Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Systematic Review Article

Effect of Citrus Flavanones on Diabetes: A Systematic Review

Author(s): Sameen Azhar, Ribka Sabahat*, Rameen Sajjad, Fatima Nadeem, Aruba Amjad, Nawal Hafeez, Taram Nayab, Saba Wahid and Afifa Tanweer

Volume 19, Issue 5, 2023

Published on: 02 September, 2022

Article ID: e070722206679 Pages: 9

DOI: 10.2174/1573399819666220707102237

Price: $65

Abstract

Background: Fruits and vegetables play a significant role in the health and nutrition of human beings. Flavanones being the major class of flavonoids are the main phytochemicals in citrus fruits having several favorable effects, particularly in preventing diabetes.

Objective: The purpose of this systematic review was to discuss the anti-diabetic potential of citrus flavanones based on in vivo studies.

Methods: A search of Google Scholar, PubMed, NCBI, Research Gate, Science Direct, HEC Digital Library databases for articles that have been published since 2010 was conducted using the keywords citrus, flavanones, and diabetes.

Results: A total of 10 articles were identified, in which it was reported that 5 flavanones have antidiabetic effects. These flavanones have many benefits, such as they help in glycemic control, regulate the biomarkers of lipid profile, renal function, and modulate the signaling pathways that increase insulin sensitivity and uptake of glucose, thus are responsible for preventing diabetes and complications related to it.

Conclusion: Therefore, citrus flavanones are the candidates having promising anti-diabetic potential but their effect needs to be verified through human studies.

Keywords: Diabetes, citrus, flavanones, hesperidin, hesperetin, neo-hesperidin, blood glucose levels.

[1]
Oguntibeju OO, Truter EJ, Esterhuyse AJ. The role of fruit and vegetable consumption in human health and disease prevention. In: Oguntibeju O.O. Ed. Diabetes Mellitus-Insights and Perspectives. London: IntechOpen 2013; 3(2): 172-80.
[2]
Liu Y, Heying E, Tanumihardjo SA. History, global distribution, and nutritional importance of citrus fruits. Compr Rev Food Sci Food Saf 2012; 11(6): 530-45.
[http://dx.doi.org/10.1111/j.1541-4337.2012.00201.x]
[3]
Hwang SL, Shih PH, Yen GC. Neuroprotective effects of citrus flavonoids. J Agric Food Chem 2012; 60(4): 877-85.
[http://dx.doi.org/10.1021/jf204452y] [PMID: 22224368]
[4]
Chanet A, Milenkovic D, Manach C, Mazur A, Morand C. Citrus flavanones: What is their role in cardiovascular protection? J Agric Food Chem 2012; 60(36): 8809-22.
[http://dx.doi.org/10.1021/jf300669s] [PMID: 22574825]
[5]
Barreca D, Gattuso G, Bellocco E, et al. Flavanones: Citrus phytochemical with health-promoting properties. Biofactors 2017; 43(4): 495-506.
[http://dx.doi.org/10.1002/biof.1363] [PMID: 28497905]
[6]
Zimmet PZ, Magliano DJ, Herman WH, Shaw JE. Diabetes: A 21st century challenge. Lancet Diabetes Endocrinol 2014; 2(1): 56-64.
[http://dx.doi.org/10.1016/S2213-8587(13)70112-8] [PMID: 24622669]
[7]
World Health Organization. Global report on diabetes: Executive summary. World Health Organization 2016.
[8]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019; 157: 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[9]
Basit A, Fawwad A, Qureshi H, Shera AS. Prevalence of diabetes, pre-diabetes and associated risk factors: Second National Diabetes Survey of Pakistan (NDSP), 2016-2017. BMJ Open 2018; 8(8): e020961.
[http://dx.doi.org/10.1136/bmjopen-2017-020961] [PMID: 30082350]
[10]
Aruoma OI, Landes B, Ramful-Baboolall D, et al. Functional benefits of citrus fruits in the management of diabetes. Prev Med 2012; 54 (Suppl.): S12-6.
[http://dx.doi.org/10.1016/j.ypmed.2012.02.012] [PMID: 22373887]
[11]
Sharma M, Akhtar N, Sambhav K, Shete G, Bansal AK, Sharma SS. Emerging potential of citrus flavanones as an antioxidant in diabetes and its complications. Curr Top Med Chem 2015; 15(2): 187-95.
[http://dx.doi.org/10.2174/1568026615666141209163013] [PMID: 25547100]
[12]
Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015; 4(1): 1-9.
[http://dx.doi.org/10.1186/2046-4053-4-1] [PMID: 25554246]
[13]
Umeno A, Horie M, Murotomi K, Nakajima Y, Yoshida Y. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 2016; 21(6): 708.
[http://dx.doi.org/10.3390/molecules21060708] [PMID: 27248987]
[14]
Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin--a mini-review. Life Sci 2014; 113(1-2): 1-6.
[http://dx.doi.org/10.1016/j.lfs.2014.07.029] [PMID: 25109791]
[15]
Tabeshpour J, Hosseinzadeh H, Hashemzaei M, Karimi G. A review of the hepatoprotective effects of hesperidin, a flavanon glycoside in citrus fruits, against natural and chemical toxicities. Daru 2020; 28(1): 305-17.
[http://dx.doi.org/10.1007/s40199-020-00344-x] [PMID: 32277430]
[16]
Kim J, Wie MB, Ahn M, Tanaka A, Matsuda H, Shin T. Benefits of hesperidin in central nervous system disorders: A review. Anat Cell Biol 2019; 52(4): 369-77.
[http://dx.doi.org/10.5115/acb.19.119] [PMID: 31949974]
[17]
Akiyama S, Katsumata S, Suzuki K, Ishimi Y, Wu J, Uehara M. Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats. J Clin Biochem Nutr 2010; 46(1): 87-92.
[http://dx.doi.org/10.3164/jcbn.09-82] [PMID: 20104270]
[18]
Mahmoud AM, Ashour MB, Abdel-Moneim A, Ahmed OM. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J Diabetes Complications 2012; 26(6): 483-90.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.06.001] [PMID: 22809898]
[19]
El-Marasy SA, Abdallah HM, El-Shenawy SM, El-Khatib AS, El-Shabrawy OA, Kenawy SA. Anti-depressant effect of hesperidin in diabetic rats. Can J Physiol Pharmacol 2014; 92(11): 945-52.
[http://dx.doi.org/10.1139/cjpp-2014-0281] [PMID: 25358020]
[20]
Visnagri A, Kandhare AD, Chakravarty S, Ghosh P, Bodhankar SL. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm Biol 2014; 52(7): 814-28.
[http://dx.doi.org/10.3109/13880209.2013.870584] [PMID: 24559476]
[21]
Mahmoud AM, Ahmed OM, Ashour MB, Abdel-Moneim A. In vivo and in vitro antidiabetic effects of citrus flavonoids; a study on the mechanism of action. Int J Diabetes Dev Ctries 2015; 35(3): 250-63.
[http://dx.doi.org/10.1007/s13410-014-0268-x]
[22]
Li W, Kandhare AD, Mukherjee AA, Bodhankar SL. Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: Role of TGF-ß/Smads and Ang-1/Tie-2 signaling pathways. EXCLI J 2018; 17: 399-419.
[PMID: 29805347]
[23]
Khan MK, Dangles O. A comprehensive review on flavanones, the major citrus polyphenols. J Food Compos Anal 2014; 33(1): 85-104.
[http://dx.doi.org/10.1016/j.jfca.2013.11.004]
[24]
Yang HL, Chen SC, Senthil Kumar KJ, et al. Antioxidant and anti-inflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: An ex vivo approach. J Agric Food Chem 2012; 60(1): 522-32.
[http://dx.doi.org/10.1021/jf2040675] [PMID: 22098419]
[25]
Jayaraman R, Subramani S, Sheik Abdullah SH, Udaiyar M. Antihyperglycemic effect of hesperetin, a citrus flavonoid, extenuates hyperglycemia and exploring the potential role in antioxidant and antihyperlipidemic in streptozotocin-induced diabetic rats. Biomed Pharmacother 2018; 97: 98-106.
[http://dx.doi.org/10.1016/j.biopha.2017.10.102] [PMID: 29080465]
[26]
Zhang J, Sun C, Yan Y, et al. Purification of naringin and neohesperidin from Huyou (Citrus changshanensis) fruit and their effects on glucose consumption in human HepG2 cells. Food Chem 2012; 135(3): 1471-8.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.004] [PMID: 22953882]
[27]
Gong N, Zhang B, Yang D, Gao Z, Du G, Lu Y. Development of new reference material neohesperidin for quality control of dietary supplements. J Sci Food Agric 2015; 95(9): 1885-91.
[http://dx.doi.org/10.1002/jsfa.6893] [PMID: 25170574]
[28]
Zhao T, Hu S, Ma P, et al. Neohesperidin suppresses IgE-mediated anaphylactic reactions and mast cell activation via Lyn-PLC-Ca2+ pathway. Phytother Res 2019; 33(8): 2034-43.
[http://dx.doi.org/10.1002/ptr.6385] [PMID: 31197891]
[29]
Guo J, Fang Y, Jiang F, et al. Neohesperidin inhibits TGF-β1/Smad3 signaling and alleviates bleomycin-induced pulmonary fibrosis in mice. Eur J Pharmacol 2019; 864: 172712.
[http://dx.doi.org/10.1016/j.ejphar.2019.172712] [PMID: 31586469]
[30]
Tan Z, Cheng J, Liu Q, et al. Neohesperidin suppresses osteoclast differentiation, bone resorption and ovariectomised-induced osteoporosis in mice. Mol Cell Endocrinol 2017; 439: 369-78.
[http://dx.doi.org/10.1016/j.mce.2016.09.026] [PMID: 27664516]
[31]
Jia S, Hu Y, Zhang W, et al. Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KK-A(y) mice. Food Funct 2015; 6(3): 878-86.
[http://dx.doi.org/10.1039/C4FO00993B] [PMID: 25620042]
[32]
Al-Dosari DI, Ahmed MM, Al-Rejaie SS, Alhomida AS, Ola MS. Flavonoid naringenin attenuates oxidative stress, apoptosis and improves neurotrophic effects in the diabetic rat retina. Nutrients 2017; 9(10): 1161.
[http://dx.doi.org/10.3390/nu9101161] [PMID: 29064407]
[33]
Krauze-Baranowska M, Pobłocka-Olech L, Głód D, Wiwart M, Zieliński J, Migas P. HPLC of flavanones and chalcones in different species and clones of Salix. Acta Pol Pharm 2013; 70(1): 27-34.
[PMID: 23610956]
[34]
Wang Q, Yang J, Zhang XM, Zhou L, Liao XL, Yang B. Practical synthesis of naringenin. J Chem Res 2015; 39(8): 455-7.
[http://dx.doi.org/10.3184/174751915X14379994045537]
[35]
Salehi B, Fokou PVT, Sharifi-Rad M, et al. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals (Basel) 2019; 12(1): 11.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]
[36]
Zobeiri M, Belwal T, Parvizi F, et al. Naringenin and its nano-formulations for fatty liver: Cellular modes of action and clinical perspective. Curr Pharm Biotechnol 2018; 19(3): 196-205.
[http://dx.doi.org/10.2174/1389201019666180514170122] [PMID: 29766801]
[37]
Hasanein P, Fazeli F. Role of naringenin in protection against diabetic hyperalgesia and tactile allodynia in male Wistar rats. J Physiol Biochem 2014; 70(4): 997-1006.
[http://dx.doi.org/10.1007/s13105-014-0369-5] [PMID: 25407136]
[38]
Fallahi F, Roghani M, Moghadami S. Citrus flavonoid naringenin improves aortic reactivity in streptozotocin-diabetic rats. Indian J Pharmacol 2012; 44(3): 382-6.
[http://dx.doi.org/10.4103/0253-7613.96350] [PMID: 22701251]
[39]
Renugadevi J, Prabu SM. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats. Toxicology 2009; 256(1-2): 128-34.
[http://dx.doi.org/10.1016/j.tox.2008.11.012] [PMID: 19063931]
[40]
Khairullina VR, Gerchikov AY, Denisova SB. Comparative study of the antioxidant properties of selected flavonols and flavanones. Kinet Catal 2010; 51(2): 219.
[http://dx.doi.org/10.1134/S0023158410020084]
[41]
Wei Y, Xu Y, Han X, et al. Anti-cancer effects of dioscin on three kinds of human lung cancer cell lines through inducing DNA damage and activating mitochondrial signal pathway. Food Chem Toxicol 2013; 59: 118-28.
[http://dx.doi.org/10.1016/j.fct.2013.05.054] [PMID: 23764357]
[42]
Chtourou Y, Aouey B, Aroui S, Kebieche M, Fetoui H. Anti-apoptotic and anti-inflammatory effects of naringin on cisplatin-induced renal injury in the rat. Chem Biol Interact 2016; 243: 1-9.
[http://dx.doi.org/10.1016/j.cbi.2015.11.019] [PMID: 26612654]
[43]
Yoshinaga A, Kajiya N, Oishi K, et al. NEU3 inhibitory effect of naringin suppresses cancer cell growth by attenuation of EGFR signaling through GM3 ganglioside accumulation. Eur J Pharmacol 2016; 782: 21-9.
[http://dx.doi.org/10.1016/j.ejphar.2016.04.035] [PMID: 27105818]
[44]
Kandhare AD, Ghosh P, Bodhankar SL. Naringin, a flavanone glycoside, promotes angiogenesis and inhibits endothelial apoptosis through modulation of inflammatory and growth factor expression in diabetic foot ulcer in rats. Chem Biol Interact 2014; 219: 101-12.
[http://dx.doi.org/10.1016/j.cbi.2014.05.012] [PMID: 24880026]
[45]
Ikemura M, Sasaki Y, Giddings JC, Yamamoto J. Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive rats. Phytother Res 2012; 26(9): 1272-7.
[http://dx.doi.org/10.1002/ptr.3724] [PMID: 22228501]
[46]
Xiao Y, Li LL, Wang YY, et al. Naringin administration inhibits platelet aggregation and release by reducing blood cholesterol levels and the cytosolic free calcium concentration in hyperlipidemic rabbits. Exp Ther Med 2014; 8(3): 968-72.
[http://dx.doi.org/10.3892/etm.2014.1794] [PMID: 25120631]
[47]
Mao Z, Gan C, Zhu J, et al. Anti-atherosclerotic activities of flavonoids from the flowers of Helichrysum arenarium L. MOENCH through the pathway of anti-inflammation. Bioorg Med Chem Lett 2017; 27(12): 2812-7.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.076] [PMID: 28479197]
[48]
Zamanian M, Hajizadeh M, Shamsizadeh A, et al. Effects of naringin on physical fatigue and serum MMP-9 concentration in female rats. Pharm Biol 2017; 55(1): 423-7.
[http://dx.doi.org/10.1080/13880209.2016.1244553] [PMID: 27937032]
[49]
Wang S, Bao YR, Li TJ, et al. Mechanism of fructusaurantii flavonoids promoting gastrointestinal motility: From organic and inorganic endogenous substances combination point of view. Pharmacogn Mag 2017; 13(51): 372-7.
[http://dx.doi.org/10.4103/pm.pm_179_16] [PMID: 28839359]
[50]
Guo D, Wang J, Wang X, et al. Double directional adjusting estrogenic effect of naringin from Rhizoma drynariae (Gusuibu). J Ethnopharmacol 2011; 138(2): 451-7.
[http://dx.doi.org/10.1016/j.jep.2011.09.034] [PMID: 21964193]
[51]
Toth PP, Patti AM, Nikolic D, et al. Bergamot reduces plasma lipids, atherogenic small dense LDL, and subclinical atherosclerosis in subjects with moderate hypercholesterolemia: A 6 months prospective study. Front Pharmacol 2016; 6: 299.
[http://dx.doi.org/10.3389/fphar.2015.00299] [PMID: 26779019]
[52]
Baskaran G, Salvamani S, Ahmad SA, Shaharuddin NA, Pattiram PD, Shukor MY. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia. Drug Des Devel Ther 2015; 9: 509-17.
[http://dx.doi.org/10.2147/DDDT.S75056] [PMID: 25609924]
[53]
Nyane NA, Tlaila TB, Malefane TG, Ndwandwe DE, Owira PMO. Metformin-like antidiabetic, cardio-protective and non-glycemic effects of naringenin: Molecular and pharmacological insights. Eur J Pharmacol 2017; 803: 103-11.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.042] [PMID: 28322845]
[54]
Song N, Zhao Z, Ma X, et al. Naringin promotes fracture healing through stimulation of angiogenesis by regulating the VEGF/VEGFR-2 signaling pathway in osteoporotic rats. Chem Biol Interact 2017; 261: 11-7.
[http://dx.doi.org/10.1016/j.cbi.2016.10.020] [PMID: 27833010]
[55]
Fan J, Li J, Fan Q. Naringin promotes differentiation of bone marrow stem cells into osteoblasts by upregulating the expression levels of microRNA-20a and downregulating the expression levels of PPARγ. Mol Med Rep 2015; 12(3): 4759-65.
[http://dx.doi.org/10.3892/mmr.2015.3996] [PMID: 26126997]
[56]
Tundis R, Acquaviva R, Bonesi M, Malfa GA, Tomasello B, Loizzo MR. Citrus flavanones. In: Xiao J, Sarker SD, Asakawa Y, Eds. Handbook of Dietary Phytochemicals. Singapore: Springer 2019; pp. 1-30.
[57]
Li P, Wang S, Guan X, et al. Six months chronic toxicological evaluation of naringin in Sprague-Dawley rats. Food Chem Toxicol 2014; 66: 65-75.
[http://dx.doi.org/10.1016/j.fct.2014.01.023] [PMID: 24462649]
[58]
Testa R, Bonfigli AR, Genovese S, De Nigris V, Ceriello A. The possible role of flavonoids in the prevention of diabetic complications. Nutrients 2016; 8(5): 310.
[http://dx.doi.org/10.3390/nu8050310] [PMID: 27213445]
[59]
Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 2019; 9(9): 430.
[http://dx.doi.org/10.3390/biom9090430] [PMID: 31480505]
[60]
Amiot MJ, Riva C, Vinet A. Effects of dietary polyphenols on metabolic syndrome features in humans: A systematic review. Obes Rev 2016; 17(7): 573-86.
[http://dx.doi.org/10.1111/obr.12409] [PMID: 27079631]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy