Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Construction of Circadian Clock Signature for Tumor Microenvironment in Predicting Survival for Cutaneous Melanoma

Author(s): Ni Zeng, Qingyue Xia, Yueyue Li, Liwen Ma, Yuxin Cheng, Yihe Chen, Qian Lu, Zhiyu Lu, Di Wu and Dan Luo*

Volume 28, Issue 28, 2022

Published on: 18 August, 2022

Page: [2349 - 2361] Pages: 13

DOI: 10.2174/1381612828666220802114517

Price: $65

Abstract

Objective: We explored circadian clock-related genes (CCRG) to establish a risk model and identify associations with the tumor immune microenvironment in cutaneous melanoma (CM).

Methods: Circadian clock genes were downloaded from Circadian Gene Database. To explore CM-related circadian clock genes, we combined multivariate cox regression associated with least absolute shrinkage and selection operator (LASSO) regression in the Cancer Genome Atlas (TCGA) and validated it in the GSE65904 dataset. Time-dependent receiver operating characteristic curve (ROC) and Kaplan-Meier analysis were calculated to determine a CCRG risk score model. In addition, the overall survival nomograms of clinicopathological factors and circadian clock-related gene signatures. Additionally, we evaluated the connection between circadian clock-related genes with immune checkpoint inhibitors and immune cell infiltration.

Results: Two circadian clock-related signatures were established. The risk model included SEMA4D (p<0.001, HR: 0.709, 95% CI: 0.581 to 0.867) and SOD-2 (p=0.009, HR: 0.790, 95% CI: 0.663 to 0.944) in patients with TCGA melanoma. The risk model was based on two CCRGs enriched in base excision repair, glycosylphosphatidyl (GPI), and one carbon of the folate pathway. The overall survival was lower in the high-risk group. In addition, the circadian-clock signature may be able to evaluate the immunotherapy response.

Conclusions: We developed and validated a circadian signature to characterize the clinical significance and tumor microenvironment of cutaneous melanoma, revealing that circadian rhythms may impact cutaneous melanoma.

Keywords: Cutaneous melanoma, circadian clock-related genes, immune Infiltration, prognosis, signature, tumor microenvironment.

« Previous
[1]
Aiello I, Fedele MLM, Román F, et al. Circadian disruption promotes tumor immune microenvironment remodeling favoring tumor cell proliferation. Sci Adv 2020; 6(42): eaaz4530.
[http://dx.doi.org/10.1126/sciadv.aaz4530] [PMID: 33055171]
[2]
Schibler U, Sassone CP. A web of circadian pacemakers. Cell 2002; 111(7): 919-22.
[http://dx.doi.org/10.1016/S0092-8674(02)01225-4] [PMID: 12507418]
[3]
Battaglin F, Chan P, Pan Y, et al. Clocking cancer: The circadian clock as a target in cancer therapy. Oncogene 2021; 40(18): 3187-200.
[http://dx.doi.org/10.1038/s41388-021-01778-6] [PMID: 33846572]
[4]
Bustamante-Montes LP, Flores MB, Hernández MA, et al. Night shift work and risk of breast cancer in women. Arch Med Res 2019; 50(6): 393-9.
[http://dx.doi.org/10.1016/j.arcmed.2019.10.008] [PMID: 31689664]
[5]
Xu C, Ochi H, Fukuda T, et al. Circadian clock regulates bone resorption in mice. J Bone Miner Res 2016; 31(7): 1344-55.
[http://dx.doi.org/10.1002/jbmr.2803] [PMID: 26841172]
[6]
Fu L, Pelicano H, Liu J, Huang P, Lee CC. The circadian gene period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 2002; 111(1): 41-50.
[http://dx.doi.org/10.1016/S0092-8674(02)00961-3] [PMID: 12372299]
[7]
Riaz N, Havel JJ, Kendall SM, et al. Recurrent SERPINB3 and SERPINB4 mutations in patients who respond to anti-CTLA4 immunotherapy. Nat Genet 2016; 48(11): 1327-9.
[http://dx.doi.org/10.1038/ng.3677] [PMID: 27668655]
[8]
Romano G, Kwong L. miRNAs, melanoma and microenvironment: An intricate network. Int J Mol Sci 2017; 18(11): 2354.
[http://dx.doi.org/10.3390/ijms18112354] [PMID: 29112174]
[9]
Larkin J, Chiarion SV, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; 373(1): 23-34.
[http://dx.doi.org/10.1056/NEJMoa1504030] [PMID: 26027431]
[10]
Assis LVM, Kinker GS, Moraes MN, Markus RP, Fernandes PA, Castrucci AML. Expression of the circadian clock gene BMAL1 positively correlates with antitumor immunity and patient survival in metastatic melanoma. Front Oncol 2018; 8: 185.
[http://dx.doi.org/10.3389/fonc.2018.00185] [PMID: 29946530]
[11]
Vigneron N. Human tumor antigens and cancer immunotherapy. BioMed Res Int 2015; 2015: 1-17.
[http://dx.doi.org/10.1155/2015/948501] [PMID: 26161423]
[12]
Li S, Shui K, Zhang Y, et al. CGDB: A database of circadian genes in eukaryotes. Nucleic Acids Res 2017; 45(D1): D397-403.
[PMID: 27789706]
[13]
Ahmed B, Qadir MI, Ghafoor S. Malignant melanoma: Skin cancer diagnosis, prevention, and treatment. Crit Rev Eukaryot Gene Expr 2020; 30(4): 291-7.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2020028454] [PMID: 32894659]
[14]
Sulli G, Lam MTY, Panda S. Interplay between circadian clock and cancer: New frontiers for cancer treatment. Trends Cancer 2019; 5(8): 475-94.
[http://dx.doi.org/10.1016/j.trecan.2019.07.002] [PMID: 31421905]
[15]
Furuyama T, Inagaki S, Kosugi A, et al. Identification of a novel transmembrane semaphorin expressed on lymphocytes. J Biol Chem 1996; 271(52): 33376-81.
[http://dx.doi.org/10.1074/jbc.271.52.33376] [PMID: 8969198]
[16]
Alexandrov LB, Nik ZS, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature 2013; 500(7463): 415-21.
[http://dx.doi.org/10.1038/nature12477] [PMID: 23945592]
[17]
Shostak A. Circadian clock, cell division, and cancer: From molecules to organism. Int J Mol Sci 2017; 18(4): 873.
[http://dx.doi.org/10.3390/ijms18040873] [PMID: 28425940]
[18]
Kelleher FC, Rao A, Maguire A. Circadian molecular clocks and cancer. Cancer Lett 2014; 342(1): 9-18.
[http://dx.doi.org/10.1016/j.canlet.2013.09.040] [PMID: 24099911]
[19]
Neufeld G, Kessler O. The semaphorins: Versatile regulators of tumour progression and tumour angiogenesis. Nat Rev Cancer 2008; 8(8): 632-45.
[http://dx.doi.org/10.1038/nrc2404] [PMID: 18580951]
[20]
Herold C, Elhabazi A, Bismuth G, Bensussan A, Boumsell L. CD100 is associated with CD45 at the surface of human T lymphocytes. Role in T cell homotypic adhesion. J Immunol 1996; 157(12): 5262-8.
[PMID: 8955171]
[21]
Kumanogoh A, Watanabe C, Lee I, et al. Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: A novel mechanism for regulating B cell signaling. Immunity 2000; 13(5): 621-31.
[http://dx.doi.org/10.1016/S1074-7613(00)00062-5] [PMID: 11114375]
[22]
Billard C, Delaire S, Raffoux E, Bensussan A, Boumsell L. Switch in the protein tyrosine phosphatase associated with human CD100 semaphorin at terminal B cell differentiation stage. Blood 2000; 95(3): 965-72.
[http://dx.doi.org/10.1182/blood.V95.3.965.003k39_965_972] [PMID: 10648410]
[23]
Evans EE, Jonason AS Jr, Bussler H, et al. Antibody blockade of semaphorin 4D promotes immune infiltration into tumor and enhances response to other immunomodulatory therapies. Cancer Immunol Res 2015; 3(6): 689-701.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0171] [PMID: 25614511]
[24]
Yang Y, Wang J, Li H, Liu L, Yao M, Xiao T. Association between prognosis and SEMA4D/Plexin-B1 expression in various malignancies. Medicine 2019; 98(7): e13298.
[http://dx.doi.org/10.1097/MD.0000000000013298] [PMID: 30762724]
[25]
Lu Q, Cai P, Yu Y, Liu Z, Chen G, Zeng Z. Sema4D correlates with tumour immune infiltration and is a prognostic biomarker in bladder cancer, renal clear cell carcinoma, melanoma and thymoma. Autoimmunity 2021; 54(5): 294-302.
[http://dx.doi.org/10.1080/08916934.2021.1925885] [PMID: 33974462]
[26]
Liu Z, Li S, Cai Y, et al. Manganese superoxide dismutase induces migration and invasion of tongue squamous cell carcinoma via H2O2 dependent Snail signaling. Free Radic Biol Med 2012; 53(1): 44-50.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.04.031] [PMID: 22580338]
[27]
Chang B, Yang H, Jiao Y, et al. SOD2 deregulation enhances migration, invasion and has poor prognosis in salivary adenoid cystic carcinoma. Sci Rep 2016; 6(1): 25918.
[http://dx.doi.org/10.1038/srep25918] [PMID: 27181103]
[28]
Hemachandra LPMP, Shin DH, Dier U, et al. Mitochondrial superoxide dismutase has a protumorigenic role in ovarian clear cell carcinoma. Cancer Res 2015; 75(22): 4973-84.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3799] [PMID: 26359457]
[29]
Ranganathan AC, Nelson KK, Rodriguez AM, et al. Manganese superoxide dismutase signals matrix metalloproteinase expression via H2O2-dependent ERK1/2 activation. J Biol Chem 2001; 276(17): 14264-70.
[http://dx.doi.org/10.1074/jbc.M100199200] [PMID: 11297530]
[30]
Zhou H, Kann MG, Mallory EK, et al. RETRACTED: Recruitment of Tiam1 to semaphorin 4D activates RAC and enhances proliferation, invasion, and metastasis in oral squamous cell carcinoma. Neoplasia 2017; 19(2): 65-74.
[http://dx.doi.org/10.1016/j.neo.2016.12.004] [PMID: 28038319]
[31]
Yang Y, Li Y, Qi R, Zhang L. Development and validation of a combined glycolysis and immune prognostic model for melanoma. Front Immunol 2021; 12: 711145.
[http://dx.doi.org/10.3389/fimmu.2021.711145] [PMID: 34659201]
[32]
Tong X, Qu X, Wang M. A four-gene-based prognostic model predicts overall survival in patients with cutaneous melanoma. Front Oncol 2021; 11: 639874.
[http://dx.doi.org/10.3389/fonc.2021.639874] [PMID: 33842346]
[33]
Schadendorf D, van Akkooi ACJ, Berking C, et al. Melanoma. Lancet 2018; 392(10151): 971-84.
[http://dx.doi.org/10.1016/S0140-6736(18)31559-9] [PMID: 30238891]
[34]
Grimaldi AM, Simeone E, Ascierto PA. The role of MEK inhibitors in the treatment of metastatic melanoma. Curr Opin Oncol 2014; 26(2): 196-203.
[http://dx.doi.org/10.1097/CCO.0000000000000050] [PMID: 24419498]
[35]
Song X, Zhao Z, Barber B, Farr AM, Ivanov B, Novich M. Overall survival in patients with metastatic melanoma. Curr Med Res Opin 2015; 31(5): 987-91.
[http://dx.doi.org/10.1185/03007995.2015.1021904] [PMID: 25708472]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy