Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Strategies for Targeting CIB1: A Challenging Drug Target

Author(s): Muhammad Shahab, Abdul Wadood* and Guojun Zheng*

Volume 28, Issue 28, 2022

Published on: 17 August, 2022

Page: [2343 - 2348] Pages: 6

DOI: 10.2174/1381612828666220728101812

Price: $65

Abstract

Breast cancer is a common malignancy in women and is a diverse disease. In women, 287,850 and in males 2710 cases are reported in 2022 by WHO. Triple-negative breast cancer (TNBC), a subtype of breast cancer that lacks expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), accounted for 10-20% of all new cases discovered in the United States in 2017. Because calcium integrin-binding protein1 lacks a suitable pocket that could be used to create a chemical inhibitor, and because the breast cancer-causing protein is nearly identical to its necessary wild-type counterpart, it was thought to be druggable. The structure and function of the newly discovered calcium integrinbinding protein1 have been improved, paving the way for the designing of several therapeutic candidates. Currently, no FDA-approved drugs are available for CIB1-driven cancer. CIB1 has proven to challenge drug target due to several factors, including the fact that the CIB1 protein is highly resistant to small inhibitors. This study aimed to present various ways for targeting calcium integrin-binding protein1, which is an important target that could be useful to scientists.

Keywords: CIB1 protein, breast cancer, TNBC, HER2, progesterone receptor, estrogen receptor.

[1]
Blows FM, Driver KE, Schmidt MK, et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: A collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 2010; 7(5): e1000279.
[http://dx.doi.org/10.1371/journal.pmed.1000279] [PMID: 20520800]
[2]
Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011; 121(7): 2750-67.
[http://dx.doi.org/10.1172/JCI45014] [PMID: 21633166]
[3]
Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res 2007; 13(15 Pt 1): 4429-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3045] [PMID: 17671126]
[4]
Lee A, Djamgoz MBA. Triple negative breast cancer: Emerging therapeutic modalities and novel combination therapies. Cancer Treat Rev 2018; 62: 110-22.
[http://dx.doi.org/10.1016/j.ctrv.2017.11.003] [PMID: 29202431]
[5]
Mirzoeva OK, Das D, Heiser LM, et al. Basal subtype and MAPK/ERK kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Res 2009; 69(2): 565-72.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3389] [PMID: 19147570]
[6]
Gordon V, Banerji S. Molecular pathways: PI3K pathway targets in triple-negative breast cancers. Clin Cancer Res 2013; 19(14): 3738-44.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0274] [PMID: 23748695]
[7]
Yuan W, Leisner TM, McFadden AW, et al. CIB1 is essential for mouse spermatogenesis. Mol Cell Biol 2006; 26(22): 8507-14.
[http://dx.doi.org/10.1128/MCB.01488-06] [PMID: 16982698]
[8]
Yuan W, Leisner TM, McFadden AW, et al. CIB1 is an endogenous inhibitor of agonist-induced integrin alphaIIb beta3 activation. J Cell Biol 2006; 172(2): 169-75.
[http://dx.doi.org/10.1083/jcb.200505131] [PMID: 16418530]
[9]
Naik MU, Pham NT, Beebe K, Dai W, Naik UP. Calcium-dependent inhibition of polo-like kinase 3 activity by CIB1 in breast cancer cells. Int J Cancer 2011; 128(3): 587-96.
[http://dx.doi.org/10.1002/ijc.25388] [PMID: 20473878]
[10]
Rusnak F, Mertz P. Calcineurin: Form and function. Physiol Rev 2000; 80(4): 1483-521.
[http://dx.doi.org/10.1152/physrev.2000.80.4.1483] [PMID: 11015619]
[11]
Gentry HR, Singer AU, Betts L, et al. Structural and biochemical characterization of CIB1 delineates a new family of EF-hand-containing proteins. J Biol Chem 2005; 280(9): 8407-15.
[http://dx.doi.org/10.1074/jbc.M411515200] [PMID: 15574431]
[12]
Rodon J, Dienstmann R, Serra V, Tabernero J. Development of PI3K inhibitors: Lessons learned from early clinical trials. Nat Rev Clin Oncol 2013; 10(3): 143-53.
[http://dx.doi.org/10.1038/nrclinonc.2013.10] [PMID: 23400000]
[13]
Jarman KE, Moretti PA, Zebol JR, Pitson SM. Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. J Biol Chem 2010; 285(1): 483-92.
[http://dx.doi.org/10.1074/jbc.M109.068395] [PMID: 19854831]
[14]
Heineke J, Auger-Messier M, Correll RN, et al. CIB1 is a regulator of pathological cardiac hypertrophy. Nat Med 2010; 16(8): 872-9.
[http://dx.doi.org/10.1038/nm.2181] [PMID: 20639889]
[15]
Gifford JL, Walsh MP, Vogel HJ. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 2007; 405(2): 199-221.
[http://dx.doi.org/10.1042/BJ20070255] [PMID: 17590154]
[16]
Yamniuk AP, Vogel HJ. Calcium- and magnesium-dependent interactions between calcium- and integrin-binding protein and the integrin alphaIIb cytoplasmic domain. Protein Sci 2005; 14(6): 1429-37.
[http://dx.doi.org/10.1110/ps.041312805] [PMID: 15883187]
[17]
Sobczak A, Blazejczyk M, Piszczek G, Zhao G, Kuznicki J, Wojda U. Calcium-binding calmyrin forms stable covalent dimers in vitro, but in vivo is found in monomeric form. Acta Biochim Pol 2005; 52(2): 469-76.
[http://dx.doi.org/10.18388/abp.2005_3461] [PMID: 15933764]
[18]
Yamniuk AP, Anderson KL, Fraser ME, Vogel HJ. Auxiliary Ca2+ binding sites can influence the structure of CIB1. Protein Sci 2009; 18(5): 1128-34.
[http://dx.doi.org/10.1002/pro.104] [PMID: 19388079]
[19]
Wang X, Peng X, Zhang X, et al. The emerging roles of CIB1 in cancer. Cell Physiol Biochem 2017; 43(4): 1413-24.
[http://dx.doi.org/10.1159/000481873] [PMID: 29017172]
[20]
Frost RJ, Olson EN. Separating the good and evil of cardiac growth by CIB1 and calcineurin. Cell Metab 2010; 12(3): 205-6.
[http://dx.doi.org/10.1016/j.cmet.2010.08.007] [PMID: 20816084]
[21]
Tandan S, Wang Y, Wang TT, et al. Physical and functional interaction between calcineurin and the cardiac L-type Ca2+ channel. Circ Res 2009; 105(1): 51-60.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.199828] [PMID: 19478199]
[22]
White C, Yang J, Monteiro MJ, Foskett JK. CIB1, a ubiquitously expressed Ca2+-binding protein ligand of the InsP3 receptor Ca2+ release channel. J Biol Chem 2006; 281(30): 20825-33.
[http://dx.doi.org/10.1074/jbc.M602175200] [PMID: 16723353]
[23]
Gerasimenko JV, Charlesworth RM, Sherwood MW, et al. Both RyRs and TPCs are required for NAADP-induced intracellular Ca2+ release. Cell Calcium 2015; 58(3): 237-45.
[http://dx.doi.org/10.1016/j.ceca.2015.05.005] [PMID: 26100948]
[24]
Britten CD. PI3K and MEK inhibitor combinations: Examining the evidence in selected tumor types. Cancer Chemother Pharmacol 2013; 71(6): 1395-409.
[http://dx.doi.org/10.1007/s00280-013-2121-1] [PMID: 23443307]
[25]
Black JL, Harrell JC, Leisner TM, et al. CIB1 depletion impairs cell survival and tumor growth in triple-negative breast cancer. Breast Cancer Res Treat 2015; 152(2): 337-46.
[http://dx.doi.org/10.1007/s10549-015-3458-4] [PMID: 26105795]
[26]
Leisner TM, Freeman TC, Black JL, Parise LV. CIB1: A small protein with big ambitions. FASEB J 2016; 30(8): 2640-50.
[http://dx.doi.org/10.1096/fj.201500073R] [PMID: 27118676]
[27]
Fang X, Chen C, Wang Q, Gu J, Chi C. The interaction of the calcium- and integrin-binding protein (CIBP) with the coagulation factor VIII. Thromb Res 2001; 102(2): 177-85.
[http://dx.doi.org/10.1016/S0049-3848(01)00229-8] [PMID: 11323029]
[28]
Litvinov RI, Farrell DH, Weisel JW, Bennett JS. The platelet integrin αIIbβ3 differentially interacts with fibrin versus fibrinogen. J Biol Chem 2016; 291(15): 7858-67.
[http://dx.doi.org/10.1074/jbc.M115.706861] [PMID: 26867579]
[29]
Tsuboi S, Nonoyama S, Ochs HD. Wiskott-Aldrich syndrome protein is involved in alphaIIb β3-mediated cell adhesion. EMBO Rep 2006; 7(5): 506-11.
[http://dx.doi.org/10.1038/sj.embor.7400665] [PMID: 16582881]
[30]
Haataja L, Kaartinen V, Groffen J, Heisterkamp N. The small GTPase Rac3 interacts with the integrin-binding protein CIB and promotes integrin α(IIb)β(3)-mediated adhesion and spreading. J Biol Chem 2002; 277(10): 8321-8.
[http://dx.doi.org/10.1074/jbc.M105363200] [PMID: 11756406]
[31]
Leisner TM, Liu M, Jaffer ZM, Chernoff J, Parise LV. Essential role of CIB1 in regulating PAK1 activation and cell migration. J Cell Biol 2005; 170(3): 465-76.
[http://dx.doi.org/10.1083/jcb.200502090] [PMID: 16061695]
[32]
Henderson MJ, Russell AJ, Hird S, et al. EDD, the human hyperplastic discs protein, has a role in progesterone receptor coactivation and potential involvement in DNA damage response. J Biol Chem 2002; 277(29): 26468-78.
[http://dx.doi.org/10.1074/jbc.M203527200] [PMID: 12011095]
[33]
Naik MU, Naik UP. Calcium-and integrin-binding protein regulates focal adhesion kinase activity during platelet spreading on immobilized fibrinogen. Blood 2003; 102(10): 3629-36.
[http://dx.doi.org/10.1182/blood-2003-05-1703] [PMID: 12881299]
[34]
Tahara E Jr, Tahara H, Kanno M, et al. G1P3, an interferon inducible gene 6-16, is expressed in gastric cancers and inhibits mitochondrial-mediated apoptosis in gastric cancer cell line TMK-1 cell. Cancer Immunol Immunother 2005; 54(8): 729-40.
[http://dx.doi.org/10.1007/s00262-004-0645-2] [PMID: 15685448]
[35]
Veettil MV, Bandyopadhyay C, Dutta D, Chandran B. Interaction of KSHV with host cell surface receptors and cell entry. Viruses 2014; 6(10): 4024-46.
[http://dx.doi.org/10.3390/v6104024] [PMID: 25341665]
[36]
Aguda AH, Xue B, Irobi E, Préat T, Robinson RC. The structural basis of actin interaction with multiple WH2/β-thymosin motif-containing proteins. Structure 2006; 14(3): 469-76.
[http://dx.doi.org/10.1016/j.str.2005.12.011] [PMID: 16531231]
[37]
Barry WT, Boudignon-Proudhon C, Shock DD, et al. Molecular basis of CIB binding to the integrin α IIb cytoplasmic domain. J Biol Chem 2002; 277(32): 28877-83.
[http://dx.doi.org/10.1074/jbc.M202983200] [PMID: 12023286]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy