, M.P.; Biggio, G. New insight into the central benzodiazepine receptor-ligand interactions: Design, synthesis, biological evaluation, and molecular modeling of 3-substituted 6-phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and related compounds. J. Med. Chem., 2011, 54(16), 5694-5711.
[http://dx.doi.org/10.1021/jm2001597] [PMID: 21751815]
[20]
Akrami, M.; Balalaie, S.; Hosseinkhani, S.; Alipour, M.; Salehi, F.; Bahador, A.; Haririan, I. Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms. Sci. Rep., 2016, 6(1), 31030.
[http://dx.doi.org/10.1038/srep31030] [PMID: 27491007]
[21]
Scarborough, R.M.; Gretler, D.D. Platelet glycoprotein IIb-IIIa antagonists as prototypical integrin blockers: Novel parenteral and potential oral antithrombotic agents. J. Med. Chem., 2000, 43(19), 3453-3473.
[http://dx.doi.org/10.1021/jm000022w] [PMID: 10999999]
[22]
Dalkara, S.; Karakurt, A. Recent progress in anticonvulsant drug research: Strategies for anticonvulsant drug development and applications of antiepileptic drugs for non-epileptic central nervous system disorders. Curr. Top. Med. Chem., 2012, 12(9), 1033-1071.
[http://dx.doi.org/10.2174/156802612800229215] [PMID: 22352861]
[23]
Kapadiya, K.M.; Kavadia, K.M.; Dholaria, P.V.; Khunt, R.C. Synthesis of new class of methyl and thiomethyl substituted pyrimidine-5-carboxamides as anti-microbial and anti-cancer agents. J. Hete. Chem., 2021, 31(3), 365-371.
[24]
Garg, G.; Khandelwal, A.; Blagg, B.S.J. Anticancer inhibitors of hsp90 function: Beyond the usual suspects. Inc., 2016, 129, 51-88.
[PMID: 26916001]
[25]
Suresh Kumar, G.V.; Rajendraprasad, Y.; Mallikarjuna, B.P.; Chandrashekar, S.M.; Kistayya, C. Synthesis of some novel 2-substituted-5-[isopropylthiazole] clubbed 1,2,4-triazole and 1,3,4-oxadiazoles as potential antimicrobial and antitubercular agents. Eur. J. Med. Chem., 2010, 45(5), 2063-2074.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.045] [PMID: 20149496]
[26]
Zhou, Z.; Madura, J.D. Relative free energy of binding and binding mode calculations of HIV-1 RT inhibitors based on dock-MM-PB/GS. Proteins, 2004, 57(3), 493-503.
[http://dx.doi.org/10.1002/prot.20223] [PMID: 15382241]
[27]
Carradori, S.; Silvestri, R. New frontiers in selective human mao-b inhibitors. J. Med. Chem., 2015, 58(17), 6717-6732.
[http://dx.doi.org/10.1021/jm501690r] [PMID: 25915162]
[28]
Mardianingrum, R.; Endah, S.R.N.; Suhardiana, E.; Ruswanto, R.; Siswandono, S. Docking and molecular dynamic study of isoniazid derivatives as anti-tuberculosis drug candidate. Chem. Data Collect., 2021, 32100647
[http://dx.doi.org/10.1016/j.cdc.2021.100647]
[29]
Hua, S.X.; Huang, R.Z.; Ye, M.Y.; Pan, Y.M.; Yao, G.Y.; Zhang, Y.; Wang, H.S. Design, synthesis and in vitro evaluation of novel ursolic acid derivatives as potential anticancer agents. Eur. J. Med. Chem., 2015, 95, 435-452.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.051] [PMID: 25841199]
[30]
Janin, Y.L. Antituberculosis drugs: Ten years of research. Bioorg. Med. Chem., 2007, 15(7), 2479-2513.
[http://dx.doi.org/10.1016/j.bmc.2007.01.030] [PMID: 17291770]
[31]
Hoang, T.T.N.; Lin, Y.S.; Le, T.N.H.; Le, T.K.; Huynh, T.K.X.; Tsai, D.H. Cu-ZnO@Al2O3 hybrid nanoparticle with enhanced activity for catalytic CO2 conversion to methanol. Adv. Powder Technol., 2021, 32(5), 1785-1792.
[http://dx.doi.org/10.1016/j.apt.2021.03.034]
[32]
Lale, A.; Schmidt, M.; Mallmann, M.D.; Bezerra, A.V.A.; Acosta, E.D.; Machado, R.A.F.; Demirci, U.B.; Bernard, S. Polymer-derived ceramics with engineered mesoporosity: From design to application in catalysis. Surf. Coat. Tech., 2018, 350, 569-586.
[http://dx.doi.org/10.1016/j.surfcoat.2018.07.061]
[33]
Liu, L.; Su, X.; Zhang, H.; Gao, N.; Xue, F.; Ma, Y.; Jiang, Z.; Fang, T. Zirconia-modified copper catalyst for CO2 conversion to methanol from DFT study. Appl. Surf. Sci., 2020, 528146900
[http://dx.doi.org/10.1016/j.apsusc.2020.146900]
[34]
Gupta, U.D.; Katoch, V.M. Animal models of tuberculosis. Tuberculosis (Edinb.), 2005, 85(5-6), 277-293.
[http://dx.doi.org/10.1016/j.tube.2005.08.008] [PMID: 16249122]
[35]
Swaminathan, S.; Rekha, B. Pediatric tuberculosis: Global overview and challenges. Clin. Infect. Dis., 2010, 50(s3)(Suppl. 3), S184-S194.
[http://dx.doi.org/10.1086/651490] [PMID: 20397947]
[36]
Kapadiya, K.M.; Jadeja, Y.S.; Banik, A.; Khunt, R.C. In silico and in vitro studies of fluorinated chroman-2-carboxilic acid derivatives as an anti-tubercular agent. Folia Med. (Plovdiv), 2019, 61(4), 95-103.
[PMID: 31188774]
[37]
Kapadiya, K.M.; Kavadia, K.M.; Manvar, P.A.; Khunt, R.C. Synthesis of nitrogen and oxygen based pyrazole derivatives and its antitubercular and antimicrobial activity. Antiinfect. Agents, 2015, 13(2), 129-138.
[http://dx.doi.org/10.2174/2211352513666150915235745]
[38]
Collins, L.; Franzblau, S.G. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother., 1997, 41(5), 1004-1009.
[http://dx.doi.org/10.1128/AAC.41.5.1004] [PMID: 9145860]
[39]
Krishna, V.S.; Zheng, S.; Rekha, E.M.; Guddat, L.W.; Sriram, D. Discovery and evaluation of novel Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors as therapeutic drug leads. J. Comput. Aided Mol. Des., 2019, 33(3), 357-366.
[http://dx.doi.org/10.1007/s10822-019-00184-1] [PMID: 30666485]
[40]
Rocha, R.O.; Rodrigues, M.O.; Neto, B.A.D. Review on the Ugi multicomponent reaction mechanism and the use of fluorescent derivatives as functional chromophores. ACS Omega, 2020, 5(2), 972-979.
[http://dx.doi.org/10.1021/acsomega.9b03684] [PMID: 31984252]

© 2024 Bentham Science Publishers | Privacy Policy