Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Animal Galectins and Plant Lectins as Tools for Studies in Neurosciences

Author(s): João Ronielly Campêlo Araújo*, Cauê Barbosa Coelho, Adriana Rolim Campos, Renato de Azevedo Moreira and Ana Cristina de Oliveira Monteiro-Moreira

Volume 18, Issue 3, 2020

Page: [202 - 215] Pages: 14

DOI: 10.2174/1570159X17666191016092221

Price: $65

Abstract

Lectins are proteins or glycoproteins of non-immunological origin capable of reversibly and specifically binding to glycoconjugates. They exist in free form or associated with cells and are widely distributed in nature, being found in plants, microorganisms, and animals. Due to their characteristics and mainly due to the possibility of reversible binding to glycoconjugates, lectins have stood out as important tools in research involving Neurobiology. These proteins have the ability to modulate molecular targets in the central nervous system (CNS) which may be involved with neuroplasticity, neurobehavioral effects, and neuroprotection. The present report integrates existing information on the activity of animal and plant lectins in different areas of Neuroscience, presenting perspectives to direct new research on lectin function in the CNS, providing alternatives for understanding neurological diseases such as mental disorders, neurodegenerative, and neuro-oncological diseases, and for the development of new drugs, diagnoses and therapies in the field of Neuroscience.

Keywords: Lectin, carbohydrate, neurobiology, neurosciences, neurobehavioural, neurological diseases.

Graphical Abstract

[1]
Sharon, N.; Lis, H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology, 2004, 14(11), 53R-62R.
[http://dx.doi.org/10.1093/glycob/cwh122] [PMID: 15229195]
[2]
Van Dammes, E.J.; Fouquaert, E.; Lannoo, N.; Vandenborre, G.; Schouppe, D.; Peumans, W.J. Novel concepts about the role of lectins in the plant cell. Adv. Exp. Med. Biol., 2011, 705, 271-294.
[http://dx.doi.org/10.1007/978-1-4419-7877-6_13] [PMID: 21618113]
[3]
Vijayan, M.C.; Chandra, N. Lectins current opinion. J. Struct. Biol., 1999, 9, 707-714.
[4]
Harrison, F.L. Soluble vertebrate lectins: ubiquitous but inscrutable proteins. J. Cell Sci., 1991, 100(Pt 1), 9-14.
[PMID: 1795032]
[5]
Barondes, S.H.; Cooper, D.N.W.; Gitt, M.A.; Leffler, H. Galectins. Structure and function of a large family of animal lectins. J. Biol. Chem., 1994, 269(33), 20807-20810.
[PMID: 8063692]
[6]
Loh, S.H.; Park, J.Y.; Cho, E.H.; Nah, S.Y.; Kang, Y.S. Animal lectins: potential receptors for ginseng polysaccharides. J. Ginseng Res., 2017, 41(1), 1-9.
[http://dx.doi.org/10.1016/j.jgr.2015.12.006] [PMID: 28123316]
[7]
Peumans, W.J.; Van Damme, J.M.; Barre, A.; Rougé, P. Classification of Plant Lectins in Families Of Structurally and Evolutionary Related Proteins. Molecular Immunol. Complex Carbohydrates —2., 2001, 491, 27-54.
[http://dx.doi.org/10.1007/978-1-4615-1267-7_3]
[8]
Peumans, W.J.; Van Damme, E.J.M. Lectins as plant defense proteins. Plant Physiol., 1995, 109(2), 347-352.
[http://dx.doi.org/10.1104/pp.109.2.347] [PMID: 7480335]
[9]
Trindade, M.B.; Lopes, J.L.S.; Soares-Costa, A.; Monteiro-Moreira, A.C.O.; Moreira, R.A.; Oliva, M.L.V.; Beltramini, L.M. Structural characterization of novel chitin-binding lectins from the genus Artocarpus and their antifungal activity. Biochim. Biophys. Acta, 2006, 1764(1), 146-152.
[http://dx.doi.org/10.1016/j.bbapap.2005.09.011] [PMID: 16257591]
[10]
Keyaerts, E.; Vijgen, L.; Pannecouque, C.; Van Damme, E.; Peumans, W.; Egberink, H.; Balzarini, J.; Van Ranst, M. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res., 2007, 75(3), 179-187.
[http://dx.doi.org/10.1016/j.antiviral.2007.03.003] [PMID: 17428553]
[11]
Carvalho, Ade.S. da Silva, M.V.; Gomes, F.S.; Paiva, P.M.G.; Malafaia, C.B.; da Silva, T.D.; Vaz, A.F.M.; da Silva, A.G.; Arruda, I.R.S.; Napoleão, T.H.; Carneiro-da-Cunha, Md.; Correia, M.T.S. Purification, characterization and antibacterial potential of a lectin isolated from Apuleia leiocarpa seeds. Int. J. Biol. Macromol., 2015, 75, 402-408.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.02.001] [PMID: 25668321]
[12]
Silva, H.C.; Bari, A.U.; Rocha, B.A.M.; Nascimento, K.S.; Ponte, E.L.; Pires, A.F.; Delatorre, P.; Teixeira, E.H.; Debray, H.; Assreuy, A.M.S.; Nagano, C.S.; Cavada, B.S. Purification and primary structure of a mannose/glucose-binding lectin from Parkia biglobosa Jacq. seeds with antinociceptive and anti-inflammatory properties. J. Mol. Recognit., 2013, 26(10), 470-478.
[http://dx.doi.org/10.1002/jmr.2289] [PMID: 23996489]
[13]
Campos, J.K.L.; Araújo, C.S.F.; Araújo, T.F.S.; Santos, A.F.S.; Teixeira, J.A.; Lima, V.L.M.; Coelho, L.C.B.B. Anti-inflammatory and antinociceptive activities of Bauhinia monandra leaf lectin. Biochim Open, 2016, 2, 62-68.
[http://dx.doi.org/10.1016/j.biopen.2016.03.001] [PMID: 29632839]
[14]
Fontenelle, T.P.C.; Lima, G.C.; Mesquita, J.X.; Lopes, J.L.S.; de Brito, T.V.; Vieira Júnior, F.D.C.; Sales, A.B.; Aragão, K.S.; Souza, M.H.L.P.; Barbosa, A.L.D.R.; Freitas, A.L.P. Lectin obtained from the red seaweed Bryothamnion triquetrum: Secondary structure and anti-inflammatory activity in mice. Int. J. Biol. Macromol., 2018, 112, 1122-1130.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.058] [PMID: 29452186]
[15]
Kabir, S.R.L.; Reza, M.A. Antibacterial activity of Kaempferia rotunda rhizome lectin and its induction of apoptosis in Ehrlich ascites carcinoma cells. Appl. Biochem. Biotechnol., 2014, 172(6), 2866-2876.
[http://dx.doi.org/10.1007/s12010-013-0720-2] [PMID: 24449374]
[16]
Ahmed, F.R.S.; Amin, R.; Hasan, I.; Asaduzzaman, A.K.M.; Kabir, S.R. Antitumor properties of a methyl-β-d-galactopyranoside specific lectin from Kaempferia rotunda against Ehrlich ascites carcinoma cells. Int. J. Biol. Macromol., 2017, 102, 952-959.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.109] [PMID: 28461165]
[17]
Pathan, J.; Mondal, S.; Sarkar, A.; Chakrabarty, D. Daboialectin, a C-type lectin from Russell’s viper venom induces cytoskeletal damage and apoptosis in human lung cancer cells in vitro. Toxicon, 2017, 127, 11-21.
[http://dx.doi.org/10.1016/j.toxicon.2016.12.013] [PMID: 28062165]
[18]
Vanderlei, E.S.O.; Patoilo, K.K.N.R.; Lima, N.A.; Lima, A.P.S.; Rodrigues, J.A.G.; Silva, L.M.C.M.; Lima, M.E.P.; Lima, V.; Benevides, N.M.B. Antinociceptive and anti-inflammatory activities of lectin from the marine green alga Caulerpa cupressoides. Int. Immunopharmacol., 2010, 10(9), 1113-1118.
[http://dx.doi.org/10.1016/j.intimp.2010.06.014] [PMID: 20601179]
[19]
Silva, L.M.C.M.; Lima, V.; Holanda, M.L.; Pinheiro, P.G.; Rodrigues, J.A.G.; Lima, M.E.P.; Benevides, N.M.B. Antinociceptive and anti-inflammatory activities of lectin from marine red alga Pterocladiella capillacea. Biol. Pharm. Bull., 2010, 33(5), 830-835.
[http://dx.doi.org/10.1248/bpb.33.830] [PMID: 20460762]
[20]
Damasceno, M.B.M.V. de Melo Júnior, Jde.M.; Santos, S.A.A.R.; Melo, L.T.M.; Leite, L.H.I.; Vieira-Neto, A.E.; Moreira, Rde.A.; Monteiro-Moreira, A.C.O.; Campos, A.R. Frutalin reduces acute and neuropathic nociceptive behaviours in rodent models of orofacial pain. Chem. Biol. Interact., 2016, 256, 9-15.
[http://dx.doi.org/10.1016/j.cbi.2016.06.016] [PMID: 27302204]
[21]
Panjwani, N. Role of galectins in re-epithelialization of wounds. Ann. Transl. Med., 2014, 2(9), 89.
[PMID: 25405164]
[22]
Cao, Z.; Saravanan, C.; Chen, W.S.; Panjwani, N. Examination of the role of galectins in cell migration and re-epithelialization of wounds. 2015.
[http://dx.doi.org/10.1007/978-1-4939-1396-1_21]
[23]
de Sousa, F.D.; Vasconselos, P.D.; da Silva, A.F.B.; Mota, E.F.; da Rocha Tomé, A.; Mendes, F.R.D.S.; Gomes, A.M.M.; Abraham, D.J.; Shiwen, X.; Owen, J.S.; Lourenzoni, M.R.; Campos, A.R.; Moreira, R.A.; Monteiro-Moreira, A.C.O. Hydrogel and membrane scaffold formulations of Frutalin (breadfruit lectin) within a polysaccharide galactomannan matrix have potential for wound healing. Int. J. Biol. Macromol., 2019, 121, 429-442.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.050] [PMID: 30326222]
[24]
Yang, R.Y.; Rabinovich, G.A.; Liu, F.T. Galectins: structure, function and therapeutic potential. Expert Rev. Mol. Med., 2008, 10 e17
[http://dx.doi.org/10.1017/S1462399408000719] [PMID: 18549522]
[25]
Nonaka, M.; Fukuda, M. Galectin-1 for neuroprotection? Immunity, 2012, 37(2), 187-189.
[http://dx.doi.org/10.1016/j.immuni.2012.08.006] [PMID: 22921113]
[26]
Russi, M.A.; Vandresen-Filho, S.; Rieger, D.K.; Costa, A.P.; Lopes, M.W.; Cunha, R.M.; Teixeira, E.H.; Nascimento, K.S.; Cavada, B.S.; Tasca, C.I.; Leal, R.B. ConBr, a lectin from Canavalia brasiliensis seeds, protects against quinolinic acid-induced seizures in mice. Neurochem. Res., 2012, 37(2), 288-297.
[http://dx.doi.org/10.1007/s11064-011-0608-x] [PMID: 21948344]
[27]
Cavada, B.S.; Barbosa, T.; Arruda, S.; Grangeiro, T.B.; Barral-Netto, M. Revisiting proteus: do minor changes in lectin structure matter in biological activity? Lessons from and potential biotechnological uses of the Diocleinae subtribe lectins. Curr. Protein Pept. Sci., 2001, 2(2), 123-135.
[http://dx.doi.org/10.2174/1389203013381152] [PMID: 12370020]
[28]
Yagi, H.; Kato, K. Functional roles of glycoconjugates in the maintenance of stemness and differentiation process of neural stem cells. Glycoconj. J., 2017, 34(6), 757-763.
[http://dx.doi.org/10.1007/s10719-016-9707-x] [PMID: 27350557]
[29]
Le Mercier, M.; Fortin, S.; Mathieu, V.; Kiss, R.; Lefranc, F. Galectins and gliomas. Brain Pathol., 2010, 20(1), 17-27.
[http://dx.doi.org/10.1111/j.1750-3639.2009.00270.x] [PMID: 19371355]
[30]
Starossom, S.C.; Mascanfroni, I.D.; Imitola, J.; Cao, L.; Raddassi, K.; Hernandez, S.F.; Bassil, R.; Croci, D.O.; Cerliani, J.P.; Delacour, D.; Wang, Y.; Elyaman, W.; Khoury, S.J.; Rabinovich, G.A. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity, 2012, 37(2), 249-263.
[http://dx.doi.org/10.1016/j.immuni.2012.05.023] [PMID: 22884314]
[31]
Abreu, T.M.; Monteiro, V.S.; Martins, A.B.S.; Teles, F.B.; da Conceição Rivanor, R.L.; Mota, É.F.; Macedo, D.S.; de Vasconcelos, S.M.M.; Júnior, J.E.R.H.; Benevides, N.M.B. Involvement of the dopaminergic system in the antidepressant-like effect of the lectin isolated from the red marine alga Solieria filiformis in mice. Int. J. Biol. Macromol., 2018, 111, 534-541.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.132] [PMID: 29289668]
[32]
Stillmark, H. Über Ricin ein giftiges Ferment aus den Samen von Ricinus communis L. und einige anderen Euphorbiaceen, Inaugural Dissertation,University of Tartu: Dorpat.. 1888.
[33]
Boyd, W.C.; Shapleigh, E. Specific precipitating activity of plant agglutinins (lectins). Science, 1954, 119(3091), 419.
[http://dx.doi.org/10.1126/science.119.3091.419] [PMID: 17842730]
[34]
Bies, C.; Lehr, C.M.; Woodley, J.F. Lectin-mediated drug targeting: history and applications. Adv. Drug Deliv. Rev., 2004, 56(4), 425-435.
[http://dx.doi.org/10.1016/j.addr.2003.10.030] [PMID: 14969751]
[35]
Van Damme, E.J.M.; Peumans, W.J.; Barre, A.; Rouge, P. Plant lectins: A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plant Sci., 1998, 17, 575-692.
[http://dx.doi.org/10.1016/S0735-2689(98)00365-7]
[36]
Moreira, Rde.A.; Ainouz, I.L.; De Oliveira, J.T.; Cavada, B.S. Plant lectins, chemical and biological aspects. Mem. Inst. Oswaldo Cruz, 1991, 86(Suppl. 2), 211-218.
[http://dx.doi.org/10.1590/S0074-02761991000600048] [PMID: 1842004]
[37]
Spilatro, S.R.; Cochran, G.R.; Walker, R.E.; Cablish, K.L.; Bittner, C.C. Characterization of a new lectin of soybean vegetative tissues. Plant Physiol., 1996, 110(3), 825-834.
[http://dx.doi.org/10.1104/pp.110.3.825] [PMID: 8819869]
[38]
Jesberger, J.A.; Richardson, J.S. Neurochemical aspects of depression: the past and the future? Int. J. Neurosci., 1985, 27(1-2), 19-47.
[http://dx.doi.org/10.3109/00207458509149132] [PMID: 2991156]
[39]
Sapolsky, R.M. Why Zebras Don’t Get Ulcers, 3rd ed; Henry Holt and Companny: New York, 2004.
[40]
Fenoglio, C. Genetics and epigenetics in the neurodegenerative disorders of the central nervous system. Neurodegeneriative Diseases, 2018, 1-20.
[http://dx.doi.org/10.1007/978-3-319-72938-1_1]
[41]
Braga, J.E.F.; Pordeus, L.C.; Silva, A.T.M.C.; Pimenta, F.C.F.; Diniz, M.F.F.M.; Almeida, R.N. Ansiedade Patológica: Bases Neurais e Avanços na Abordagem Psicofarmacológica. Rev. Bras. Ciên. Saúde., 2010, 14, 93-100.
[42]
Papakostas, G.I. The efficacy, tolerability, and safety of contemporary antidepressants., J. Clin. Psychiatry, 2010, 71(Suppl E1) e03
[http://dx.doi.org/10.4088/JCP.9058se1c.03gry] [PMID: 20371030]
[43]
Tohyama, K. The localization of lectin-binding sites on Schwann cell basal lamina. J. Neurocytol., 1985, 14(1), 49-61.
[http://dx.doi.org/10.1007/BF01150262] [PMID: 3839261]
[44]
Lin, S.S.; Levitan, I.B. Concanavalin A: a tool to investigate neuronal plasticity. Trends Neurosci., 1991, 14(7), 273-277.
[http://dx.doi.org/10.1016/0166-2236(91)90136-I] [PMID: 1719672]
[45]
Scherer, W.J.; Udin, S.B. Concanavalin A reduces habituation in the tectum of the frog. Brain Res., 1994, 667(2), 209-215.
[http://dx.doi.org/10.1016/0006-8993(94)91498-2] [PMID: 7697358]
[46]
Boehm, S.; Huck, S. Presynaptic inhibition by concanavalin A: are alpha-latrotoxin receptors involved in action potential-dependent transmitter release? J. Neurochem., 1998, 71(6), 2421-2430.
[http://dx.doi.org/10.1046/j.1471-4159.1998.71062421.x] [PMID: 9832140]
[47]
Thalhammer, A.; Everts, I.; Hollmann, M. Inhibition by lectins of glutamate receptor desensitization is determined by the lectin’s sugar specificity at kainate but not AMPA receptors. Mol. Cell. Neurosci., 2002, 21(4), 521-533.
[http://dx.doi.org/10.1006/mcne.2002.1137] [PMID: 12504587]
[48]
Fay, A.M.; Bowie, D. Concanavalin-A reports agonist-induced conformational changes in the intact GluR6 kainate receptor. J. Physiol., 2006, 572(Pt 1), 201-213.
[http://dx.doi.org/10.1113/jphysiol.2005.103580] [PMID: 16439423]
[49]
Moreira, R.A.; Cavada, B.S. Lectin from Canavalia brasiliensis Mart. Isolation, characterization and behavior during germination. Biol. Plant., 1984, 26, 113-120.
[http://dx.doi.org/10.1007/BF02902274]
[50]
Sanz-Aparicio, J.; Hermoso, J.; Grangeiro, T.B.; Calvete, J.J.; Cavada, B.S. The crystal structure of Canavalia brasiliensis lectin suggests a correlation between its quaternary conformation and its distinct biological properties from Concanavalin A. FEBS Lett., 1997, 405(1), 114-118.
[http://dx.doi.org/10.1016/S0014-5793(97)00137-3] [PMID: 9094437]
[51]
Rieger, D.K.; Navarro, E.; Buendia, I.; Parada, E.; González-Lafuente, L.; Leon, R.; Costa, A.P.; Heinrich, I.A.; Nascimento, K.S.; Cavada, B.S.; Lopez, M.G.; Egea, J.; Leal, R.B. ConBr, A Lectin Purified from the Seeds of Canavalia brasiliensis, Protects Against Ischemia in Organotypic Culture of Rat Hippocampus: Potential Implication of Voltage-Gated Calcium Channels. Neurochem. Res., 2017, 42(2), 347-359.
[http://dx.doi.org/10.1007/s11064-016-2078-7] [PMID: 27747481]
[52]
Jacques, A.V. Avaliação do Efeito Neuroprotetor de Lectinas Frente à Neurotoxicidade Glutamatérgica., PhD Thesis, Universidade Federal de Santa Catarina: Florianópolis. 2012.
[53]
Jacques, A.V.; Rieger, D.K.; Maestri, M.; Lopes, M.W.; Peres, T.V.; Gonçalves, F.M.; Pedro, D.Z.; Tasca, C.I.; López, M.G.; Egea, J.; Nascimento, K.S.; Cavada, B.S.; Leal, R.B.; Leal, R.B. Lectin from Canavalia brasiliensis (ConBr) protects hippocampal slices against glutamate neurotoxicity in a manner dependent of PI3K/Akt pathway. Neurochem. Int., 2013, 62(6), 836-842.
[http://dx.doi.org/10.1016/j.neuint.2013.02.020] [PMID: 23454192]
[54]
Barauna, S.C.; Kaster, M.P.; Heckert, B.T.; do Nascimento, K.S.; Rossi, F.M.; Teixeira, E.H.; Cavada, B.S.; Rodrigues, A.L.; Leal, R.B. Antidepressant-like effect of lectin from Canavalia brasiliensis (ConBr) administered centrally in mice. Pharmacol. Biochem. Behav., 2006, 85(1), 160-169.
[http://dx.doi.org/10.1016/j.pbb.2006.07.030] [PMID: 16950503]
[55]
Rieger, D.K.; Costa, A.P.; Budni, J.; Moretti, M.; Barbosa, S.G.R.; Nascimento, K.S.; Teixeira, E.H.; Cavada, B.S.; Rodrigues, A.L.; Leal, R.B.; Leal, R.B. Antidepressant-like effect of Canavalia brasiliensis (ConBr) lectin in mice: evidence for the involvement of the glutamatergic system. Pharmacol. Biochem. Behav., 2014, 122, 53-60.
[http://dx.doi.org/10.1016/j.pbb.2014.03.008] [PMID: 24650588]
[56]
Araújo, J.R.C.; Júnior, J.M.A.M.; Damasceno, M.B.M.V.; Santos, S.A.A.R.; Vieira-Neto, A.E.; Lobo, M.D.P.; Campos, A.R.; Moreira, R.A.; Monteiro-Moreira, A.C.O. Neuropharmacological characterization of frutalin in mice: Evidence of an antidepressant-like effect mediated by the NMDA receptor/NO/cGMP pathway. Int. J. Biol. Macromol., 2018, 112, 548-554.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.180] [PMID: 29408007]
[57]
Gonçalves, F.M.; Freitas, A.E.; Peres, T.V.; Rieger, D.K.; Ben, J.; Maestri, M.; Costa, A.P.; Tramontina, A.C.; Gonçalves, C.A.; Rodrigues, A.L.; Nagano, C.S.; Teixeira, E.H.; Nascimento, K.S.; Cavada, B.S.; Leal, R.B. Vatairea macrocarpa lectin (VML) induces depressive-like behavior and expression of neuroinflammatory markers in mice. Neurochem. Res., 2013, 38(11), 2375-2384.
[http://dx.doi.org/10.1007/s11064-013-1150-9] [PMID: 24026569]
[58]
Leal, R.B.; Pinto-Junior, V.R.; Osterne, V.J.S.; Wolin, I.A.V.; Nascimento, A.P.M.; Neco, A.H.B.; Araripe, D.A.; Welter, P.G.; Neto, C.C.; Correia, J.L.A.; Rocha, C.R.C.; Nascimento, K.S.; Cavada, B.S. Crystal structure of DlyL, a mannose-specific lectin from Dioclea lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells. Int. J. Biol. Macromol., 2018, 114, 64-76.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.080] [PMID: 29559315]
[59]
Nascimento, A.P.M.; Knaut, J.L.; Rieger, D.K.; Wolin, I.A.V.; Heinrich, I.A.; Mann, J.; Juarez, A.V.; Sosa, L.D.V.; De Paul, A.L.; Moreira, C.G.; Silva, I.B.; Nobre, C.S.; Osterne, V.J.S.; Nascimento, K.S.; Cavada, B.S.; Leal, R.B. Anti-glioma properties ofDVL, a lectin purified from Dioclea violacea. Int. J. Biol. Macromol., 2018, 120(Pt A), 566-577.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.106] [PMID: 30145160]
[60]
Pratt, J.; Roy, R.; Annabi, B. Concanavalin-A-induced autophagy biomarkers requires membrane type-1 matrix metalloproteinase intracellular signaling in glioblastoma cells. Glycobiology, 2012, 22(9), 1245-1255.
[http://dx.doi.org/10.1093/glycob/cws093] [PMID: 22692046]
[61]
Pratt, J.; Annabi, B. Induction of autophagy biomarker BNIP3 requires a JAK2/STAT3 and MT1-MMP signaling interplay in Concanavalin-A-activated U87 glioblastoma cells. Cell. Signal., 2014, 26(5), 917-924.
[http://dx.doi.org/10.1016/j.cellsig.2014.01.012] [PMID: 24462646]
[62]
Beltrão, E.I.; Medeiros, P.L.; Rodrigues, O.G.; Figueredo-Silva, J.; Valença, M.M.; Coelho, L.C.B.B.; Carvalho, L.B., Jr Parkia pendula lectin as histochemistry marker for meningothelial tumour. Eur. J. Histochem., 2003, 47(2), 139-142.
[http://dx.doi.org/10.4081/819] [PMID: 12777210]
[63]
Bordet, J.; Gay, F.P. ‘Sur les Relations des Sensibilactrices avec l’Aléxine’. Ann. Inst. Pasteur (Paris), 1906, 20, 467-498.
[64]
Drickamer, K.; Taylor, M.E. Biology of animal lectins. Annu. Rev. Cell Biol., 1993, 9, 237-264.
[http://dx.doi.org/10.1146/annurev.cb.09.110193.001321] [PMID: 8280461]
[65]
Gabius, H-J. Animal lectins. Eur. J. Biochem., 1997, 243(3), 543-576.
[http://dx.doi.org/10.1111/j.1432-1033.1997.t01-1-00543.x] [PMID: 9057819]
[66]
Brinda, K.V.; Surolia, A.; Vishveshwara, S. Insights into the quaternary association of proteins through structure graphs: a case study of lectins. Biochem. J., 2005, 391(Pt 1), 1-15.
[http://dx.doi.org/10.1042/BJ20050434] [PMID: 16173917]
[67]
Gabius, H.J.; Wu, A.M. The emerging functionality of endogenous lectins: A primer to the concept and a case study on galectins including medical implications. Chang Gung Med. J., 2006, 29(1), 37-62.
[PMID: 16642727]
[68]
Kilpatrick, D.C. Animal lectins: a historical introduction and overview. Biochim. Biophys. Acta, 2002, 1572(2-3), 187-197.
[http://dx.doi.org/10.1016/S0304-4165(02)00308-2] [PMID: 12223269]
[69]
Anderson, K.E.D.; Rice, K.G. Structure and function of mammalian carbohydrate-lectin interactions; Glycoscience, 2008, pp. 2445-2482.
[http://dx.doi.org/10.1007/978-3-540-30429-6_63]
[70]
Stillman, B.N.; Mischel, P.S.; Baum, L.G. New roles for galectins in brain tumors--from prognostic markers to therapeutic targets. Brain Pathol., 2005, 15(2), 124-132.
[http://dx.doi.org/10.1111/j.1750-3639.2005.tb00507.x] [PMID: 15912884]
[71]
Endo, T. Glycans and glycan-binding proteins in brain: galectin-1-induced expression of neurotrophic factors in astrocytes. Curr. Drug Targets, 2005, 6(4), 427-436.
[http://dx.doi.org/10.2174/1389450054021909] [PMID: 16026261]
[72]
Sakaguchi, M.; Imaizumi, Y.; Okano, H. Expression and function of galectin-1 in adult neural stem cells. Cell. Mol. Life Sci., 2007, 64(10), 1254-1258.
[http://dx.doi.org/10.1007/s00018-007-6476-5] [PMID: 17364145]
[73]
Motohashi, T.; Nishioka, M.; Kitagawa, D.; Kawamura, N.; Watanabe, N.; Wakaoka, T.; Kadoya, T.; Kunisada, T. Galectin-1 enhances the generation of neural crest cells. Int. J. Dev. Biol., 2017, 61(6-7), 407-413.
[http://dx.doi.org/10.1387/ijdb.160380tm] [PMID: 28695960]
[74]
Morris, S.; Ahmad, N.; André, S.; Kaltner, H.; Gabius, H.J.; Brenowitz, M.; Brewer, F. Quaternary solution structures of galectins-1, -3, and -7. Glycobiology, 2004, 14(3), 293-300.
[http://dx.doi.org/10.1093/glycob/cwh029] [PMID: 14693909]
[75]
Suzuki, Y.; Inoue, T.; Yoshimaru, T.; Ra, C. Galectin-3 but not galectin-1 induces mast cell death by oxidative stress and mitochondrial permeability transition. Biochim. Biophys. Acta, 2008, 1783(5), 924-934.
[http://dx.doi.org/10.1016/j.bbamcr.2008.01.025] [PMID: 18302939]
[76]
Liu, F.T.; Patterson, R.J.; Wang, J.L. Intracellular functions of galectins. Biochim. Biophys. Acta, 2002, 1572(2-3), 263-273.
[http://dx.doi.org/10.1016/S0304-4165(02)00313-6] [PMID: 12223274]
[77]
Yang, R.Y.; Rabinovich, G.A.; Liu, F.T. Galectins: structure, function and therapeutic potential. Expert Rev. Mol. Med., 2008, 10e17
[http://dx.doi.org/10.1017/S1462399408000719] [PMID: 18549522]
[78]
Larsen, L.; Chen, H-Y.; Saegusa, J.; Liu, F-T. Galectin-3 and the skin. J. Dermatol. Sci., 2011, 64(2), 85-91.
[http://dx.doi.org/10.1016/j.jdermsci.2011.07.008] [PMID: 21889881]
[79]
van der Hoeven, N.W.; Hollander, M.R.; Yıldırım, C.; Jansen, M.F.; Teunissen, P.F.; Horrevoets, A.J.; van der Pouw Kraan, T.C.; van Royen, N. The emerging role of galectins in cardiovascular disease. Vascul. Pharmacol., 2016, 81, 31-41.
[http://dx.doi.org/10.1016/j.vph.2016.02.006] [PMID: 26945624]
[80]
Chen, H.L.; Liao, F.; Lin, T.N.; Liu, F.T. Galectins and Neuroinflammation. Glycobiology Nervous System., 2014, Vol. 9, 517-542.
[81]
Stancic, M.; van Horssen, J.; Thijssen, V.L.; Gabius, H-J.; van der Valk, P.; Hoekstra, D.; Baron, W. Increased expression of distinct galectins in multiple sclerosis lesions. Neuropathol. Appl. Neurobiol., 2011, 37(6), 654-671.
[http://dx.doi.org/10.1111/j.1365-2990.2011.01184.x] [PMID: 21501208]
[82]
Heilmann, S.; Hummel, T.; Margolis, F.L.; Kasper, M.; Witt, M. Immunohistochemical distribution of galectin-1, galectin-3, and olfactory marker protein in human olfactory epithelium. Histochem. Cell Biol., 2000, 113(3), 241-245.
[http://dx.doi.org/10.1007/s004180050444] [PMID: 10817679]
[83]
Ishibashi, S.; Kuroiwa, T.; Sakaguchi, M.; Sun, L.; Kadoya, T.; Okano, H.; Mizusawa, H. Galectin-1 regulates neurogenesis in the subventricular zone and promotes functional recovery after stroke. Exp. Neurol., 2007, 207(2), 302-313.
[http://dx.doi.org/10.1016/j.expneurol.2007.06.024] [PMID: 17706645]
[84]
Yan, Y-P.; Lang, B.T.; Vemuganti, R.; Dempsey, R.J. Galectin-3 mediates post-ischemic tissue remodeling. Brain Res., 2009, 1288, 116-124.
[http://dx.doi.org/10.1016/j.brainres.2009.06.073] [PMID: 19573520]
[85]
Lerman, B.J.; Hoffman, E.P.; Sutherland, M.L.; Bouri, K.; Hsu, D.K.; Liu, F-T.; Rothstein, J.D.; Knoblach, S.M. Deletion of galectin-3 exacerbates microglial activation and accelerates disease progression and demise in a SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Brain Behav., 2012, 2(5), 563-575.
[http://dx.doi.org/10.1002/brb3.75] [PMID: 23139902]
[86]
Stancic, M.; Slijepcevic, D.; Nomden, A.; Vos, M.J.; de Jonge, J.C.; Sikkema, A.H.; Gabius, H-J.; Hoekstra, D.; Baron, W. Galectin-4, a novel neuronal regulator of myelination. Glia, 2012, 60(6), 919-935.
[http://dx.doi.org/10.1002/glia.22324] [PMID: 22431161]
[87]
Hadari, Y.R.; Paz, K.; Dekel, R.; Mestrovic, T.; Accili, D.; Zick, Y. Galectin-8. A new rat lectin, related to galectin-4. J. Biol. Chem., 1995, 270(7), 3447-3453.
[http://dx.doi.org/10.1074/jbc.270.7.3447] [PMID: 7852431]
[88]
Yoshida, H.; Imaizumi, T.; Kumagai, M.; Kimura, K.; Satoh, C.; Hanada, N.; Fujimoto, K.; Nishi, N.; Tanji, K.; Matsumiya, T.; Mori, F.; Cui, X-F.; Tamo, W.; Shibata, T.; Takanashi, S.; Okumura, K.; Nakamura, T.; Wakabayashi, K.; Hirashima, M.; Sato, Y.; Satoh, K. Interleukin-1beta stimulates galectin-9 expression in human astrocytes. Neuroreport, 2001, 12(17), 3755-3758.
[http://dx.doi.org/10.1097/00001756-200112040-00030] [PMID: 11726788]
[89]
Liu, F-T.; Rabinovich, G.A. Galectins as modulators of tumour progression. Nat. Rev. Cancer, 2005, 5(1), 29-41.
[http://dx.doi.org/10.1038/nrc1527] [PMID: 15630413]
[90]
Varki, A.; Cummings, R.D.; ESKO, J.D.; Stanley, P.; Hart, G.W.; Aebi, M.; Darvill, A.G.; Kinoshita, T.; Packer, N.H.; Prestegard, J.H.; Schanaar, R.L.; Seeberger, P.H. Essentials of Glycobiology, 2nd ed.; Cold Spring Harbor: New York, 2009.
[91]
Kuwabara, I.; Kuwabara, Y.; Yang, R.Y.; Schuler, M.; Green, D.R.; Zuraw, B.L.; Hsu, D.K.; Liu, F.T. Galectin-7 (PIG1) exhibits pro-apoptotic function through JNK activation and mitochondrial cytochrome c release. J. Biol. Chem., 2002, 277(5), 3487-3497.
[http://dx.doi.org/10.1074/jbc.M109360200] [PMID: 11706006]
[92]
von Wolff, M.; Wang, X.; Gabius, H.J.; Strowitzki, T. Galectin fingerprinting in human endometrium and decidua during the menstrual cycle and in early gestation. Mol. Hum. Reprod., 2005, 11(3), 189-194.
[http://dx.doi.org/10.1093/molehr/gah144] [PMID: 15681515]
[93]
Rabinovich, G.A.; Toscano, M.A. Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol., 2009, 9(5), 338-352.
[http://dx.doi.org/10.1038/nri2536] [PMID: 19365409]
[94]
Dani, N.; Broadie, K. Glycosylated synaptomatrix regulation of trans-synaptic signaling. Dev. Neurobiol., 2012, 72(1), 2-21.
[http://dx.doi.org/10.1002/dneu.20891] [PMID: 21509945]
[95]
Curciarello, R.; Steele, A.; Cooper, D.; MacDonald, T.T.; Kruidenier, L.; Kudo, T. The role of Galectin-1 and Galectin-3 in the mucosal immune response to Citrobacter rodentium infection. PLoS One, 2014, 9(9) e107933
[http://dx.doi.org/10.1371/journal.pone.0107933] [PMID: 25243744]
[96]
Gendronneau, G.; Sanii, S.; Dang, T.; Deshayes, F.; Delacour, D.; Pichard, E.; Advedissian, T.; Sidhu, S.S.; Viguier, M.; Magnaldo, T.; Poirier, F. Overexpression of galectin-7 in mouse epidermis leads to loss of cell junctions and defective skin repair. PLoS One, 2015, 10(3)e0119031
[http://dx.doi.org/10.1371/journal.pone.0119031] [PMID: 25741714]
[97]
Simpson, D.L.; Thorne, D.R.; Loh, H.H. Developmentally regulated lectin in neonatal rat brain. Nature, 1977, 266(5600), 367-369.
[http://dx.doi.org/10.1038/266367a0] [PMID: 859603]
[98]
Bladier, D.; Joubert, R.; Avellana-Adalid, V.; Kémény, J.L.; Doinel, C.; Amouroux, J.; Caron, M. Purification and characterization of a galactoside-binding lectin from human brain. Arch. Biochem. Biophys., 1989, 269(2), 433-439.
[http://dx.doi.org/10.1016/0003-9861(89)90127-6] [PMID: 2919877]
[99]
Lutomski, D.; Caron, M.; Bourin, P.; Lefebure, C.; Bladier, D.; Joubert-Caron, R. Purification and characterization of natural antibodies that recognize a human brain lectin. J. Neuroimmunol., 1995, 57(1-2), 9-15.
[http://dx.doi.org/10.1016/0165-5728(94)00152-E] [PMID: 7706443]
[100]
Lee, R.T.; Ichikawa, Y.; Allen, H.J.; Lee, Y.C. Binding characteristics of galactoside-binding lectin (galaptin) from human spleen. J. Biol. Chem., 1990, 265(14), 7864-7871.
[PMID: 2335508]
[101]
Cho, M.; Cummings, R.D. Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. J. Biol. Chem., 1995, 270(10), 5198-5206.
[http://dx.doi.org/10.1074/jbc.270.10.5198] [PMID: 7890630]
[102]
McGraw, J.; Gaudet, A.D.; Oschipok, L.W.; Kadoya, T.; Horie, H.; Steeves, J.D.; Tetzlaff, W.; Ramer, M.S. Regulation of neuronal and glial galectin-1 expression by peripheral and central axotomy of rat primary afferent neurons. Exp. Neurol., 2005, 195(1), 103-114.
[http://dx.doi.org/10.1016/j.expneurol.2005.04.004] [PMID: 15893752]
[103]
Vas, V.; Fajka-Boja, R.; Ion, G.; Dudics, V.; Monostori, E.; Uher, F. Biphasic effect of recombinant galectin-1 on the growth and death of early hematopoietic cells. Stem Cells, 2005, 23(2), 279-287.
[http://dx.doi.org/10.1634/stemcells.2004-0084] [PMID: 15671150]
[104]
Puche, A.C.; Poirier, F.; Hair, M.; Bartlett, P.F.; Key, B. Role of galectin-1 in the developing mouse olfactory system. Dev. Biol., 1996, 179(1), 274-287.
[http://dx.doi.org/10.1006/dbio.1996.0257] [PMID: 8873770]
[105]
Camby, I.; Le Mercier, M.; Lefranc, F.; Kiss, R. Galectin-1: a small protein with major functions. Glycobiology, 2006, 16(11), 137R-157R.
[http://dx.doi.org/10.1093/glycob/cwl025] [PMID: 16840800]
[106]
Akazawa, C.; Nakamura, Y.; Sango, K.; Horie, H.; Kohsaka, S. Distribution of the galectin-1 mRNA in the rat nervous system: its transient upregulation in rat facial motor neurons after facial nerve axotomy. Neuroscience, 2004, 125(1), 171-178.
[http://dx.doi.org/10.1016/j.neuroscience.2004.01.034] [PMID: 15051156]
[107]
Sango, K.; Tokashiki, A.; Ajiki, K.; Horie, M.; Kawano, H.; Watabe, K.; Horie, H.; Kadoya, T. Synthesis, localization and externalization of galectin-1 in mature dorsal root ganglion neurons and Schwann cells. Eur. J. Neurosci., 2004, 19(1), 55-64.
[http://dx.doi.org/10.1046/j.1460-9568.2003.03102.x] [PMID: 14750963]
[108]
Cortegano, I.; del Pozo, V.; Cárdaba, B.; de Andrés, B.; Gallardo, S.; del Amo, A.; Arrieta, I.; Jurado, A.; Palomino, P.; Liu, F-T.; Lahoz, C. Galectin-3 down-regulates IL-5 gene expression on different cell types. J. Immunol., 1998, 161(1), 385-389.
[PMID: 9647247]
[109]
Narciso, M.S. Mietto, Bde.S.; Marques, S.A.; Soares, C.P.; Mermelstein, Cdos.S.; El-Cheikh, M.C.; Martinez, A.M.B. Sciatic nerve regeneration is accelerated in galectin-3 knockout mice. Exp. Neurol., 2009, 217(1), 7-15.
[http://dx.doi.org/10.1016/j.expneurol.2009.01.008] [PMID: 19416680]
[110]
Mendonça, H.R.; Carvalho, J.N.A.; Abreu, C.A.; Mariano de Souza Aguiar Dos Santos, D.; Carvalho, J.R.; Marques, S.A.; da Costa Calaza, K.; Martinez, A.M.B. Lack of Galectin-3 attenuates neuroinflammation and protects the retina and optic nerve of diabetic mice. Brain Res., 2018, 1700, 126-137.
[http://dx.doi.org/10.1016/j.brainres.2018.07.018] [PMID: 30016630]
[111]
Mostacada, K.; Oliveira, F.L.; Villa-Verde, D.M.; Martinez, A.M.B. Lack of galectin-3 improves the functional outcome and tissue sparing by modulating inflammatory response after a compressive spinal cord injury. Exp. Neurol., 2015, 271, 390-400.
[http://dx.doi.org/10.1016/j.expneurol.2015.07.006] [PMID: 26183316]
[112]
Pesheva, P.; Kuklinski, S.; Schmitz, B.; Probstmeier, R. Galectin-3 promotes neural cell adhesion and neurite growth. J. Neurosci. Res., 1998, 54(5), 639-654.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19981201)54:5<639: AID-JNR9>3.0.CO;2-2] [PMID: 9843155]
[113]
Pasquini, L.A.; Millet, V.; Hoyos, H.C.; Giannoni, J.P.; Croci, D.O.; Marder, M.; Liu, F.T.; Rabinovich, G.A.; Pasquini, J.M. Galectin-3 drives oligodendrocyte differentiation to control myelin integrity and function. Cell Death Differ., 2011, 18(11), 1746-1756.
[http://dx.doi.org/10.1038/cdd.2011.40] [PMID: 21566659]
[114]
Regan, L.J.; Dodd, J.; Barondes, S.H.; Jessell, T.M. Selective expression of endogenous lactose-binding lectins and lactoseries glycoconjugates in subsets of rat sensory neurons. Proc. Natl. Acad. Sci. USA, 1986, 83(7), 2248-2252.
[http://dx.doi.org/10.1073/pnas.83.7.2248] [PMID: 2421291]
[115]
Hynes, M.A.; Gitt, M.; Barondes, S.H.; Jessell, T.M.; Buck, L.B. Selective expression of an endogenous lactose-binding lectin gene in subsets of central and peripheral neurons. J. Neurosci., 1990, 10(3), 1004-1013.
[http://dx.doi.org/10.1523/JNEUROSCI.10-03-01004.1990] [PMID: 2319298]
[116]
Inagaki, Y.; Sohma, Y.; Horie, H.; Nozawa, R.; Kadoya, T. Oxidized galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties. Eur. J. Biochem., 2000, 267(10), 2955-2964.
[http://dx.doi.org/10.1046/j.1432-1033.2000.01311.x] [PMID: 10806394]
[117]
McGraw, J.; McPhail, L.T.; Oschipok, L.W.; Horie, H.; Poirier, F.; Steeves, J.D.; Ramer, M.S.; Tetzlaff, W. Galectin-1 in regenerating motoneurons. Eur. J. Neurosci., 2004, 20(11), 2872-2880.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03802.x] [PMID: 15579141]
[118]
Miura, T.; Takahashi, M.; Horie, H.; Kurushima, H.; Tsuchimoto, D.; Sakumi, K.; Nakabeppu, Y. Galectin-1beta, a natural monomeric form of galectin-1 lacking its six amino-terminal residues promotes axonal regeneration but not cell death. Cell Death Differ., 2004, 11(10), 1076-1083.
[http://dx.doi.org/10.1038/sj.cdd.4401462] [PMID: 15181456]
[119]
Horie, H.; Kadoya, T.; Sango, K.; Hasegawa, M. Oxidized galectin-1 is an essential factor for peripheral nerve regeneration. Curr. Drug Targets, 2005, 6(4), 385-394.
[http://dx.doi.org/10.2174/1389450054021954] [PMID: 16026257]
[120]
Quintá, H.R.; Pasquini, J.M.; Rabinovich, G.A.; Pasquini, L.A. Glycan-dependent binding of galectin-1 to neuropilin-1 promotes axonal regeneration after spinal cord injury. Cell Death Differ., 2014, 21(6), 941-955.
[http://dx.doi.org/10.1038/cdd.2014.14] [PMID: 24561343]
[121]
Takaku, S.; Niimi, N.; Kadoya, T.; Yako, H.; Tsukamoto, M.; Sakumi, K.; Nakabeppu, Y.; Horie, H.; Sango, K. Galectin-1 and galectin-3 as key molecules for peripheral nerve degeneration and regeneration. AIMS Mol. Sci., 2016, 3, 325-337.
[http://dx.doi.org/10.3934/molsci.2016.3.325]
[122]
Wu, G.; Lu, Z.H.; André, S.; Gabius, H.J.; Ledeen, R.W. Functional interplay between ganglioside GM1 and cross-linking galectin-1 induces axon-like neuritogenesis via integrin-based signaling and TRPC5-dependent Ca2+ influx. J. Neurochem., 2016, 136(3), 550-563.
[http://dx.doi.org/10.1111/jnc.13418] [PMID: 26526326]
[123]
Horie, H.; Kadoya, T.; Hikawa, N.; Sango, K.; Inoue, H.; Takeshita, K.; Asawa, R.; Hiroi, T.; Sato, M.; Yoshioka, T.; Ishikawa, Y. Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J. Neurosci., 2004, 24(8), 1873-1880.
[http://dx.doi.org/10.1523/JNEUROSCI.4483-03.2004] [PMID: 14985427]
[124]
Gaudet, A.D.; Sweet, D.R.; Polinski, N.K.; Guan, Z.; Popovich, P.G. Galectin-1 in injured rat spinal cord: implications for macrophage phagocytosis and neural repair. Mol. Cell. Neurosci., 2015, 64, 84-94.
[http://dx.doi.org/10.1016/j.mcn.2014.12.006] [PMID: 25542813]
[125]
Velasco, S.; Díez-Revuelta, N.; Hernández-Iglesias, T.; Kaltner, H.; André, S.; Gabius, H-J.; Abad-Rodríguez, J. Neuronal Galectin-4 is required for axon growth and for the organization of axonal membrane L1 delivery and clustering. J. Neurochem., 2013, 125(1), 49-62.
[http://dx.doi.org/10.1111/jnc.12148] [PMID: 23311731]
[126]
Wada, M.; Ono, S.; Kadoya, T.; Kawanami, T.; Kurita, K.; Kato, T. Decreased galectin-1 immunoreactivity of the skin in amyotrophic lateral sclerosis. J. Neurol. Sci., 2003, 208(1-2), 67-70.
[http://dx.doi.org/10.1016/S0022-510X(02)00424-0] [PMID: 12639727]
[127]
Rinaldi, M.; Thomas, L.; Mathieu, P.; Carabias, P.; Troncoso, M.F.; Pasquini, J.M.; Rabinovich, G.A.; Pasquini, L.A. Galectin-1 circumvents lysolecithin-induced demyelination through the modulation of microglial polarization/phagocytosis and oligodendroglial differentiation. Neurobiol. Dis., 2016, 96, 127-143.
[http://dx.doi.org/10.1016/j.nbd.2016.09.003] [PMID: 27612409]
[128]
Lutomski, D.; Joubert-Caron, R.; Lefebure, C.; Salama, J.; Belin, C.; Bladier, D.; Caron, M. Anti-galectin-1 autoantibodies in serum of patients with neurological diseases. Clin. Chim. Acta, 1997, 262(1-2), 131-138.
[http://dx.doi.org/10.1016/S0009-8981(97)06544-3] [PMID: 9204215]
[129]
Kato, T.; Kurita, K.; Seino, T.; Kadoya, T.; Horie, H.; Wada, M.; Kawanami, T.; Daimon, M.; Hirano, A. Galectin-1 is a component of neurofilamentous lesions in sporadic and familial amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun., 2001, 282(1), 166-172.
[http://dx.doi.org/10.1006/bbrc.2001.4556] [PMID: 11263987]
[130]
Chang-Hong, R.; Wada, M.; Koyama, S.; Kimura, H.; Arawaka, S.; Kawanami, T.; Kurita, K.; Kadoya, T.; Aoki, M.; Itoyama, Y.; Kato, T. Neuroprotective effect of oxidized galectin-1 in a transgenic mouse model of amyotrophic lateral sclerosis. Exp. Neurol., 2005, 194(1), 203-211.
[http://dx.doi.org/10.1016/j.expneurol.2005.02.011] [PMID: 15899257]
[131]
Kato, T.; Ren, C.H.; Wada, M.; Kawanami, T. Galectin-1 as a potential therapeutic agent for amyotrophic lateral sclerosis. Curr. Drug Targets, 2005, 6(4), 407-418.
[http://dx.doi.org/10.2174/1389450054021846] [PMID: 16026259]
[132]
Wang, X.; Zhang, S.; Lin, F.; Chu, W.; Yue, S. Elevated galectin-3 levels in the serum of patients with Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen., 2015, 30(8), 729-732.
[http://dx.doi.org/10.1177/1533317513495107] [PMID: 23823143]
[133]
Ashraf, G.M.; Baeesa, S.S. Investigation of Gal-3 expression pattern in serum and cerebrospinal fluid of patients suffering from neurodegenerative disorders. Front. Neurosci., 2018, 12, 430.
[http://dx.doi.org/10.3389/fnins.2018.00430] [PMID: 30008660]
[134]
Zhou, J.Y.; Afjehi-Sadat, L.; Asress, S.; Duong, D.M.; Cudkowicz, M.; Glass, J.D.; Peng, J. Galectin-3 is a candidate biomarker for amyotrophic lateral sclerosis: discovery by a proteomics approach. J. Proteome Res., 2010, 9(10), 5133-5141.
[http://dx.doi.org/10.1021/pr100409r] [PMID: 20698585]
[135]
Yan, J.; Xu, Y.; Zhang, L.; Zhao, H.; Jin, L.; Liu, W.G.; Weng, L-H.; Li, Z-H.; Chen, L. Increased expressions of plasma galectin-3 in patients with amyotrophic lateral sclerosis. Chin. Med. J. (Engl.), 2016, 129(23), 2797-2803.
[http://dx.doi.org/10.4103/0366-6999.194656] [PMID: 27900991]
[136]
Cengiz, T.; Türkboyları, S.; Gençler, O.S.; Anlar, Ö. The roles of galectin-3 and galectin-4 in the idiopatic Parkinson disease and its progression. Clin. Neurol. Neurosurg., 2019, 184 105373
[http://dx.doi.org/10.1016/j.clineuro.2019.105373] [PMID: 31147178]
[137]
Sakaguchi, M.; Shingo, T.; Shimazaki, T.; Okano, H.J.; Shiwa, M.; Ishibashi, S.; Oguro, H.; Ninomiya, M.; Kadoya, T.; Horie, H.; Shibuya, A.; Mizusawa, H.; Poirier, F.; Nakauchi, H.; Sawamoto, K.; Okano, H. A carbohydrate-binding protein, Galectin-1, promotes proliferation of adult neural stem cells. Proc. Natl. Acad. Sci. USA, 2006, 103(18), 7112-7117.
[http://dx.doi.org/10.1073/pnas.0508793103] [PMID: 16636291]
[138]
Yamane, J.; Ishibashi, S.; Sakaguchi, M.; Kuroiwa, T.; Kanemura, Y.; Nakamura, M.; Miyoshi, H.; Sawamoto, K.; Toyama, Y.; Mizusawa, H.; Okano, H. Transplantation of human neural stem/progenitor cells overexpressing galectin-1 improves functional recovery from focal brain ischemia in the Mongolian gerbil. Mol. Brain, 2011, 4, 35.
[http://dx.doi.org/10.1186/1756-6606-4-35] [PMID: 21951913]
[139]
Kurushima, H.; Ohno, M.; Miura, T.; Nakamura, T.Y.; Horie, H.; Kadoya, T.; Ooboshi, H.; Kitazono, T.; Ibayashi, S.; Iida, M.; Nakabeppu, Y. Selective induction of DeltaFosB in the brain after transient forebrain ischemia accompanied by an increased expression of galectin-1, and the implication of DeltaFosB and galectin-1 in neuroprotection and neurogenesis. Cell Death Differ., 2005, 12(8), 1078-1096.
[http://dx.doi.org/10.1038/sj.cdd.4401648] [PMID: 15861185]
[140]
Qu, W.S.; Wang, Y.H.; Wang, J.P.; Tang, Y.X.; Zhang, Q.; Tian, D.S.; Yu, Z-Y.; Xie, M.J.; Wang, W. Galectin-1 enhances astrocytic BDNF production and improves functional outcome in rats following ischemia. Neurochem. Res., 2010, 35(11), 1716-1724.
[http://dx.doi.org/10.1007/s11064-010-0234-z] [PMID: 20689988]
[141]
Qu, W.S.; Wang, Y.H.; Ma, J.F.; Tian, D.S.; Zhang, Q.; Pan, D.J.Yu.; Yu, Z.Y.; Xie, M.J.; Wang, J.P.; Wang, W. Galectin-1 attenuates astrogliosis-associated injuries and improves recovery of rats following focal cerebral ischemia. J. Neurochem., 2011, 116(2), 217-226.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07095.x] [PMID: 21054390]
[142]
Wang, J.; Xia, J.; Zhang, F.; Shi, Y.; Wu, Y.; Pu, H.; Liou, A.K.F.; Leak, R.K.; Yu, X.; Chen, L.; Chen, J. Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury. Sci. Rep., 2015, 5, 9621.
[http://dx.doi.org/10.1038/srep09621] [PMID: 25858671]
[143]
Rahimian, R.; Béland, L-C.; Kriz, J. Galectin-3: mediator of microglia responses in injured brain. Drug Discov. Today, 2018, 23(2), 375-381.
[http://dx.doi.org/10.1016/j.drudis.2017.11.004] [PMID: 29133191]
[144]
Sirko, S.; Irmler, M.; Gascón, S.; Bek, S.; Schneider, S.; Dimou, L.; Obermann, J.; De Souza Paiva, D.; Poirier, F.; Beckers, J.; Hauck, S.M.; Barde, Y.A.; Götz, M. Astrocyte reactivity after brain injury-: The role of galectins 1 and 3. Glia, 2015, 63(12), 2340-2361.
[http://dx.doi.org/10.1002/glia.22898] [PMID: 26250529]
[145]
Walther, M.; Kuklinski, S.; Pesheva, P.; Guntinas-Lichius, O.; Angelov, D.N.; Neiss, W.F.; Asou, H.; Probstmeier, R. Galectin-3 is upregulated in microglial cells in response to ischemic brain lesions, but not to facial nerve axotomy. J. Neurosci. Res., 2000, 61(4), 430-435.
[http://dx.doi.org/10.1002/1097-4547(20000815)61:4<430:AID-JNR9>3.0.CO;2-3] [PMID: 10931529]
[146]
Doverhag, C.; Hedtjärn, M.; Poirier, F.; Mallard, C.; Hagberg, H.; Karlsson, A.; Sävman, K. Galectin-3 contributes to neonatal hypoxic-ischemic brain injury. Neurobiol. Dis., 2010, 38(1), 36-46.
[http://dx.doi.org/10.1016/j.nbd.2009.12.024] [PMID: 20053377]
[147]
Lalancette-Hébert, M.; Swarup, V.; Beaulieu, J.M.; Bohacek, I.; Abdelhamid, E.; Weng, Y.C.; Sato, S.; Kriz, J. Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J. Neurosci., 2012, 32(30), 10383-10395.
[http://dx.doi.org/10.1523/JNEUROSCI.1498-12.2012] [PMID: 22836271]
[148]
Chip, S.; Fernández-López, D.; Li, F.; Faustino, J.; Derugin, N.; Vexler, Z.S. Genetic deletion of galectin-3 enhances neuroinflammation, affects microglial activation and contributes to sub-chronic injury in experimental neonatal focal stroke. Brain Behav. Immun., 2017, 60, 270-281.
[http://dx.doi.org/10.1016/j.bbi.2016.11.005] [PMID: 27836669]
[149]
Dong, H.; Wang, Z.H.; Zhang, N.; Liu, S.D.; Zhao, J.J.; Liu, S.Y. Serum Galectin-3 level, not Galectin-1, is associated with the clinical feature and outcome in patients with acute ischemic stroke. Oncotarget, 2017, 8(65), 109752-109761.
[http://dx.doi.org/10.18632/oncotarget.18211] [PMID: 29312645]
[150]
Nishikawa, H.; Nakatsuka, Y.; Shiba, M.; Kawakita, F.; Fujimoto, M.; Suzuki, H. Increased plasma galectin-3 preceding the development of delayed cerebral infarction and eventual poor outcome in non-severe aneurysmal subarachnoid hemorrhage. Transl. Stroke Res., 2018, 9(2), 110-119.
[http://dx.doi.org/10.1007/s12975-017-0564-0] [PMID: 28831694]
[151]
Bresalier, R.S.; Yan, P.S.; Byrd, J.C.; Lotan, R.; Raz, A. Expression of the endogenous galactose-binding protein galectin-3 correlates with the malignant potential of tumors in the central nervous system. Cancer, 1997, 80(4), 776-787.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19970815)80:4<776:AID-CNCR17>3.0.CO;2-Q] [PMID: 9264362]
[152]
Verschuere, T.; Toelen, J.; Maes, W.; Poirier, F.; Boon, L.; Tousseyn, T.; Mathivet, T.; Gerhardt, H.; Mathieu, V.; Kiss, R.; Lefranc, F.; Van Gool, S.W.; De Vleeschouwer, S. Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity. Int. J. Cancer, 2014, 134(4), 873-884.
[http://dx.doi.org/10.1002/ijc.28426] [PMID: 23929302]
[153]
Chou, S.Y.; Yen, S.L.; Huang, C.C.; Huang, E.Y. Galectin-1 is a poor prognostic factor in patients with glioblastoma multiforme after radiotherapy. BMC Cancer, 2018, 18(1), 105.
[http://dx.doi.org/10.1186/s12885-018-4025-2] [PMID: 29378529]
[154]
Kuklinski, S.; Pesheva, P.; Heimann, C.; Urschel, S.; Gloor, S.; Graeber, S.; Herzog, V.; Pietsch, T.; Wiestler, O.D.; Probstmeier, R. Expression pattern of galectin-3 in neural tumor cell lines. J. Neurosci. Res., 2000, 60(1), 45-57.
[http://dx.doi.org/10.1002/(SICI)1097-4547(20000401)60:1<45: AID-JNR5>3.0.CO;2-Y] [PMID: 10723067]
[155]
Strik, H.M.; Schmidt, K.; Lingor, P.; Tönges, L.; Kugler, W.; Nitsche, M.; Rabinovich, G.A.; Bähr, M. Galectin-1 expression in human glioma cells: modulation by ionizing radiation and effects on tumor cell proliferation and migration. Oncol. Rep., 2007, 18(2), 483-488.
[http://dx.doi.org/10.3892/or.18.2.483] [PMID: 17611674]
[156]
Toussaint, L.G., III; Nilson, A.E.; Goble, J.M.; Ballman, K.V.; James, C.D.; Lefranc, F.; Kiss, R.; Uhm, J.H. Galectin-1, a gene preferentially expressed at the tumor margin, promotes glioblastoma cell invasion. Mol. Cancer, 2012, 11, 32.
[http://dx.doi.org/10.1186/1476-4598-11-32] [PMID: 22583806]
[157]
Liu, Z.; Han, H.; He, X.; Li, S.; Wu, C.; Yu, C.; Wang, S. Expression of the galectin-9-Tim-3 pathway in glioma tissues is associated with the clinical manifestations of glioma. Oncol. Lett., 2016, 11(3), 1829-1834.
[http://dx.doi.org/10.3892/ol.2016.4142] [PMID: 26998085]
[158]
Van Woensel, M.; Mathivet, T.; Wauthoz, N.; Rosière, R.; Garg, A.D.; Agostinis, P.; Mathieu, V.; Kiss, R.; Lefranc, F.; Boon, L.; Belmans, J.; Van Gool, S.W.; Gerhardt, H.; Amighi, K.; De Vleeschouwer, S. Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by Galectin-1 intranasal knock-down strategy. Sci. Rep., 2017, 7(1), 1217.
[http://dx.doi.org/10.1038/s41598-017-01279-1] [PMID: 28450700]
[159]
Yamaoka, K.; Mishima, K.; Nagashima, Y.; Asai, A.; Sanai, Y.; Kirino, T. Expression of galectin-1 mRNA correlates with the malignant potential of human gliomas and expression of antisense galectin-1 inhibits the growth of 9 glioma cells. J. Neurosci. Res., 2000, 59(6), 722-730.
[http://dx.doi.org/10.1002/(SICI)1097-4547(20000315)59:6<722: AID-JNR4>3.0.CO;2-H] [PMID: 10700009]
[160]
Camby, I.; Belot, N.; Rorive, S.; Lefranc, F.; Maurage, C.A.; Lahm, H.; Kaltner, H.; Hadari, Y.; Ruchoux, M.M.; Brotchi, J.; Zick, Y.; Salmon, I.; Gabius, H.J.; Kiss, R. Galectins are differentially expressed in supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas, and significantly modulate tumor astrocyte migration. Brain Pathol., 2001, 11(1), 12-26.
[http://dx.doi.org/10.1111/j.1750-3639.2001.tb00377.x] [PMID: 11145198]
[161]
Le Mercier, M.; Fortin, S.; Mathieu, V.; Roland, I.; Spiegl-Kreinecker, S.; Haibe-Kains, B.; Bontempi, G.; Decaestecker, C.; Berger, W.; Lefranc, F.; Kiss, R. Galectin 1 proangiogenic and promigratory effects in the Hs683 oligodendroglioma model are partly mediated through the control of BEX2 expression. Neoplasia, 2009, 11(5), 485-496.
[http://dx.doi.org/10.1593/neo.81526] [PMID: 19412433]
[162]
Rorive, S.; Belot, N.; Decaestecker, C.; Lefranc, F.; Gordower, L.; Micik, S.; Maurage, C-A.; Kaltner, H.; Ruchoux, M-M.; Danguy, A.; Gabius, H.J.; Salmon, I.; Kiss, R.; Camby, I. Galectin-1 is highly expressed in human gliomas with relevance for modulation of invasion of tumor astrocytes into the brain parenchyma. Glia, 2001, 33(3), 241-255.
[http://dx.doi.org/10.1002/1098-1136(200103)33:3<241:AID-GLIA1023>3.0.CO;2-1] [PMID: 11241742]
[163]
Hancq, S.; Salmon, I.; Brotchi, J.; Gabius, H.J.; Heizmann, C.W.; Kiss, R.; Decaestecker, C. Detection of S100B, S100A6 and galectin-3 ligands in meningiomas as markers of aggressiveness. Int. J. Oncol., 2004, 25(5), 1233-1240.
[http://dx.doi.org/10.3892/ijo.25.5.1233] [PMID: 15492810]
[164]
Moiseeva, E.P.; Williams, B.; Goodall, A.H.; Samani, N.J. Galectin-1 interacts with β-1 subunit of integrin. Biochem. Biophys. Res. Commun., 2003, 310(3), 1010-1016.
[http://dx.doi.org/10.1016/j.bbrc.2003.09.112] [PMID: 14550305]
[165]
Fortin, S.; Le Mercier, M.; Camby, I.; Spiegl-Kreinecker, S.; Berger, W.; Lefranc, F.; Kiss, R. Galectin-1 is implicated in the protein kinase C ε/vimentin-controlled trafficking of integrin-β1 in glioblastoma cells. Brain Pathol., 2010, 20(1), 39-49.
[http://dx.doi.org/10.1111/j.1750-3639.2008.00227.x] [PMID: 18947333]
[166]
Strik, H.M.; Kolodziej, M.; Oertel, W.; Basecke, J. Glycobiology in malignant gliomas: expression and functions of galectins and possible therapeutic options. Curr. Pharm. Biotechnol., 2012, 13(11), 2299-2307.
[http://dx.doi.org/10.2174/138920112802502051] [PMID: 21605067]
[167]
Binh, N.H.; Satoh, K.; Kobayashi, K.; Takamatsu, M.; Hatano, Y.; Hirata, A.; Tomita, H.; Kuno, T.; Hara, A. Galectin-3 in preneoplastic lesions of glioma. J. Neurooncol., 2013, 111(2), 123-132.
[http://dx.doi.org/10.1007/s11060-012-1005-2] [PMID: 23179497]
[168]
Balan, V.; Nangia-Makker, P.; Raz, A. Galectins as cancer biomarkers. Cancers (Basel), 2010, 2(2), 592-610.
[http://dx.doi.org/10.3390/cancers2020592] [PMID: 23658855]
[169]
Bailey, L.A.; Jamshidi-Parsian, A.; Patel, T.; Koonce, N.A.; Diekman, A.B.; Cifarelli, C.P.; Marples, B.; Griffin, R.J. Combined temozolomide and ionizing radiation induces galectin-1 and galectin-3 expression in a model of human glioma. Tumor Microenviron. Ther., 2015, 2, 19-31.
[http://dx.doi.org/10.1515/tumor-2015-0002]
[170]
Danhier, F.; Messaoudi, K.; Lemaire, L.; Benoit, J.P.; Lagarce, F. Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: in vivo evaluation. Int. J. Pharm., 2015, 481(1-2), 154-161.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.051] [PMID: 25644286]
[171]
Wu, R.; Wu, T.; Wang, K.; Luo, S.; Chen, Z.; Fan, M.; Xue, D.; Lu, H.; Zhuang, Q.; Xu, X. Prognostic significance of galectin-1 expression in patients with cancer: a meta-analysis. Cancer Cell Int., 2018, 18, 108.
[http://dx.doi.org/10.1186/s12935-018-0607-y] [PMID: 30087582]
[172]
Ribeiro, A.C.; Ferreira, R.; Freitas, R. Plant Lectins: Bioactivities and Bioapplications. In: Studies in Natural Products Chemistry; Atta, -ur-Rahman, Ed.; Elsevier Science B. V: Amsterdam, 2018; Vol. 58, pp. 1-42.
[173]
Dan, X.; Liu, W.; Ng, T.B. Development and applications of lectins as biological tools in biomedical research. Med. Res. Rev., 2016, 36(2), 221-247.
[http://dx.doi.org/10.1002/med.21363] [PMID: 26290041]
[174]
Levy, S.L.; White, J.J.; Lackey, E.P.; Schwartz, L.; Sillitoe, R.V. WGA-Alexa conjugates for axonal tracing. Curr. Protoc. Neurosci., 2017, 79, 1-28, 24.
[PMID: 28398642]
[175]
Hirabayashi, J.; Yamada, M.; Kuno, A.; Tateno, H. Lectin microarrays: concept, principle and applications. Chem. Soc. Rev., 2013, 42(10), 4443-4458.
[http://dx.doi.org/10.1039/c3cs35419a] [PMID: 23443201]
[176]
Hendrickson, O.D.; Zherdev, A.V. Analytical application of lectins. Crit. Rev. Anal. Chem., 2018, 48(4), 279-292.
[http://dx.doi.org/10.1080/10408347.2017.1422965] [PMID: 29314902]
[177]
Laaf, D.; Bojarová, P.; Elling, L.; Křen, V. Galectin-carbohydrate interactions in biomedicine and biotechnology. Trends Biotechnol., 2019, 37(4), 402-415.
[http://dx.doi.org/10.1016/j.tibtech.2018.10.001] [PMID: 30413271]
[178]
Wada, J.; Makino, H. Galectins, galactoside-binding mammalian lectins: clinical application of multi-functional proteins. Acta Med. Okayama, 2001, 55(1), 11-17.
[PMID: 11246972]
[179]
Thijssen, V.L.; Heusschen, R.; Caers, J.; Griffioen, A.W. Galectin expression in cancer diagnosis and prognosis: A systematic review. Biochim. Biophys. Acta, 2015, 1855(2), 235-247.
[PMID: 25819524]
[180]
Dong, R.; Zhang, M.; Hu, Q.; Zheng, S.; Soh, A.; Zheng, Y.; Yuan, H. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int. J. Mol. Med., 2018, 41(2), 599-614.
[PMID: 29207027]
[181]
Hayashi, Y.; Jia, W.; Kidoya, H.; Muramatsu, F.; Tsukada, Y.; Takakura, N. Galectin-3 inhibits cancer metastasis by negatively regulating integrin β3 expression. Am. J. Pathol., 2019, 189(4), 900-910.
[http://dx.doi.org/10.1016/j.ajpath.2018.12.005] [PMID: 30653955]
[182]
Girard, A.; Magnani, J.L. Clinical trials and applications of galectin antagonists. Trends Glycosci. Glyc., 2018, 30, SE211-SE220.
[http://dx.doi.org/10.4052/tigg.1744.1SE]
[183]
Dings, R.P.; Miller, M.C.; Nesmelova, I.; Astorgues-Xerri, L.; Kumar, N.; Serova, M.; Chen, X.; Raymond, E.; Hoye, T.R.; Mayo, K.H. Antitumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding. J. Med. Chem., 2012, 55(11), 5121-5129.
[http://dx.doi.org/10.1021/jm300014q] [PMID: 22575017]
[184]
Hirani, N.; Nicol, L.; MacKinnon, A.C.; Ford, P.; Schambye, H.; Nilsson, U.; Leffler, H.; Thomas, T.; Knott, O.; Gibbons, M.; Simpson, J. Maher, T. TD139, a novel inhaled galectin-3 inhibitor for the treatment of idiopathic pulmonary fibrosis (IPF). results from the first in (IPF) patients study. QJM-. Int. J. Med. (Dubai), 2016, 109, S16-S16.
[185]
Stegmayr, J.; Lepur, A.; Kahl-Knutson, B.; Aguilar-Moncayo, M.; Klyosov, A.A.; Field, R.A.; Oredsson, S.; Nilsson, U.J.; Leffler, H. Low or no inhibitory potency of the canonical galectin carbohydrate-binding site by pectins and galactomannans. J. Biol. Chem., 2016, 291(25), 13318-13334.
[http://dx.doi.org/10.1074/jbc.M116.721464] [PMID: 27129206]
[186]
Floyd, R.A. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc. Soc. Exp. Biol. Med., 1999, 222(3), 236-245.
[http://dx.doi.org/10.1046/j.1525-1373.1999.d01-140.x] [PMID: 10601882]
[187]
Vila, M.; Przedborski, S. Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neurosci., 2003, 4(5), 365-375.
[http://dx.doi.org/10.1038/nrn1100] [PMID: 12728264]
[188]
Urdinguio, R.G.; Sanchez-Mut, J.V.; Esteller, M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol., 2009, 8(11), 1056-1072.
[http://dx.doi.org/10.1016/S1474-4422(09)70262-5] [PMID: 19833297]
[189]
Borsook, D. Neurological diseases and pain. Brain, 2012, 135(Pt 2), 320-344.
[http://dx.doi.org/10.1093/brain/awr271] [PMID: 22067541]
[190]
Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control. Release, 2016, 235, 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy