Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Fluoropropanoic Acid Compound Revealed as Novel Macrophage Migration Inhibitory Factor (MIF) Inhibitor through Virtual Screening and Molecular Dynamics (MD) Simulation

Author(s): Rafeed Rahman Turjya, Md. Abdullah-Al-Kamran Khan and Abul Bashar Mir Md. Khademul Islam*

Volume 21, Issue 2, 2024

Published on: 03 September, 2022

Page: [236 - 253] Pages: 18

DOI: 10.2174/1570180819666220621164014

Price: $65

Abstract

Introduction: Macrophage Migration Inhibitory Factor (MIF), a cytokine that signals for inflammatory response, has been implicated in multiple inflammatory disorders, including RA. Inhibition of MIF activity by anti-MIF inhibitors can lead to improved prognosis and increased quality of life. Development of a medically viable MIF inhibitor has been pursued without success, and no inhibitor that binds to MIF active site has been approved as a drug. Current treatments of Rheumatoid Arthritis (RA), an inflammatory disorder driven by an autoimmune response, target pain management and control of progression, but the risk of toxicity and increased side effects lead to limited success.

Methods: Our goal was to search for drug-like lead compounds that bind more potently to MIF active sites than current inhibitors. We selected ten classes of chemical compounds that have previously shown in vitro MIF inhibitory activity and screened ~47,000 compounds belonging to these classes through virtual docking, alongside ~900,000 compounds from ZINC and TCM (Traditional Chinese Medicine) databases. The ligands with the higher energy of binding than current inhibitors were analyzed for ADMET profiles and drug-likeness properties.

Results: In total, 75 ligands showed binding energies higher than the threshold of -7.5 kcal/mol, and 5 lead compounds were identified with suitable pharmacokinetic profiles and drug-like characteristics. Among them, molecular dynamics simulation showed a stable ligand-protein complex for 3-[3-fluoro-4- (trifluoromethyl)phenyl] propanoic acid.

Conclusion: With the identification of this lead compound, new opportunities can be sought in the pursuit of a novel treatment for Rheumatoid Arthritis.

Keywords: Macrophage migration inhibitory factor, MIF inhibitor, rheumatoid arthritis, virtual screening, docking, molecular dynamics, ADMET.

Graphical Abstract

[1]
Moriyama, H.; Bagchi, D.; Raychaudhuri, S.P. Arthritis: Pathophysiology, prevention, and therapeutics; CRC Press, 2016.
[2]
Bajtner, E.; Nandakumar, K.S.; Engström, Å.; Holmdahl, R. Chronic development of collagen-induced arthritis is associated with arthritogenic antibodies against specific epitopes on type II collagen. Arthritis Res. Ther., 2005, 7(5), R1148-R1157.
[http://dx.doi.org/10.1186/ar1800] [PMID: 16207332]
[3]
Korczowska, I. Rheumatoid arthritis susceptibility genes: An overview. World J. Orthop., 2014, 5(4), 544-549.
[http://dx.doi.org/10.5312/wjo.v5.i4.544] [PMID: 25232530]
[4]
McInnes, I.B.; Buckley, C.D.; Isaacs, J.D. Cytokines in rheumatoid arthritis — shaping the immunological landscape. Nat. Rev. Rheumatol., 2016, 12(1), 63-68.
[http://dx.doi.org/10.1038/nrrheum.2015.171] [PMID: 26656659]
[5]
Monti, S.; Montecucco, C.; Bugatti, S.; Caporali, R. Rheumatoid arthritis treatment: The earlier the better to prevent joint damage. RMD Open, 2015, 1(Suppl. 1), e000057.
[http://dx.doi.org/10.1136/rmdopen-2015-000057] [PMID: 26557378]
[6]
Mukherjee, D.; Nissen, S.E.; Topol, E.J. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA, 2001, 286(8), 954-959.
[http://dx.doi.org/10.1001/jama.286.8.954] [PMID: 11509060]
[7]
Doan, T.; Massarotti, E. Rheumatoid arthritis: An overview of new and emerging therapies. J. Clin. Pharmacol., 2005, 45(7), 751-762.
[http://dx.doi.org/10.1177/0091270005277938] [PMID: 15951465]
[8]
Burmester, G.R.; Feist, E.; Dörner, T. Emerging cell and cytokine targets in rheumatoid arthritis. Nat. Rev. Rheumatol., 2014, 10(2), 77-88.
[http://dx.doi.org/10.1038/nrrheum.2013.168] [PMID: 24217582]
[9]
Siebert, S.; Tsoukas, A.; Robertson, J.; McInnes, I. Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases. Pharmacol. Rev., 2015, 67(2), 280-309.
[http://dx.doi.org/10.1124/pr.114.009639] [PMID: 25697599]
[10]
Dave, M.; Islam, A.B.M.M.K.; Jensen, R.V.; Rostagno, A.; Ghiso, J.; Amin, A.R. Proteomic analysis shows constitutive secretion of mif and p53-associated activity of cox-2−/− lung fibroblasts. Genomics Proteomics Bioinformatics, 2017, 15(6), 339-351.
[http://dx.doi.org/10.1016/j.gpb.2017.03.005] [PMID: 29247872]
[11]
Yoo, S.A.; Leng, L.; Kim, B.J.; Du, X.; Tilstam, P.V.; Kim, K.H.; Kong, J.S.; Yoon, H.J.; Liu, A.; Wang, T.; Song, Y.; Sauler, M.; Bernhagen, J.; Ritchlin, C.T.; Lee, P.; Cho, C.S.; Kim, W.U.; Bucala, R. MIF allele-dependent regulation of the MIF coreceptor CD44 and role in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA, 2016, 113(49), E7917-E7926.
[http://dx.doi.org/10.1073/pnas.1612717113] [PMID: 27872288]
[12]
Morand, E.F.; Leech, M.; Bernhagen, J. MIF: A new cytokine link between rheumatoid arthritis and atherosclerosis. Nat. Rev. Drug Discov., 2006, 5(5), 399-411.
[http://dx.doi.org/10.1038/nrd2029] [PMID: 16628200]
[13]
Bilsborrow, J.B.; Doherty, E.; Tilstam, P.V.; Bucala, R. Macrophage migration inhibitory factor (MIF) as a therapeutic target for rheumatoid arthritis and systemic lupus erythematosus. Expert Opin. Ther. Targets, 2019, 23(9), 733-744.
[http://dx.doi.org/10.1080/14728222.2019.1656718] [PMID: 31414920]
[14]
Leng, L.; Metz, C.N.; Fang, Y.; Xu, J.; Donnelly, S.; Baugh, J.; Delohery, T.; Chen, Y.; Mitchell, R.A.; Bucala, R. MIF signal transduction initiated by binding to CD74. J. Exp. Med., 2003, 197(11), 1467-1476.
[http://dx.doi.org/10.1084/jem.20030286] [PMID: 12782713]
[15]
Shi, X.; Leng, L.; Wang, T.; Wang, W.; Du, X.; Li, J.; McDonald, C.; Chen, Z.; Murphy, J.W.; Lolis, E.; Noble, P.; Knudson, W.; Bucala, R. CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity, 2006, 25(4), 595-606.
[http://dx.doi.org/10.1016/j.immuni.2006.08.020] [PMID: 17045821]
[16]
Mangano, K.; Mazzon, E.; Basile, M.S.; Di Marco, R.; Bramanti, P.; Mammana, S.; Petralia, M.C.; Fagone, P.; Nicoletti, F. Pathogenic role for macrophage migration inhibitory factor in glioblastoma and its targeting with specific inhibitors as novel tailored therapeutic approach. Oncotarget, 2018, 9(25), 17951-17970.
[http://dx.doi.org/10.18632/oncotarget.24885] [PMID: 29707160]
[17]
Calandra, T.; Bernhagen, J.; Metz, C.N.; Spiegel, L.A.; Bacher, M.; Donnelly, T.; Cerami, A.; Bucala, R. MIF as a glucocorticoid-induced modulator of cytokine production. Nature, 1995, 377(6544), 68-71.
[http://dx.doi.org/10.1038/377068a0] [PMID: 7659164]
[18]
O’Reilly, C.; Doroudian, M.; Mawhinney, L.; Donnelly, S.C. Targeting mif in cancer: Therapeutic strategies, current developments, and future opportunities. Med. Res. Rev., 2016, 36(3), 440-460.
[http://dx.doi.org/10.1002/med.21385] [PMID: 26777977]
[19]
Rosengren, E.; Bucala, R.; Åman, P.; Jacobsson, L.; Odh, G.; Metz, C.N.; Rorsman, H. The immunoregulatory mediator macrophage migration inhibitory factor (MIF) catalyzes a tautomerization reaction. Mol. Med., 1996, 2(1), 143-149.
[http://dx.doi.org/10.1007/BF03402210] [PMID: 8900542]
[20]
Xu, L.; Li, Y.; Sun, H.; Zhen, X.; Qiao, C.; Tian, S.; Hou, T. Current developments of macrophage migration inhibitory factor (MIF) inhibitors. Drug Discov. Today, 2013, 18(11-12), 592-600.
[http://dx.doi.org/10.1016/j.drudis.2012.12.013] [PMID: 23466524]
[21]
Garai, J.; Lóránd, T. Macrophage migration inhibitory factor (MIF) tautomerase inhibitors as potential novel anti-inflammatory agents: current developments. Curr. Med. Chem., 2009, 16(9), 1091-1114.
[http://dx.doi.org/10.2174/092986709787581842] [PMID: 19275614]
[22]
Al-Abed, Y.; VanPatten, S. MIF as a disease target: ISO-1 as a proof-of-concept therapeutic. Future Med. Chem., 2011, 3(1), 45-63.
[http://dx.doi.org/10.4155/fmc.10.281] [PMID: 21428825]
[23]
Cho, Y.; Crichlow, G.V.; Vermeire, J.J.; Leng, L.; Du, X.; Hodsdon, M.E.; Bucala, R.; Cappello, M.; Gross, M.; Gaeta, F.; Johnson, K.; Lolis, E.J. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proc. Natl. Acad. Sci. USA, 2010, 107(25), 11313-11318.
[http://dx.doi.org/10.1073/pnas.1002716107] [PMID: 20534506]
[24]
Bloom, J.; Metz, C.; Nalawade, S.; Casabar, J.; Cheng, K.F.; He, M.; Sherry, B.; Coleman, T.; Forsthuber, T.; Al-Abed, Y. Identification of iguratimod as an inhibitor of macrophage migration inhibitory factor (mif) with steroid-sparing potential. J. Biol. Chem., 2016, 291(51), 26502-26514.
[http://dx.doi.org/10.1074/jbc.M116.743328] [PMID: 27793992]
[25]
Cavalli, E.; Ciurleo, R.; Petralia, M.C.; Fagone, P.; Bella, R.; Mangano, K.; Nicoletti, F.; Bramanti, P.; Basile, M.S. Emerging role of the macrophage migration inhibitory factor family of cytokines in neuroblastoma. Pathogenic effectors and novel therapeutic targets? Molecules, 2020, 25(5), 1194.
[http://dx.doi.org/10.3390/molecules25051194] [PMID: 32155795]
[26]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[27]
Sun, H.W.; Bernhagen, J.; Bucala, R.; Lolis, E. Crystal structure at 2.6-A resolution of human macrophage migration inhibitory factor. Proc. Natl. Acad. Sci. USA, 1996, 93(11), 5191-5196.
[http://dx.doi.org/10.1073/pnas.93.11.5191] [PMID: 8643551]
[28]
Krieger, E.; Vriend, G. New ways to boost molecular dynamics simulations. J. Comput. Chem., 2015, 36(13), 996-1007.
[http://dx.doi.org/10.1002/jcc.23899] [PMID: 25824339]
[29]
Pantouris, G.; Syed, M.A.; Fan, C.; Rajasekaran, D.; Cho, T.Y.; Rosenberg, E.M., Jr; Bucala, R.; Bhandari, V.; Lolis, E.J. An analysis of mif structural features that control functional activation of cd74. Chem. Biol., 2015, 22(9), 1197-1205.
[http://dx.doi.org/10.1016/j.chembiol.2015.08.006] [PMID: 26364929]
[30]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res., 2019, 47(D1), D1102-D1109.
[http://dx.doi.org/10.1093/nar/gky1033] [PMID: 30371825]
[31]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[32]
Case, D.; Babin, V.; Berryman, J. Amber 14; university of california: San francisco. , 2014, 1-826.
[33]
Drugdiscovery@tacc [Internet] 2019. Available from: https://drugdiscovery.tacc.utexas.edu/#/
[34]
Sterling, T.; Irwin, J.J. Zinc 15 – ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337.
[http://dx.doi.org/10.1021/acs.jcim.5b00559] [PMID: 26479676]
[35]
Chen, C.Y.C. TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One, 2011, 6(1), e15939.
[http://dx.doi.org/10.1371/journal.pone.0015939] [PMID: 21253603]
[36]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. Pkcsm: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[37]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[38]
Boonstra, S.; Onck, P.R.; van der Giessen, E. Charmm tip3p water model suppresses peptide folding by solvating the unfolded state. J. Phys. Chem. B, 2016, 120(15), 3692-3698.
[http://dx.doi.org/10.1021/acs.jpcb.6b01316] [PMID: 27031562]
[39]
Kuriata, A.; Gierut, A.M.; Oleniecki, T.; Ciemny, M.P.; Kolinski, A.; Kurcinski, M.; Kmiecik, S. CABS-flex 2.0: A web server for fast simulations of flexibility of protein structures. Nucleic Acids Res., 2018, 46(W1), W338-W343.
[http://dx.doi.org/10.1093/nar/gky356] [PMID: 29762700]
[40]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[41]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel., 1995, 8(2), 127-134.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]
[42]
Orita, M.; Yamamoto, S.; Katayama, N.; Aoki, M.; Takayama, K.; Yamagiwa, Y.; Seki, N.; Suzuki, H.; Kurihara, H.; Sakashita, H.; Takeuchi, M.; Fujita, S.; Yamada, T.; Tanaka, A. Coumarin and chromen-4-one analogues as tautomerase inhibitors of macrophage migration inhibitory factor: discovery and X-ray crystallography. J. Med. Chem., 2001, 44(4), 540-547.
[http://dx.doi.org/10.1021/jm000386o] [PMID: 11170644]
[43]
Ioannou, K.; Cheng, K.F.; Crichlow, G.V.; Birmpilis, A.I.; Lolis, E.J.; Tsitsilonis, O.E.; Al-Abed, Y. ISO-66, a novel inhibitor of macrophage migration, shows efficacy in melanoma and colon cancer models. Int. J. Oncol., 2014, 45(4), 1457-1468.
[http://dx.doi.org/10.3892/ijo.2014.2551] [PMID: 25050663]
[44]
Kithcart, A.P.; Cox, G.M.; Sielecki, T.; Short, A.; Pruitt, J.; Papenfuss, T.; Shawler, T.; Gienapp, I.; Satoskar, A.R.; Whitacre, C.C. A small‐molecule inhibitor of macrophage migration inhibitory factor for the treatment of inflammatory disease. FASEB J., 2010, 24(11), 4459-4466.
[http://dx.doi.org/10.1096/fj.10-162347] [PMID: 20624927]
[45]
Alam, A.; Pal, C.; Goyal, M.; Kundu, M.K.; Kumar, R.; Iqbal, M.S.; Dey, S.; Bindu, S.; Sarkar, S.; Pal, U.; Maiti, N.C.; Adhikari, S.; Bandyopadhyay, U. Synthesis and bio-evaluation of human macrophage migration inhibitory factor inhibitor to develop anti-inflammatory agent. Bioorg. Med. Chem., 2011, 19(24), 7365-7373.
[http://dx.doi.org/10.1016/j.bmc.2011.10.056] [PMID: 22088307]
[46]
Jorgensen, W.L.; Gandavadi, S.; Du, X.; Hare, A.A.; Trofimov, A.; Leng, L.; Bucala, R. Receptor agonists of macrophage migration inhibitory factor. Bioorg. Med. Chem. Lett., 2010, 20(23), 7033-7036.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.118] [PMID: 20971005]
[47]
Cisneros, J.A.; Robertson, M.J.; Valhondo, M.; Jorgensen, W.L. A fluorescence polarization assay for binding to macrophage migration inhibitory factor and crystal structures for complexes of two potent inhibitors. J. Am. Chem. Soc., 2016, 138(27), 8630-8638.
[http://dx.doi.org/10.1021/jacs.6b04910] [PMID: 27299179]
[48]
Ouertatani-Sakouhi, H.; El-Turk, F.; Fauvet, B.; Cho, M.K.; Pinar Karpinar, D.; Le Roy, D.; Dewor, M.; Roger, T.; Bernhagen, J.; Calandra, T.; Zweckstetter, M.; Lashuel, H.A. Identification and characterization of novel classes of macrophage migration inhibitory factor (MIF) inhibitors with distinct mechanisms of action. J. Biol. Chem., 2010, 285(34), 26581-26598.
[http://dx.doi.org/10.1074/jbc.M110.113951] [PMID: 20516071]
[49]
Delaney, J.S. ESOL: estimating aqueous solubility directly from molecular structure. J. Chem. Inf. Comput. Sci., 2004, 44(3), 1000-1005.
[http://dx.doi.org/10.1021/ci034243x] [PMID: 15154768]
[50]
Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 11(11), 1117-1121.
[http://dx.doi.org/10.1002/cmdc.201600182] [PMID: 27218427]
[51]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[52]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[53]
Teague, S.J.; Davis, A.M.; Leeson, P.D.; Oprea, T. The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed., 1999, 38(24), 3743-3748.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3743:AID-ANIE3743>3.0.CO;2-U] [PMID: 10649345]
[54]
Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem, 2008, 3(3), 435-444.
[http://dx.doi.org/10.1002/cmdc.200700139] [PMID: 18064617]
[55]
Martin, Y.C. A bioavailability score. J. Med. Chem., 2005, 48(9), 3164-3170.
[http://dx.doi.org/10.1021/jm0492002] [PMID: 15857122]
[56]
Trivedi-Parmar, V; Jorgensen, WL Advances and insights for small molecule inhibition of macrophage migration inhibitory factor., 2018, 61(18), 8104-19.
[http://dx.doi.org/ 10.1021/acs.jmedchem.8b00589.]
[57]
Dziedzic, P.; Cisneros, J.A.; Robertson, M.J.; Hare, A.A.; Danford, N.E.; Baxter, R.H.G.; Jorgensen, W.L. Design, synthesis, and protein crystallography of biaryltriazoles as potent tautomerase inhibitors of macrophage migration inhibitory factor. J. Am. Chem. Soc., 2015, 137(8), 2996-3003.
[http://dx.doi.org/10.1021/ja512112j] [PMID: 25697265]
[58]
Cheng, K.F.; Al-Abed, Y. Critical modifications of the ISO-1 scaffold improve its potent inhibition of macrophage migration inhibitory factor (MIF) tautomerase activity. Bioorg. Med. Chem. Lett., 2006, 16(13), 3376-3379.
[http://dx.doi.org/10.1016/j.bmcl.2006.04.038] [PMID: 16682188]
[59]
Winner, M.; Meier, J.; Zierow, S.; Rendon, B.E.; Crichlow, G.V.; Riggs, R.; Bucala, R.; Leng, L.; Smith, N.; Lolis, E.; Trent, J.O.; Mitchell, R.A. A novel, macrophage migration inhibitory factor suicide substrate inhibits motility and growth of lung cancer cells. Cancer Res., 2008, 68(18), 7253-7257.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6227] [PMID: 18794110]
[60]
Ouertatani-Sakouhi, H.; El-Turk, F.; Fauvet, B.; Roger, T.; Le Roy, D.; Karpinar, D.P.; Leng, L.; Bucala, R.; Zweckstetter, M.; Calandra, T.; Lashuel, H.A. A new class of isothiocyanate-based irreversible inhibitors of macrophage migration inhibitory factor. Biochemistry, 2009, 48(41), 9858-9870.
[http://dx.doi.org/10.1021/bi900957e] [PMID: 19737008]

© 2024 Bentham Science Publishers | Privacy Policy