Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Dual Role of Fibroblast Growth Factor Pathways in Sleep Regulation

Author(s): Sajad Sahab Negah and Fatemeh Forouzanfar*

Volume 23, Issue 1, 2023

Published on: 03 October, 2022

Page: [63 - 69] Pages: 7

DOI: 10.2174/1871530322666220802161031

Price: $65

Abstract

Sleep plays an important function in neuro-immuno-endocrine homeostasis. Sleep disorders have been associated with an increased risk of metabolic and cognitive impairments. Among different factors that have an effect on sleep metabolism, a growing body of literature has investigated growth factors in the course of sleep quality and disorders. A good example of growth factors is fibroblast growth factors (FGFs), which are a large family of polypeptide growth factors. Evidence has shown that FGFs are involved in the modulation of sleep-wake behavior by their receptor subtypes and ligands, e.g., FFG1 plays an important role in the quality of sleep through somnogenic effects, while the high level of FGF23 is associated with secondary disorders in shift workers. Therefore, a controversial effect of FGFs can be seen in the course of sleep in physiologic and pathologic conditions. Further investigation on this topic would help us to understand the role of FGFs in sleep disorders as a therapeutic option and biomarker.

Keywords: Fibroblast growth factor, sleep, insomnia, neurotrophic, circadian rhythm, inflammation.

Graphical Abstract

[1]
Chokroverty, S. Overview of sleep & sleep disorders. Indian J. Med. Res., 2010, 131, 126-140.
[PMID: 20308738]
[2]
Riemann, D.; Krone, L.B.; Wulff, K.; Nissen, C. Sleep, insomnia, and depression. Neuropsychopharmacology, 2020, 45(1), 74-89.
[http://dx.doi.org/10.1038/s41386-019-0411-y] [PMID: 31071719]
[3]
Wisden, W.; Yu, X.; Franks, N. GABA receptors and the pharmacology of sleep. Handb. Exp. Pharmacol., 2019, 253, 279-304.
[4]
Buettner, R.; Grimmeisen, A.; Gotschlich, A. High-performance diagnosis of sleep disorders: A novel, accurate and fast machine learning approach using electroencephalographic data. Proceedings of the 53rd Hawaii International Conference on System Sciences, 2020 Jan 7-10Maui, Hawaii
[http://dx.doi.org/10.24251/HICSS.2020.396]
[5]
Craig, S.G.; Weiss, M.D.; Hudec, K.L.; Gibbins, C. The functional impact of sleep disorders in children with ADHD. J. Atten. Disord., 2020, 24(4), 499-508.
[http://dx.doi.org/10.1177/1087054716685840] [PMID: 28093033]
[6]
Rakhshandeh, H.; Heidari, A.; Pourbagher-Shahri, A.M.; Rashidi, R.; Forouzanfar, F. Hypnotic effect of A. absinthium hydroalcoholic extract in pentobarbital-treated mice. Neurol. Res. Int., 2021, 2021, 5521019.
[7]
Cooper, A.R.; Loeb, K.L.; McGlinchey, E.L. Sleep and eating disorders: Current research and future directions. Curr. Opin. Psychol., 2020, 34, 89-94.
[http://dx.doi.org/10.1016/j.copsyc.2019.11.005] [PMID: 31841832]
[8]
King, G.L. The role of inflammatory cytokines in diabetes and its complications. J. Periodontol., 2008, 79(8)(Suppl.), 1527-1534.
[http://dx.doi.org/10.1902/jop.2008.080246] [PMID: 18673007]
[9]
Monteiro, R.; Azevedo, I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm., 2010, 2010, 289645.
[http://dx.doi.org/10.1155/2010/289645]
[10]
Hall, J.E.; Mouton, A.J.; da Silva, A.A.; Omoto, A.C.M.; Wang, Z.; Li, X.; do Carmo, J.M. Obesity, kidney dysfunction, and inflammation: Interactions in hypertension. Cardiovasc. Res., 2021, 117(8), 1859-1876.
[http://dx.doi.org/10.1093/cvr/cvaa336] [PMID: 33258945]
[11]
Irwin, M.R.; Olmstead, R.; Carroll, J.E. Sleep disturbance, sleep duration, and inflammation: A systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol. Psychiatry, 2016, 80(1), 40-52.
[http://dx.doi.org/10.1016/j.biopsych.2015.05.014] [PMID: 26140821]
[12]
Wang, N.; Zhao, T.; Li, S.; Sun, X.; Li, Z.; Li, Y.; Li, D.; Wang, W. Fibroblast growth factor 21 exerts its anti-inflammatory effects on multiple cell types of adipose tissue in obesity. Obesity (Silver Spring), 2019, 27(3), 399-408.
[http://dx.doi.org/10.1002/oby.22376] [PMID: 30703283]
[13]
Liang, G.; Song, L.; Chen, Z.; Qian, Y.; Xie, J.; Zhao, L.; Lin, Q.; Zhu, G.; Tan, Y.; Li, X.; Mohammadi, M.; Huang, Z. Fibroblast growth factor 1 ameliorates diabetic nephropathy by an anti-inflammatory mechanism. Kidney Int., 2018, 93(1), 95-109.
[http://dx.doi.org/10.1016/j.kint.2017.05.013] [PMID: 28750927]
[14]
Forouzanfar, F.; Sadeghnia, H.R.; Hoseini, S.J.; Ghorbani, A.; Ghazavi, H.; Ghasemi, F.; Hosseinzadeh, H. Fibroblast growth factor 1 gene-transfected adipose-derived mesenchymal stem cells modulate apoptosis and inflammation in the chronic constriction injury model of neuropathic pain. Iran. J. Pharm. Res., 2020, 19(4), 151-159.
[PMID: 33841531]
[15]
Deng, Z.; Deng, S.; Zhang, M.R.; Tang, M.M. Fibroblast growth factors in depression. Front. Pharmacol., 2019, 10, 60.
[http://dx.doi.org/10.3389/fphar.2019.00060] [PMID: 30804785]
[16]
Struik, D.; Dommerholt, M.B.; Jonker, J.W. Fibroblast growth factors in control of lipid metabolism. Curr. Opin. Lipidol., 2019, 30(3), 235-243.
[http://dx.doi.org/10.1097/MOL.0000000000000599] [PMID: 30893110]
[17]
Talaei, A.; Farkhondeh, T.; Forouzanfar, F. Fibroblast growth factor: Promising target for schizophrenia. Curr. Drug Targets, 2020, 21(13), 1344-1353.
[http://dx.doi.org/10.2174/1389450121666200628114843] [PMID: 32598256]
[18]
Forouzanfar, F.; Sadeghnia, H.R. Fibroblast growth factors as tools in the management of neuropathic pain disorders. Curr. Drug Targets, 2020, 21(10), 1034-1043.
[http://dx.doi.org/10.2174/1389450121666200423084205] [PMID: 32324511]
[19]
Tiong, K.H.; Mah, L.Y.; Leong, C.O. Functional roles of Fibroblast Growth Factor Receptors (FGFRs) signaling in human cancers. Apoptosis, 2013, 18(12), 1447-1468.
[http://dx.doi.org/10.1007/s10495-013-0886-7] [PMID: 23900974]
[20]
Wu, A.L.; Coulter, S.; Liddle, C.; Wong, A.; Eastham-Anderson, J.; French, D.M.; Peterson, A.S.; Sonoda, J. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS One, 2011, 6(3), e17868.
[http://dx.doi.org/10.1371/journal.pone.0017868] [PMID: 21437243]
[21]
Ohmachi, S.; Mikami, T.; Konishi, M.; Miyake, A.; Itoh, N. Preferential neurotrophic activity of fibroblast growth factor-20 for dopaminergic neurons through fibroblast growth factor receptor-1c. J. Neurosci. Res., 2003, 72(4), 436-443.
[http://dx.doi.org/10.1002/jnr.10592] [PMID: 12704805]
[22]
Beenken, A.; Mohammadi, M. The FGF family: Biology, pathophysiology and therapy. Nat. Rev. Drug Discov., 2009, 8(3), 235-253.
[http://dx.doi.org/10.1038/nrd2792] [PMID: 19247306]
[23]
Sarabipour, S.; Hristova, K. Mechanism of FGF receptor dimerization and activation. Nat. Commun., 2016, 7(1), 10262.
[http://dx.doi.org/10.1038/ncomms10262] [PMID: 26725515]
[24]
Yun, Y.R.; Won, J.E.; Jeon, E.; Lee, S.; Kang, W.; Jo, H.; Jang, J.H.; Shin, U.S.; Kim, H.W. Fibroblast growth factors: Biology, function, and application for tissue regeneration. J. Tissue Eng., 2010, 1(1), 218142.
[http://dx.doi.org/10.4061/2010/218142] [PMID: 21350642]
[25]
Turner, C.A.; Watson, S.J.; Akil, H. The fibroblast growth factor family: Neuromodulation of affective behavior. Neuron, 2012, 76(1), 160-174.
[http://dx.doi.org/10.1016/j.neuron.2012.08.037] [PMID: 23040813]
[26]
Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B.E.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-Activated Protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev., 2001, 22(2), 153-183.
[PMID: 11294822]
[27]
Loesch, M.; Chen, G. The p38 MAPK stress pathway as a tumor suppressor or more? Front. Biosci., 2008, 13, 3581-3593.
[http://dx.doi.org/10.2741/2951]
[28]
Manning, B.D.; Toker, A. AKT/PKB signaling: Navigating the network. Cell, 2017, 169(3), 381-405.
[http://dx.doi.org/10.1016/j.cell.2017.04.001] [PMID: 28431241]
[29]
Smith, K.M.; Maragnoli, M.E.; Phull, P.M.; Tran, K.M.; Choubey, L.; Vaccarino, F.M. FGFR1 inactivation in the mouse telencephalon results in impaired maturation of interneurons expressing parvalbumin. PLoS One, 2014, 9(8), e103696.
[http://dx.doi.org/10.1371/journal.pone.0103696] [PMID: 25116473]
[30]
van Scheltinga, A.F.T.; Bakker, S.C.; Kahn, R.S. Fibroblast growth factors in schizophrenia. Schizophr. Bull., 2010, 36(6), 1157-1166.
[http://dx.doi.org/10.1093/schbul/sbp033] [PMID: 19429845]
[31]
Matsuda, Y.; Ueda, J.; Ishiwata, T. Fibroblast growth factor receptor 2: Expression, roles, and potential as a novel molecular target for colorectal cancer. Pathol. Res. Int., 2012, 2012, 574768.
[32]
Hughes, S.E. Differential expression of the Fibroblast Growth Factor Receptor (FGFR) multigene family in normal human adult tissues. J. Histochem. Cytochem., 1997, 45(7), 1005-1019.
[http://dx.doi.org/10.1177/002215549704500710] [PMID: 9212826]
[33]
Coumoul, X.; Deng, C.X. Roles of FGF receptors in mammalian development and congenital diseases. Birth Defects Res. C Embryo Today, 2003, 69(4), 286-304.
[http://dx.doi.org/10.1002/bdrc.10025] [PMID: 14745970]
[34]
Moldrich, R.X.; Mezzera, C.; Holmes, W.M.; Goda, S.; Brookfield, S.J.; Rankin, A.J.; Barr, E.; Kurniawan, N.; Dewar, D.; Richards, L.J. López-Bendito, G.; Iwata, T. FGFR3 regulates development of the caudal telencephalon. Dev. Dyn., 2011, 240(6), 1586-1599.
[http://dx.doi.org/10.1002/dvdy.22636] [PMID: 21491541]
[35]
Frattini, V.; Pagnotta, S.M. Tala; Fan, J.J.; Russo, M.V.; Lee, S.B.; Garofano, L.; Zhang, J.; Shi, P.; Lewis, G.; Sanson, H.; Frederick, V.; Castano, A.M.; Cerulo, L.; Rolland, D.C.M.; Mall, R.; Mokhtari, K.; Elenitoba-Johnson, K.S.J.; Sanson, M.; Huang, X.; Ceccarelli, M.; Lasorella, A.; Iavarone, A. A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature, 2018, 553(7687), 222-227.
[http://dx.doi.org/10.1038/nature25171] [PMID: 29323298]
[36]
Hultman, K.; Scarlett, J.M.; Baquero, A.F.; Cornea, A.; Zhang, Y.; Salinas, C.B.G.; Brown, J.; Morton, G.J.; Whalen, E.J.; Grove, K.L.; Koegler, F.H.; Schwartz, M.W.; Mercer, A.J. The central fibroblast growth factor receptor/beta klotho system: Comprehensive mapping in Mus musculus and comparisons to nonhuman primate and human samples using an automated in situ hybridization platform. J. Comp. Neurol., 2019, 527(12), 2069-2085.
[http://dx.doi.org/10.1002/cne.24668] [PMID: 30809795]
[37]
Zhao, P.; Caretti, G.; Mitchell, S.; McKeehan, W.L.; Boskey, A.L.; Pachman, L.M.; Sartorelli, V.; Hoffman, E.P. Fgfr4 is required for effective muscle regeneration in vivo. Delineation of a MyoD-Tead2-Fgfr4 transcriptional pathway. J. Biol. Chem., 2006, 281(1), 429-438.
[http://dx.doi.org/10.1074/jbc.M507440200] [PMID: 16267055]
[38]
Marics, I.; Padilla, F.; Guillemot, J.F.; Scaal, M.; Marcelle, C. FGFR4 signaling is a necessary step in limb muscle differentiation. Development, 2002, 129(19), 4559-4569.
[http://dx.doi.org/10.1242/dev.129.19.4559] [PMID: 12223412]
[39]
Chen, Z.; Xie, B.; Zhu, Q.; Xia, Q.; Jiang, S.; Cao, R.; Shi, L.; Qi, D.; Li, X.; Cai, L. FGFR4 and TGF-β1 expression in hepatocellular carcinoma: Correlation with clinicopathological features and prognosis. Int. J. Med. Sci., 2013, 10(13), 1868-1875.
[http://dx.doi.org/10.7150/ijms.6868] [PMID: 24324363]
[40]
Yang, C.; Jin, C.; Li, X.; Wang, F.; McKeehan, W.L.; Luo, Y. Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS One, 2012, 7(3), e33870.
[http://dx.doi.org/10.1371/journal.pone.0033870] [PMID: 22442730]
[41]
Zou, Y.; Hu, J.; Huang, W.; Ye, S.; Han, F.; Du, J.; Shao, M.; Guo, R.; Lin, J.; Zhao, Y.; Xiong, Y.; Wang, X. Non-mitogenic fibroblast growth factor 1 enhanced angiogenesis following ischemic stroke by regulating the sphingosine-1-phosphate 1 pathway. Front. Pharmacol., 2020, 11, 59.
[http://dx.doi.org/10.3389/fphar.2020.00059] [PMID: 32194396]
[42]
Nies, V.J.M.; Sancar, G.; Liu, W.; van Zutphen, T.; Struik, D.; Yu, R.T.; Atkins, A.R.; Evans, R.M.; Jonker, J.W.; Downes, M.R. Fibroblast growth factor signaling in metabolic regulation. Front. Endocrinol. (Lausanne), 2016, 6, 193.
[http://dx.doi.org/10.3389/fendo.2015.00193] [PMID: 26834701]
[43]
Zhou, Y.; Wang, Z.; Li, J.; Li, X.; Xiao, J. Fibroblast growth factors in the management of spinal cord injury. J. Cell. Mol. Med., 2018, 22(1), 25-37.
[http://dx.doi.org/10.1111/jcmm.13353] [PMID: 29063730]
[44]
De Saint Hilaire, Z.; Nicolaïdis, S. Enhancement of slow wave sleep parallel to the satiating effect of acidic fibroblast growth factor in rats. Brain Res. Bull., 1992, 29(3-4), 525-528.
[http://dx.doi.org/10.1016/0361-9230(92)90094-E] [PMID: 1382816]
[45]
Knefati, M.; Somogyi, C. Kapás, L.; Bourcier, T.; Krueger, J.M. Acidic Fibroblast Growth Factor (FGF) but not basic FGF induces sleep and fever in rabbits. Am. J. Physiol., 1995, 269(1 Pt 2), R87-R91.
[PMID: 7543260]
[46]
Manuel Calan, J.; Cuevas, B.; Dujovny, N.; Giménez-Gallego, G.; Cuevas, P. Sleep promoting effects of intravenously administered acidic fibroblast growth factor. Neurol. Res., 1996, 18(6), 567-569.
[http://dx.doi.org/10.1080/01616412.1996.11740472] [PMID: 8985960]
[47]
Okada-Ban, M.; Thiery, J.P.; Jouanneau, J. Fibroblast growth factor-2. Int. J. Biochem. Cell Biol., 2000, 32(3), 263-267.
[http://dx.doi.org/10.1016/S1357-2725(99)00133-8] [PMID: 10716624]
[48]
Nindl, W.; Kavakebi, P.; Claus, P.; Grothe, C.; Pfaller, K.; Klimaschewski, L. Expression of basic fibroblast growth factor isoforms in postmitotic sympathetic neurons: Synthesis, intracellular localization and involvement in karyokinesis. Neuroscience, 2004, 124(3), 561-572.
[http://dx.doi.org/10.1016/j.neuroscience.2003.11.032] [PMID: 14980727]
[49]
Hairston, I.S.; Peyron, C.; Denning, D.P.; Ruby, N.F.; Flores, J.; Sapolsky, R.M.; Heller, H.C.; O’Hara, B.F. Sleep deprivation effects on growth factor expression in neonatal rats: A potential role for BDNF in the mediation of delta power. J. Neurophysiol., 2004, 91(4), 1586-1595.
[http://dx.doi.org/10.1152/jn.00894.2003] [PMID: 14668298]
[50]
Dengler, V.L.; Galbraith, M.D.; Espinosa, J.M. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol., 2014, 49(1), 1-15.
[http://dx.doi.org/10.3109/10409238.2013.838205] [PMID: 24099156]
[51]
Calvani, M.; Rapisarda, A.; Uranchimeg, B.; Shoemaker, R.H.; Melillo, G. Hypoxic induction of an HIF-1α-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood, 2006, 107(7), 2705-2712.
[http://dx.doi.org/10.1182/blood-2005-09-3541] [PMID: 16304044]
[52]
Li, J.; Shworak, N.W.; Simons, M. Increased responsiveness of hypoxic endothelial cells to FGF2 is mediated by HIF-1α-dependent regulation of enzymes involved in synthesis of heparan sulfate FGF2-binding sites. J. Cell Sci., 2002, 115(9), 1951-1959.
[http://dx.doi.org/10.1242/jcs.115.9.1951] [PMID: 11956326]
[53]
Hirata, Y.; Nabekura, T.; Maruyama, H.; Aonuma, K.; Satoh, M. Elevation of plasma basic fibroblast growth factor after nocturnal hypoxic events in patients with obstructive sleep apnea syndrome. Springerplus, 2013, 2(1), 260.
[http://dx.doi.org/10.1186/2193-1801-2-260] [PMID: 23805411]
[54]
Xie, T.; Leung, P.S. Fibroblast growth factor 21: A regulator of metabolic disease and health span. Am. J. Physiol. Endocrinol. Metab., 2017, 313(3), E292-E302.
[http://dx.doi.org/10.1152/ajpendo.00101.2017] [PMID: 28559437]
[55]
Tezze, C.; Romanello, V.; Sandri, M. FGF21 as modulator of metabolism in health and disease. Front. Physiol., 2019, 10, 419.
[http://dx.doi.org/10.3389/fphys.2019.00419] [PMID: 31057418]
[56]
Bookout, A.L.; de Groot, M.H.M.; Owen, B.M.; Lee, S.; Gautron, L.; Lawrence, H.L.; Ding, X.; Elmquist, J.K.; Takahashi, J.S.; Mangelsdorf, D.J.; Kliewer, S.A. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med., 2013, 19(9), 1147-1152.
[http://dx.doi.org/10.1038/nm.3249] [PMID: 23933984]
[57]
Owen, B.M.; Bookout, A.L.; Ding, X.; Lin, V.Y.; Atkin, S.D.; Gautron, L.; Kliewer, S.A.; Mangelsdorf, D.J. FGF21 contributes to neuroendocrine control of female reproduction. Nat. Med., 2013, 19(9), 1153-1156.
[http://dx.doi.org/10.1038/nm.3250] [PMID: 23933983]
[58]
Sa-nguanmoo, P.; Chattipakorn, N.; Chattipakorn, S.C. Potential roles of fibroblast growth factor 21 in the brain. Metab. Brain Dis., 2016, 31(2), 239-248.
[http://dx.doi.org/10.1007/s11011-015-9789-3] [PMID: 26738728]
[59]
Katsu-Jiménez, Y.; Giménez-Cassina, A. Fibroblast growth Factor-21 promotes ketone body utilization in neurons through activation of AMP-dependent kinase. Mol. Cell. Neurosci., 2019, 101, 103415.
[http://dx.doi.org/10.1016/j.mcn.2019.103415] [PMID: 31676432]
[60]
Yu, H.; Xia, F.; Lam, K.S.L.; Wang, Y.; Bao, Y.; Zhang, J.; Gu, Y.; Zhou, P.; Lu, J.; Jia, W.; Xu, A. Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in fatty acids in humans. Clin. Chem., 2011, 57(5), 691-700.
[http://dx.doi.org/10.1373/clinchem.2010.155184] [PMID: 21325103]
[61]
Darzy, K.H.; Murray, R.D.; Gleeson, H.K.; Pezzoli, S.S.; Thorner, M.O.; Shalet, S.M. The impact of short-term fasting on the dynamics of 24-hour growth hormone (GH) secretion in patients with severe radiation-induced GH deficiency. J. Clin. Endocrinol. Metab., 2006, 91(3), 987-994.
[http://dx.doi.org/10.1210/jc.2005-2145] [PMID: 16384844]
[62]
Chan, S.; Debono, M. Review: Replication of cortisol circadian rhythm: New advances in hydrocortisone replacement therapy. Ther. Adv. Endocrinol. Metab., 2010, 1(3), 129-138.
[http://dx.doi.org/10.1177/2042018810380214] [PMID: 23148157]
[63]
Dinneen, S.; Alzaid, A.; Miles, J.; Rizza, R. Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans. J. Clin. Invest., 1993, 92(5), 2283-2290.
[http://dx.doi.org/10.1172/JCI116832] [PMID: 8227343]
[64]
Potthoff, M.J.; Inagaki, T.; Satapati, S.; Ding, X.; He, T.; Goetz, R.; Mohammadi, M.; Finck, B.N.; Mangelsdorf, D.J.; Kliewer, S.A.; Burgess, S.C. FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. USA, 2009, 106(26), 10853-10858.
[http://dx.doi.org/10.1073/pnas.0904187106] [PMID: 19541642]
[65]
Urakawa, I.; Yamazaki, Y.; Shimada, T.; Iijima, K.; Hasegawa, H.; Okawa, K.; Fujita, T.; Fukumoto, S.; Yamashita, T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature, 2006, 444(7120), 770-774.
[http://dx.doi.org/10.1038/nature05315] [PMID: 17086194]
[66]
Erben, R.G. Pleiotropic actions of FGF23. Toxicol. Pathol., 2017, 45(7), 904-910.
[http://dx.doi.org/10.1177/0192623317737469] [PMID: 29096595]
[67]
Bacchetta, J.; Bardet, C.; Prié, D. Physiology of FGF23 and overview of genetic diseases associated with renal phosphate wasting. Metabolism, 2020, 103, 153865.
[http://dx.doi.org/10.1016/j.metabol.2019.01.006] [PMID: 30664852]
[68]
Guo, Y.C.; Yuan, Q. Fibroblast growth factor 23 and bone mineralisation. Int. J. Oral Sci., 2015, 7(1), 8-13.
[http://dx.doi.org/10.1038/ijos.2015.1] [PMID: 25655009]
[69]
Martin, A.; David, V.; Quarles, L.D. Regulation and function of the FGF23/klotho endocrine pathways. Physiol. Rev., 2012, 92(1), 131-155.
[http://dx.doi.org/10.1152/physrev.00002.2011] [PMID: 22298654]
[70]
Silswal, N.; Touchberry, C.D.; Daniel, D.R.; McCarthy, D.L.; Zhang, S.; Andresen, J.; Stubbs, J.R.; Wacker, M.J. FGF23 directly impairs endothelium-dependent vasorelaxation by increasing superoxide levels and reducing nitric oxide bioavailability. Am. J. Physiol. Endocrinol. Metab., 2014, 307(5), E426-E436.
[http://dx.doi.org/10.1152/ajpendo.00264.2014] [PMID: 25053401]
[71]
Batra, J.; Buttar, R.S.; Kaur, P.; Kreimerman, J.; Melamed, M.L. FGF-23 and cardiovascular disease. Curr. Opin. Endocrinol. Diabetes Obes., 2016, 23(6), 423-429.
[http://dx.doi.org/10.1097/MED.0000000000000294] [PMID: 27652999]
[72]
Shi, S.Y.; Martin, R.G.; Duncan, R.E.; Choi, D.; Lu, S.Y.; Schroer, S.A.; Cai, E.P.; Luk, C.T.; Hopperton, K.E.; Domenichiello, A.F.; Tang, C.; Naples, M.; Dekker, M.J.; Giacca, A.; Adeli, K.; Wagner, K.U.; Bazinet, R.P.; Woo, M. Hepatocyte-specific deletion of Janus kinase 2 (JAK2) protects against diet-induced steatohepatitis and glucose intolerance. J. Biol. Chem., 2012, 287(13), 10277-10288.
[http://dx.doi.org/10.1074/jbc.M111.317453] [PMID: 22275361]
[73]
Xu, L.; Zhang, L.; Zhang, H.; Yang, Z.; Qi, L.; Wang, Y.; Ren, S. The participation of Fibroblast Growth Factor 23 (FGF23) in the progression of osteoporosis via JAK/STAT pathway. J. Cell. Biochem., 2018, 119(5), 3819-3828.
[http://dx.doi.org/10.1002/jcb.26332] [PMID: 28782829]
[74]
He, X.; Shen, Y.; Ma, X.; Ying, L.; Peng, J.; Pan, X.; Bao, Y.; Zhou, J. The association of serum FGF23 and non-alcoholic fatty liver disease is independent of vitamin D in type 2 diabetes patients. Clin. Exp. Pharmacol. Physiol., 2018, 45(7), 668-674.
[http://dx.doi.org/10.1111/1440-1681.12933] [PMID: 29574933]
[75]
Swanson, C.M.; Shea, S.A.; Stone, K.L.; Cauley, J.A.; Rosen, C.J.; Redline, S.; Karsenty, G.; Orwoll, E.S. Obstructive sleep apnea and metabolic bone disease: Insights into the relationship between bone and sleep. J. Bone Miner. Res., 2015, 30(2), 199-211.
[http://dx.doi.org/10.1002/jbmr.2446] [PMID: 25639209]
[76]
Zhang, Q.; Doucet, M.; Tomlinson, R.E.; Han, X.; Quarles, L.D.; Collins, M.T.; Clemens, T.L. The hypoxia-inducible factor-1α activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia. Bone Res., 2016, 4(1), 16011.
[http://dx.doi.org/10.1038/boneres.2016.11]
[77]
Mirza, M.A.I. Alsiö, J.; Hammarstedt, A.; Erben, R.G.; Michaëlsson, K.; Tivesten, Å; Marsell, R.; Orwoll, E.; Karlsson, M.K.; Ljunggren, Ö.; Mellström, D.; Lind, L.; Ohlsson, C.; Larsson, T.E. Circulating fibroblast growth factor-23 is associated with fat mass and dyslipidemia in two independent cohorts of elderly individuals. Arterioscler. Thromb. Vasc. Biol., 2011, 31(1), 219-227.
[http://dx.doi.org/10.1161/ATVBAHA.110.214619] [PMID: 20966399]
[78]
Ali, F.N.; Falkner, B.; Gidding, S.S.; Price, H.E.; Keith, S.W. Langman, CB Fibroblast growth factor-23 in obese, normotensive adolescents is associated with adverse cardiac structure. J. Pediatr., 2014, 165(4), 738-743.
[http://dx.doi.org/10.1016/j.jpeds.2014.06.027]
[79]
Zaheer, S.; de Boer, I.H.; Allison, M.; Brown, J.M.; Psaty, B.M.; Robinson-Cohen, C.; Michos, E.D.; Ix, J.H.; Kestenbaum, B.; Siscovick, D.; Vaidya, A. Fibroblast growth factor 23, mineral metabolism, and adiposity in normal kidney function. J. Clin. Endocrinol. Metab., 2017, 102(4), 1387-1395.
[http://dx.doi.org/10.1210/jc.2016-3563] [PMID: 28323987]
[80]
Hu, X.; Ma, X.; Luo, Y.; Xu, Y.; Xiong, Q.; Pan, X.; Xiao, Y.; Bao, Y.; Jia, W. Associations of serum fibroblast growth factor 23 levels with obesity and visceral fat accumulation. Clin. Nutr., 2018, 37(1), 223-228.
[http://dx.doi.org/10.1016/j.clnu.2016.12.010] [PMID: 28027796]
[81]
Hanks, L.J.; Casazza, K.; Judd, S.E.; Jenny, N.S.; Gutiérrez, O.M. Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults. PLoS One, 2015, 10(3), e0122885.
[http://dx.doi.org/10.1371/journal.pone.0122885] [PMID: 25811862]
[82]
Lumeng, C.N.; Saltiel, A.R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest., 2011, 121(6), 2111-2117.
[http://dx.doi.org/10.1172/JCI57132] [PMID: 21633179]
[83]
David, V.; Martin, A.; Isakova, T.; Spaulding, C.; Qi, L.; Ramirez, V.; Zumbrennen-Bullough, K.B.; Sun, C.C.; Lin, H.Y.; Babitt, J.L.; Wolf, M. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int., 2016, 89(1), 135-146.
[http://dx.doi.org/10.1038/ki.2015.290] [PMID: 26535997]
[84]
Clinkenbeard, E.L.; Farrow, E.G.; Summers, L.J.; Cass, T.A.; Roberts, J.L.; Bayt, C.A.; Lahm, T.; Albrecht, M.; Allen, M.R.; Peacock, M.; White, K.E. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice. J. Bone Miner. Res., 2014, 29(2), 361-369.
[http://dx.doi.org/10.1002/jbmr.2049] [PMID: 23873717]
[85]
Rabadi, S.; Udo, I.; Leaf, D.E.; Waikar, S.S.; Christov, M. Acute blood loss stimulates fibroblast growth factor 23 production. Am. J. Physiol. Renal Physiol., 2018, 314(1), F132-F139.
[http://dx.doi.org/10.1152/ajprenal.00081.2017] [PMID: 28877877]
[86]
Zilberman, M.; Silverberg, D.S.; Bits, I.; Steinbruch, S.; Wexler, D.; Sheps, D.; Schwartz, D.; Oksenberg, A. Improvement of anemia with erythropoietin and intravenous iron reduces sleep-related breathing disorders and improves daytime sleepiness in anemic patients with congestive heart failure. Am. Heart J., 2007, 154(5), 870-876.
[http://dx.doi.org/10.1016/j.ahj.2007.07.034] [PMID: 17967592]
[87]
Liguori, C.; Romigi, A.; Izzi, F.; Mercuri, N.; Cordella, A.; Tarquini, E. Erratum: Continuous positive airway pressure treatment increases serum Vitamin D levels in male patients with obstructive sleep apnea. J. Clin. Sleep Med., 2015, 11(11), 1349.
[http://dx.doi.org/10.5664/jcsm.5210]
[88]
Barceló, A.; Esquinas, C.; Piérola, J.; De la Peña, M.; Sánchez-de-la-Torre, M.; Montserrat, J.M.; Marín, J.M.; Duran, J.; Arqué, M.; Bauça, J.M.; Barbé, F. Vitamin D status and parathyroid hormone levels in patients with obstructive sleep apnea. Respiration, 2013, 86(4), 295-301.
[http://dx.doi.org/10.1159/000342748] [PMID: 23154407]
[89]
Bozkurt, N.C.; Cakal, E.; Sahin, M.; Ozkaya, E.C.; Firat, H.; Delibasi, T. The relation of serum 25-hydroxyvitamin-D levels with severity of obstructive sleep apnea and glucose metabolism abnormalities. Endocrine, 2012, 41(3), 518-525.
[http://dx.doi.org/10.1007/s12020-012-9595-1] [PMID: 22246808]
[90]
Mehta, R.; Cai, X.; Hodakowski, A.; Thyagarajan, B.; Zeng, D.; Zee, P.C.; Wohlgemuth, W.K.; Redline, S.; Lash, J.P.; Wolf, M.; Isakova, T. Sleep disordered breathing and fibroblast growth factor 23 in the Hispanic Community Health Study/Study of Latinos. Bone, 2018, 114, 278-284.
[http://dx.doi.org/10.1016/j.bone.2018.06.024] [PMID: 29986841]
[91]
Min, J.; Jang, T.W.; Ahn, Y.S.; Sim, C.S.; Jeong, K.S. Association between shift work and biological factors including FGF-23, klotho, and serum 25-(OH) vitamin D3 among Korean firefighters: A cross-sectional study. Sleep, 2020, 43(10), zsaa075.
[http://dx.doi.org/10.1093/sleep/zsaa075] [PMID: 32347311]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy