Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Research Article

3EDANFIS: Three Channel EEG-Based Depression Detection Technique with Hybrid Adaptive Neuro Fuzzy Inference System

Author(s): Shalini Mahato*, Sanchita Paul, Nishant Goyal, Sachi Nandan Mohanty and Sarika Jain

Volume 17, Issue 6, 2023

Published on: 31 August, 2022

Article ID: e010822207161 Pages: 17

DOI: 10.2174/1872212117666220801105612

Price: $65

Abstract

Background: Depression is a mental disorder that often negatively impacts the actions and feelings of the affected person. No laboratory tests are available to detect and properly diagnose depression. Presently, the detection of depression is done based on standardized questionnaires like the Diagnostic and Statistical Manual of Mental Disorders-fifth edition (DSM-V) and Hamilton Depression Rating Scale (HAM-D), which are subjective.

Objective: The purpose of the study is to propose a framework for more accurate detection of depression from EEG signals using only three channels, which makes the system portable as well as efficient.

Methods: In this study, we propose a classification model using EEG signal with the help of an Adaptive Neuro Fuzzy Inference System optimized by a nature-inspired algorithm. The proposed model is efficient, accurate, and portable as the features are extracted from only three channels, namely, Fp1, Fp2, and Fz. The three Data Channel (3EDANFIS) Adaptive Neuro Fuzzy Inference System (ANFIS) for detection of depression as well as three variants of Hybrid ANFIS - Adaptive Neuro Fuzzy Inference System-Genetic Algorithm (ANFIS-GA), Adaptive Neuro Fuzzy Inference System- Particle Swam Optimization (ANFIS-PSO) and Adaptive Neuro Fuzzy Inference System-Firefly Algorithm (ANFIS-FA) has been analyzed in this study. The features extracted are delta, theta, alpha, and beta and their corresponding sub-bands delta1, delta2, theta1, theta2, alpha1, alpha2, beta1, and beta2. Genetic Algorithm (GA), Particle Swam Optimization (PSO), and Firefly Algorithm (FA) are all nature-inspired metaheuristic algorithms that are used to optimize ANFIS by adapting the premise and consequent parameters.

Results: The analysis showed that the GA and FA performed equally well in optimizing ANFIS with the highest accuracy of 83.33% using delta1 power as well as delta power. The overall accuracy of the ANFIS-GA was found to be higher than that of the ANFIS-PSO, ANFIS-FA, and ANFIS. It was also found that the sub-band classification accuracy was higher than that of the band itself for delta, theta, and alpha bands. In the case of ANFIS, ANFIS-GA, ANFIS-PSO, and ANFIS- FA, delta1 was found to be having higher accuracy than delta power, theta1 was found to be having higher accuracy than theta power, and both alpha1 and alpha2 showed higher accuracy than alpha power.

Conclusion: The use of only three EEG channels for data recording makes our technique to be more feasible, portable, convenient, and faster and hence can act as an adjunct tool for psychiatrists in the future.

Keywords: Depression, Adaptive Neuro Fuzzy Inference System, Genetic Algorithm, Particle Swam Optimization and Firefly Algorithm

Graphical Abstract

[1]
World Health Organization, Depression and Other Common Mental Disorders Global Health Estimates. WHO Document Production Services: Geneva, Switzerland, 2017., Available from: https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf
[2]
The World Bank, "Mental Health", Available from: https://www.worldbank.org/en/topic/mental-health
[3]
D.F. Santomauro, A.M. Mantilla Herrera, J. Shadid, P. Zheng, C. Ashbaugh, D.M. Pigott, C. Abbafati, C. Adolph, J.O. Amlag, A.Y. Aravkin, B.L. Bang-Jensen, G.J. Bertolacci, S.S. Bloom, R. Castellano, E. Castro, S. Chakrabarti, J. Chattopadhyay, R.M. Cogen, J.K. Collins, X. Dai, W.J. Dangel, C. Dapper, A. Deen, M. Erickson, S.B. Ewald, A.D. Flaxman, J.J. Frostad, N. Fullman, J.R. Giles, A.Z. Giref, G. Guo, J. He, M. Helak, E.N. Hulland, B. Idrisov, A. Lindstrom, E. Linebarger, P.A. Lotufo, R. Lozano, B. Magistro, D.C. Malta, J.C. Månsson, F. Marinho, A.H. Mokdad, L. Monasta, P. Naik, S. Nomura, J.K. O’Halloran, S.M. Ostroff, M. Pasovic, L. Penberthy, R.C. Reiner Jr, G. Reinke, A.L.P. Ribeiro, A. Sholokhov, R.J.D. Sorensen, E. Varavikova, A.T. Vo, R. Walcott, S. Watson, C.S. Wiysonge, B. Zigler, S.I. Hay, T. Vos, C.J.L. Murray, H.A. Whiteford, and A.J. Ferrari, "Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic", Lancet, vol. 398, no. 10312, pp. 1700-1712, 2021.
[http://dx.doi.org/10.1016/S0140-6736(21)02143-7] [PMID: 34634250]
[4]
American Psychiatric Association, "Depressive disorders", In: Diagnostic and Statistical Manual of Mental Disorders, 5th edition American Psychiatric Association: Washington, DC, 2013. Available from: https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf
[5]
S. Mahato, and S. Paul, Electroencephalogram (EEG) Signal Analysis for Diagnosis of Major Depressive Disorder (MDD): A Review.Nanoelectronics, Circuits and Communication Systems. Lecture Notes in Electrical Engineering., vol. 51. Springer: Singapore, 2019.
[http://dx.doi.org/10.1007/978-981-13-0776-8_30]
[6]
M. Bachmann, J. Lass, A. Suhhova, and H. Hinrikus, "Spectral asymmetry and Higuchi’s fractal dimension measures of depression electroencephalogram", Comput. Math. Methods Med., vol. 2013, p. 251638, 2013.
[http://dx.doi.org/10.1155/2013/251638] [PMID: 24232245]
[7]
S. Mahato, N. Goyal, D. Ram, and S. Paul, "Detection of depression and scaling of severity using six channel EEG data", J. Med. Syst., vol. 44, p. 118, 2020.
[http://dx.doi.org/10.1007/s10916-020-01573-y]
[8]
W. Mumtaz, L. Xia, M.A. Mohd Yasin, S.S. Azhar Ali, and A.S. Malik, "A wavelet-based technique to predict treatment outcome for Major Depressive Disorder", PLoS One, vol. 12, no. 2, p. e0171409, 2017.
[http://dx.doi.org/10.1371/journal.pone.0171409] [PMID: 28152063]
[9]
W. Mumtaz, L. Xia, S.S.A. Ali, M.M.A.M. Yasin, M. Hussain, and A.S. Malik, "Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD)", Biomed. Signal Process. Control, vol. 31, pp. 108-115, 2015.
[http://dx.doi.org/10.1016/j.bspc.2016.07.006]
[10]
S. Mahato, and S. Paul, "Classification of Depression Patients and Normal Subjects Based on Electroencephalogram (EEG)", Signal Using Alpha Power and Theta Asymmetry, pp. 1-8, 2020.
[11]
S. Mahato, and S. Paul, Detection of major depressive disorder using linear and nonlinear features from EEG signals.Microsystem Technologies, vol. 25. Springer, 2019, pp. 1065-1076.
[http://dx.doi.org/10.1007/s00542-018-4075-z]
[12]
R.K.S. Suraj, and S. Ghosh, "Jaya Based ANFIS for Monitoring of Two Class Motor Imagery Task", IEEE Access, vol. 4, pp. 9273-9282, 2016.
[http://dx.doi.org/10.1109/ACCESS.2016.2637401]
[13]
M.V. Oliveira, and R. Schirru, "Applying particle swarm optimization algorithm for tuning a neuro-fuzzy inference system for sensor monitoring", Prog. Nucl. Energy, vol. 51, no. 1, pp. 177-183, 2009.
[http://dx.doi.org/10.1016/j.pnucene.2008.03.007]
[14]
A. Kaveh, S.M. Hamze-Ziabari, and T. Bakhshpoor, "Feasibility of PSO-ANFIS-PSO and GA-ANFIS-GA Models in Prediction of Peak Ground Acceleration", Inter. J. Optimiz. Civil Eng., vol. 8, no. 1, pp. 1-14, 2018.
[15]
D. Karaboga, and E. Kaya, "Training ANFIS by using an adaptive and hybrid artificial Bee colony algorithm (aABC) for the identification of nonlinear static systems", Arab. J. Sci. Eng., vol. 44, no. 4, pp. 3531-3547, 2019.
[http://dx.doi.org/10.1007/s13369-018-3562-y]
[16]
M. Mir, M. Kamyab, M.J. Lariche, A. Bemani, and A. Baghban, "Applying ANFIS-PSO algorithm as a novel accurate approach for prediction of gas density", Petrol. Sci. Technol., vol. 36, no. 12, pp. 820-826, 2018.
[http://dx.doi.org/10.1080/10916466.2018.1446176]
[17]
M. Hossain, S. Mekhilef, F. Afifi, L.M. Halabi, L. Olatomiwa, M. Seyedmahmoudian, B. Horan, and A. Stojcevski, "Application of the hybrid ANFIS models for long term wind power density prediction with extrapolation capability", PLoS One, vol. 13, no. 4, p. e0193772, 2018.
[http://dx.doi.org/10.1371/journal.pone.0193772] [PMID: 29702645]
[18]
R. Majid Mehmood, R. Du, and H.J. Lee, "Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors", IEEE Access, vol. 5, pp. 14797-14806, 2017.
[http://dx.doi.org/10.1109/ACCESS.2017.2724555]
[19]
Z. Chen, G. Lu, Z. Xie, and W. Shang, "A unified framework and method for EEG-based early epileptic seizure detection and epilepsy diagnosis", IEEE Access, vol. 8, pp. 20080-20092, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2969055]
[20]
F. Hasanzadeh, M. Mohebbi, and R. Rostami, "Single channel eeg classification: a case study on prediction of major depressive disorder treatment outcome", IEEE Access, vol. 9, pp. 3417-3427, 2021.
[http://dx.doi.org/10.1109/ACCESS.2020.3046993]
[21]
G. Bouallegue, R. Djemal, S.A. Alshebeili, and H. Aldhalaan, "A dynamic filtering df-rnn deep-learning-based approach for eeg-based neurological disorders diagnosis", IEEE Access, vol. 8, pp. 206992-207007, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3037995]
[22]
R. Asif, S. Saleem, S.A. Hassan, S.A. Alharbi, and A.M. Kamboh, "Epileptic seizure detection with a reduced montage: A way forward for ambulatory EEG devices", IEEE Access, vol. 8, pp. 65880-65890, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2983917]
[23]
American Psychiatric Association, "Mood Disorders", In: Diagnostic and Statistical Manual of Mental Disorders, 4th edition American Psychiatric Association: Washington, DC, 1994. Available from: https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/DSM4/index.html
[24]
J. Dien, "Issues in the application of the average reference: Review, critiques and recommendations", Behav. Res. Methods Instrum. Comput., vol. 30, no. 1, pp. 34-43, 1998.
[http://dx.doi.org/10.3758/BF03209414]
[25]
R. Eberhart, and Y. Shi, "Particle swarm optimization: Developments, applications and resources", Proceedings of the 2001, Congress on Evolutionary Computation, vol. 1, pp. 81-86, 2021.
Seoul, South Korea [http://dx.doi.org/10.1109/CEC.2001.934374]
[26]
X. Yang, and X. He, "Firefly Algorithm: Recent Advances and Applications", Inter. J. Swarm Intell., vol. 1, no. 1, pp. 36-50, 2013.
[http://dx.doi.org/10.1504/IJSI.2013.055801]
[27]
J. Han, K. Kamber, and J. Pei, "Data mining: Concepts and techniques", In: Morgan Kaufmann., 3rd ed Elsevier: USA, 2012.
[28]
D.P.X. Kan, and P.F. Lee, "Decrease alpha waves in depression: An electroencephalogram (EEG) study", International Conference on BioSignal Analysis, pp. 156-161, 2015.
[http://dx.doi.org/10.1109/ICBAPS.2015.7292237]
[29]
N. Jaimchariyatam, C.L. Rodriguez, and K. Budur, "Prevalence and correlates of alpha-delta sleep in major depressive disorders", Innov. Clin. Neurosci., vol. 8, no. 7, pp. 35-49, 2011.
[PMID: 21860844]
[30]
R. Khosrowabadi, C. Quek, K.K. Ang, S.W. Tung, and M. Heijnen, "A Brain-computer interface for classifying EEG correlates of chronic mental stress", Proceedings of the International Joint Conference on Neural Networks, pp. 757-762, 2011.
[http://dx.doi.org/10.1109/IJCNN.2011.6033297]
[31]
M. Kalaivani, V. Kalaivani, and V.A. Devi, "Analysis of EEG signal for the detection of brain abnormalities", Int. J. Comput. Appl., vol. 1, no. 2, pp. 1-6, 2014.
[32]
N. Tesler, M. Gerstenberg, M. Franscini, O.G. Jenni, S. Walitza, and R. Huber, "Increased frontal sleep slow wave activity in adolescents with major depression", Neuroimage Clin., vol. 10, pp. 250-256, 2016.
[http://dx.doi.org/10.1016/j.nicl.2015.10.014]
[33]
J. Ricardo-Garcell, J.J. González-Olvera, E. Miranda, T. Harmony, E. Reyes, L. Almeida, L. Galán, D. Díaz, L. Ramírez, A. Fernández-Bouzas, and E. Aubert, "EEG sources in a group of patients with major depressive disorders", Int. J. Psychophysiol., vol. 71, no. 1, pp. 70-74, 2009.
[http://dx.doi.org/10.1016/j.ijpsycho.2008.07.021] [PMID: 18755226]
[34]
S.D. Puthankattil, and P.K. Joseph, "Analysis of EEG signals using wavelet entropy and approximate entropy: A case study on depression patients", Inter. J. Med. Health. Biomed. Bioeng. Pharm. Eng., vol. 8, no. 7, pp. 420-424, 2014.
[35]
A. Deslandes, H. Veiga, M. Cagy, A. Fiszman, R. Piedade, and P. Ribeiro, "Quantitative electroencephalography (qEEG) to discriminate primary degenerative dementia from major depressive disorder (depression)", Arq. Neuropsiquiatr., vol. 62, no. 1, pp. 44-50, 2004.
[http://dx.doi.org/10.1590/S0004-282X2004000100008] [PMID: 15122432]
[36]
N. van der Vinne, M.A. Vollebregt, M.J.A.M. van Putten, and M. Arns, "Frontal alpha asymmetry as a diagnostic marker in depression: Fact or fiction? A meta-analysis", Neuroimage Clin., vol. 16, pp. 79-87, 2017.
[http://dx.doi.org/10.1016/j.nicl.2017.07.006] [PMID: 28761811]
[37]
L. Orgo, M. Bachmann, J. Lass, and H. Hinrikus, "Effect of negative and positive emotions on EEG spectral asymmetry", Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 8107-8110, 2015.
[http://dx.doi.org/10.1109/EMBC.2015.7320275]
[38]
K. Kalev, M. Bachmann, L. Orgo, J. Lass, and H. Hinrikus, "Lempel-Ziv and multiscale Lempel-Ziv complexity in depression", Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 4158-4161, 2015.
[http://dx.doi.org/10.1109/EMBC.2015.7319310]
[39]
H. Cai, X. Sha, X. Han, S. Wei, and B. Hu, "Pervasive EEG diagnosis of depression using Deep Belief Network with three-electrodes EEG collector", IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1239-1246, 2016.
[http://dx.doi.org/10.1109/BIBM.2016.7822696]
[40]
H. Cai, Y. Chen, J. Han, X. Zhang, and B. Hu, "study on feature selection methods for depression detection using three-electrode EEG Data", Interdiscip. Sci., vol. 10, no. 3, pp. 558-565, 2018.
[http://dx.doi.org/10.1007/s12539-018-0292-5] [PMID: 29728983]
[41]
H. Cai, J. Han, Y. Chen, X. Sha, and Z. Wang, "A pervasive approach to EEG-based depression detection", In: Complexity, Hindawi, 2018, pp. 1-13.
[http://dx.doi.org/10.1155/2018/5238028]
[42]
X.Z. Lim, and N. Fauzan, "Region of Interest (ROI) for EEG Activity in Depressed Young Adult", Int. J. Eng. Tech., vol. 7, no. 3.22, pp. 10-13, 2018.
[http://dx.doi.org/10.14419/ijet.v7i3.22.17113]
[43]
T.P. Jung, S. Makeig, C. Humphries, T.W. Lee, and M.J. McKeown, Removing electroencephalographic artefacts by blind source separation, vol. 37, no. 2, pp. 163-178, 2000.
[http://dx.doi.org/10.1111/1469-8986.3720163]
[44]
A. Delorme, and S. Makeig, "EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis", J. Neurosci. Methods, vol. 134, no. 1, pp. 9-21, 2004.
[http://dx.doi.org/10.1016/j.jneumeth.2003.10.009] [PMID: 15102499]
[45]
V. Gandhi, Brain computer interfacing for assistive robotics. Electroencephalograms, recurrent quantum neural networks, and usercentric graphical interfaces, 2014., Available from: https://www.sciencedirect.com/book/9780128015438/brain-computer-interfacing-for-assistive-robotics
[46]
E.I. Rodríguez-Martínez, C.I. Barriga-Paulino, M.A. Rojas-Benjumea, and C.M. Gómez, "Co-maturation of theta and low-beta rhythms during child development", Brain Topogr., vol. 28, no. 2, pp. 250-260, 2015.
[http://dx.doi.org/10.1007/s10548-014-0369-3] [PMID: 24793861]
[47]
J.R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system", IEEE Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665-685, 1993.
[http://dx.doi.org/10.1109/21.256541]
[48]
J.S.R. Jang, C.T. Sun, and E. Mizutani, "Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence", IEEE Trans. Automat. Contr., vol. 42, no. 10, pp. 1482-1484, 1997.
[http://dx.doi.org/10.1109/TAC.1997.633847]
[49]
M. Mitchell, An Introduction to Genetic Algorithms, MIT Press: Cambridge, England, 1996. Available from: https://mitpress.mit.edu/books/introduction-genetic-algorithms
[50]
J. Kennedy, and R. Eberhart, "Particle swarm optimization", Proceedings of ICNN’95 - International Conference on Neural Networks,.
vol. vol. 4, pp. 1942-1948 Perth, Australia, 1995. [http://dx.doi.org/10.1109/ICNN.1995.488968]
[51]
S. Hashempour, R. Boostani, M. Mohammadi, and S. Sanei, "Continuous scoring of depression from EEG signals via a hybrid of convolutional neural networks", IEEE Trans. Neural Syst. Rehabil. Eng., vol. 30, pp. 176-183, 2022.
[http://dx.doi.org/10.1109/TNSRE.2022.3143162] [PMID: 35030081]
[52]
H. Lin, "MDD-TSVM: A novel semisupervised-based method for major depressive disorder detection using electroencephalogram signals", Comput. Biol. Med, vol. 140, 2022.
[53]
M. Mohammadi, F. Al-Azab, B. Raahemi, G. Richards, N. Jaworska, D. Smith, S. de la Salle, P. Blier, and V. Knott, "Data mining EEG signals in depression for their diagnostic value", BMC Med. Inform. Decis. Mak., vol. 15, no. 1, p. 108, 2015.
[http://dx.doi.org/10.1186/s12911-015-0227-6] [PMID: 26699540]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy