Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Review Article

Power Quality Issue, Solution and Analysis: DFIG

Author(s): Navdeep Singh* and Mukhraj Yadav

Volume 16, Issue 4, 2023

Published on: 27 January, 2023

Page: [334 - 346] Pages: 13

DOI: 10.2174/2352096515666220704100347

Price: $65

Abstract

Nowadays, the wind energy running cost is the cheapest renewable electrical energy. This study describes different static power converters for a doubly fed induction generator that are based on power quality solutions (DFIG). The latest isolated & grid-connected converter employed like AC-DC-AC bidirectional converter is used for active and reactive power compensation, without dc-link AC-AC converter for voltage swell and swag, Multilevel inverter for voltage improvement, and facts devices such as D-STATCOM, UPQC, UPS, STATCOM, SDVR mitigatory for the power quality problem. Various topologies are discussed for mitigation of power quality through the grid code. On the other hand, various controllers joined to the power electronics converter play an important role in solving sag, swell harmonics, flicker, noise, spinning reverse, and so on. This paper investigates various power converters and an electronic controller for DFIG. At the end, different power quality indices and problems are discussed for faulty operating conditions.

Keywords: Power quality, Power electronic devices, Facts, Controller, DFIG, WT

Graphical Abstract

[1]
N. Singh, and V. Agarwal, "Single stage AC-AC converter for WECS", Int. J. Electr. Power Energy Syst., vol. 64, pp. 734-742, 2015.
[http://dx.doi.org/10.1016/j.ijepes.2014.07.059]
[2]
K. Hossein, "ANFIS controller design of DFIG under distorted grid voltage situations", Recent Adv. Electr. Electron. Eng., vol. 12, no. 5, pp. 445-452, 2019.
[3]
M. Ramesh, and T.R. Jyothsna, "A concise review on different aspects of wind energy system In 2016 3rd International Conference on Electrical Energy Systems (ICEES), 17-19 March, 2016, Chennai, India,",
2016, pp. 222-337. [http://dx.doi.org/10.1109/ICEES.2016.7510644]
[4]
Z. Chen, J.M. Guerrero, and F. Blaabjerg, "A review of the state of the art of power electronics for wind turbines", IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1859-1875, 2009.
[http://dx.doi.org/10.1109/TPEL.2009.2017082]
[5]
E. Koneva, and R. Osman, "Input power quality issues and how to specify variable frequency drive for weak input line conditions In 2017 Petroleum and Chemical Industry Technical Conference (PCIC), 18-20 Sept, 2017, Calgary, AB, Canada,",
2017, pp. 125- 132. [http://dx.doi.org/10.1109/PCICON.2017.8188731]
[6]
V. Kavitha, and K. Subramanian, "Investigation of power quality issues and its solution for distributed power system In 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), 20-21 April, 2017, Kollam, India,",
2017, pp. 1-6. [http://dx.doi.org/10.1109/ICCPCT.2017.8074372]
[7]
S. Santoso, H.W. Beaty, R.C. Dugan, and M.F., "McGranaghan, electrical power systems quality", McGraw-Hill Education, 2012.
[8]
E. Styvaktakis, M.H. Bollen, and I.Y. Gu, "Classification of power system events: Voltage dips In Ninth International Conference on Harmonics and Quality of Power. Proceedings (Cat. No. 00EX441), Orlando, FL, USA", vol. 2, pp. 745-750, 2000.
[9]
M. Ahonen, and T. Koppel, "Voltage transients’ measurements and power line communication In 2016 57th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 13-14 Oct, 2016, Riga, Latvia,",
2016, pp. 1-4. [http://dx.doi.org/10.1109/RTUCON.2016.7763143]
[10]
A. Balestrero, L. Ghezzi, M. Popov, and L. van der Sluis, "Current interruption in low-voltage circuit breakers", IEEE Trans. Power Deliv., vol. 25, no. 1, pp. 206-211, 2009.
[http://dx.doi.org/10.1109/TPWRD.2009.2035298]
[11]
R.S. Thallam, and G.T. Heydt, "Power acceptability and voltage sag indices in the three phase sense In 2000 Power Engineering Society Summer Meeting (Cat. No. 00CH37134), 16-20 July, 2000, Seattle, WA, USA,",
vol. 2, pp. 905-910, 2000. [http://dx.doi.org/10.1109/PESS.2000.867482]
[12]
C. Chen, Y. Chen, and C. Chen, "A high-resolution technique for flicker measurement in power quality monitoring", In: 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), 19-21 June, 2013,, Melbourne, VIC, Australia,, 2013, pp. 528-533.
[http://dx.doi.org/10.1109/ICIEA.2013.6566426]
[13]
H. Prasad, and T.D. Sudhakar, "Power quality improvement by mitigation of current harmonics using D—STATCOM", In: 2017 Third International Conference on Science Technology Engineering & Management (ICONSTEM), 23-24 March, 2017, Chennai, India, 2017, pp. 691-697.
[http://dx.doi.org/10.1109/ICONSTEM.2017,.8261411]
[14]
X.Y. Xiao, R.H. Yang, X.Y. Chen, Z.X. Zheng, and C.S. Li, "Enhancing fault ride-through capability of DFIG with modified SMES-FCL and RSC control", IET Gener. Transm. Distrib., vol. 12, no. 1, pp. 258-266, 2018.
[http://dx.doi.org/10.1049/iet-gtd.2016.2136]
[15]
S.K. Tiwari, B. Singh, and P.K. Goel, "Design and control of autonomous wind–solar system with dfig feeding 3-phase 4-wire loads", IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1119-1127, 2018.
[http://dx.doi.org/10.1109/TIA.2017.2780168]
[16]
P.S. Flannery, and G. Venkataramanan, "Unbalanced voltage sag ride-through of a doubly fed induction generator wind turbine with series grid-side converter", IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1879-1887, 2009.
[http://dx.doi.org/10.1109/TIA.2009.2027540]
[17]
G. Wen, Y. Chen, Z. Zhong, and Y. Kang, "Dynamic voltage and current assignment strategies of nine-switch-converter-based dfig wind power system for low-voltage ride-through (lvrt) under symmetrical grid voltage dip", IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3422-3434, 2016.
[http://dx.doi.org/10.1109/TIA.2016.2535274]
[18]
M.F. Iacchetti, G.D. Marques, and R. Perini, "A scheme for the power control in a DFIG connected to a dc bus via a diode rectifier", IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1286-1296, 2015.
[http://dx.doi.org/10.1109/TPEL.2014.2317947]
[19]
R.D. Shukla, and R.K. Tripathi, "Instantaneous direct voltage and frequency control in DC grid tied DFIG based wind energy system", Int. J. Electr. Power Energy Syst., vol. 100, pp. 309-319, 2018.
[http://dx.doi.org/10.1016/j.ijepes.2018.02.043]
[20]
I. Cadirci, and M. Ermis, "Double-output induction generator operating at subsynchronous and super synchronous speeds: Steadystate performance optimisation and wind-energy recovery", In IEE Proc. B-Electr. Power Appl.. vol. 139, no. 5, pp. 5, 1992.
[21]
H. Nian, C. Wu, and P. Cheng, "Direct resonant control strategy for torque ripple mitigation of DFIG connected to dc link through diode rectifier on stator", IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6936-6945, 2017.
[http://dx.doi.org/10.1109/TPEL.2016.2630710]
[22]
M.F. Iacchetti, G.D. Marques, and R. Perini, "Torque ripple reduction in a DFIG-DC system by resonant current controllers", IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4244-4254, 2015.
[http://dx.doi.org/10.1109/TPEL.2014.2360211]
[23]
N. Verma, N. Singh, S. Yadav, and S. Gupta, "Reactive power compensation of solid-state transformer for WECS", In 2018 2nd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), 4-5 May, 2018, Kolkata, India, 2018, pp. 1-6.
[http://dx.doi.org/10.1109/IEMENTECH.2018.8465278]
[24]
N. Singh, and V. Agarwal, "A review on power quality enhanced converter of permanent magnet synchronous wind generator", Int. Rev. Electr. Eng., vol. 8, no. 6, pp. 1681-1693, 2013.
[25]
D. Campos-Gaona, E.L. Moreno-Goytia, and O. Anaya-Lara, "Fault ride-through improvement of dfig-wt by integrating a two-degrees-of-freedom internal model control", IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1133-1145, 2013.
[http://dx.doi.org/10.1109/TIE.2012.2216234]
[26]
W. Guo, L. Xiao, S. Dai, Y. Li, X. Xu, W. Zhou, and L. Li, "LVRT capability enhancement of DFIG with switch-type fault current limiter", IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 332-342, 2015.
[http://dx.doi.org/10.1109/TIE.2014.2326997]
[27]
K. Selam, T. Allaoui, and M. Tadjine, "LQG controller for the control of active and reactive power of DFIG operating under inter-turn short circuit fault", Recent Adv. Electr. Electron. Eng., vol. 13, no. 3, pp. 340-347, 2020.
[28]
S. Yang, T. Zhou, D. Sun, Z. Xie, and X. Zhang, "A SCR crowbar commutated with power converter for DFIG-based wind turbines", Int. J. Electr. Power Energy Syst., vol. 81, pp. 87-103, 2016.
[http://dx.doi.org/10.1016/j.ijepes.2016.01.039]
[29]
A. Chakraborty, S. Kumar, B. Tudu, K.K. Mandai, and I. Mukherjee, "Dynamic response analysis of a back-to-back converter based DFIG wind farm under variable wind speed", 2017 2nd International Conference on Communication and Electronics Systems (ICCES), 19-20 Oct, 2017, Coimbatore, India, 2017, pp. 116-121.
[http://dx.doi.org/10.1109/CESYS.2017.8321246]
[30]
U. Vargas, and A. Ramirez, "Extended harmonic domain model of a wind turbine generator for harmonic transient analysis", IEEE Trans. Power Deliv., vol. 31, no. 3, pp. 1360-1368, 2016.
[http://dx.doi.org/10.1109/TPWRD.2015.2499701]
[31]
A. Lopez, J. Mina, V. Cardenas, S. De Leon, G. Calderon, and J.A. Alquicira, "Harmonic distortions on grid connected double fed generator: A review", IEEE Latin Am. Trans., vol. 14, no. 4, pp. 1745-1751, 2016.
[http://dx.doi.org/10.1109/TLA.2016.7483510]
[32]
B.A. Aziz, S.G. Ramdan, and M.N. Nashed, "Improving power quality by fed DFIG converter with various switching techniques", In: 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), 19-21 Dec, 2017, Cairo, Egypt, 2017, pp. 139-144.
[http://dx.doi.org/10.1109/MEPCON.2017.8301176]
[33]
D. Zhou, and F. Blaabjerg, "Bandwidth oriented proportional-integral controller design for back-to-back power converters in DFIG wind turbine system", IET Renew. Power Gener., vol. 11, no. 7, pp. 941-951, 2017.
[http://dx.doi.org/10.1049/iet-rpg.2016.0760]
[34]
M. Shahbazi, P. Poure, S. Saadate, and M.R. Zolghadri, "FPGA-based reconfigurable control for fault-tolerant back-to-back converter without redundancy", IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3360-3371, 2013.
[http://dx.doi.org/10.1109/TIE.2012.2200214]
[35]
D. Ochoa, and S. Martinez, "Fast-frequency response provided by DFIG-wind turbines and its impact on the grid", IEEE Trans. Power Syst., vol. 32, no. 5, pp. 4002-4011, 2017.
[http://dx.doi.org/10.1109/TPWRS.2016.2636374]
[36]
B. Khaki, M.I. Bahari, and S.E. Afjei, "DFIG wind turbines with very sparse and sparse matrix converters to control frequency", In 2017 8th Power Electronics, Drive Systems & Technologies Conference, 14-16 Feb, 2017, Mashhad, Iran, 2017, pp. 1-6.
[37]
N. Singh, and V. Agarwal, "A new random SPWM technique for ACAC converter based WECS", J. Power Electron., vol. 15, no. 4, pp. 939-950, 2015.
[http://dx.doi.org/10.6113/JPE.2015.15.4.939]
[38]
N. Singh, and V. Agarwal, "Delta-modulated AC–AC converter for PM WECS", IEEE Trans. Industr. Inform., vol. 11, no. 6, pp. 1422-1434, 2015.
[http://dx.doi.org/10.1109/TII.2015.2489161]
[39]
V. Vasipalli, S.P. Phulambrikar, and A. Agrawal, Power quality improvement in DFIG system with matrix converter in wind energy generation with space vector control techniquesIn 2015 International Conference on Technological Advancements in Power and Energy (TAP Energy), 24-26 June, 2015,, Kollam, India, 2015, pp. 73-78.
[http://dx.doi.org/10.1109/TAPENERGY.2015.7229595]
[40]
S. Mondal, and D. Kastha, "Improved direct torque and reactive power control of a matrix-converter-fed grid-connected doubly fed induction generator", IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7590-7598, 2015.
[http://dx.doi.org/10.1109/TIE.2015.2459056]
[41]
A. Alalei, M. Kermadi, A. Nesba, and A. Hazzab, "Adaptive sliding mode control of DFIG fed by matrix converter during grid faults", In: 2017 IEEE Conference on Energy Conversion (CENCON), 30- 31 Oct, 2017, Kuala Lumpur, Malaysia, 2017, pp. 133-138.
[http://dx.doi.org/10.1109/CENCON.2017.8262472]
[42]
A.M. Ghias, J. Pou, G.J. Capella, V.G. Agelidis, R.P. Aguilera, and T. Meynard, "Single-carrier phase-disposition PWM implementation for multilevel flying capacitor converters", IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5376-5380, 2015.
[http://dx.doi.org/10.1109/TPEL.2015.2427201]
[43]
F. Amrane, A. Chaiba, and B. Francois, "Suitable power control based on type-2 fuzzy logic for wind-turbine DFIG under hyposynchronous mode fed by multi-level converter", In: 2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B), 29-31 Oct, Boumerdes, Algeria, 2017, pp. 1-6.
[http://dx.doi.org/10.1109/ICEE-B.2017.8191983]
[44]
A.D. Falehi, and M. Rafiee, "Enhancement of DFIG-wind turbine’s LVRT capability using novel DVR based odd-nary cascaded asymmetric multi-level inverter, engineering science and technology", Int. J., vol. 20, no. 3, pp. 805-824, 2017.
[45]
R. Kumar, S. Kumar, N. Singh, and V. Agrawal, "SEPIC converter with 3-level NPC multi-level inverter for Wind Energy System (WES)", In: 2017 4th International Conference on Power, Control & Embedded Systems (ICPCES), 9-11 March, 2017, Allahabad, India,, 2017, pp. 1-6.
[http://dx.doi.org/10.1109/ICPCES.2017.8117670]
[46]
S. Ziaeinejad, Y. Sangsefidi, A. Jalilian, and A. Shoulaie, "Reduction of voltage and torque fluctuations in DFIGs fed by multilevel inverters", In: 2012 3rd Power Electronics and Drive Systems Technology (PEDSTC), 15-16 Feb, 2012, Tehran, Iran,, 2012, pp. 139-144.
[47]
N. Verma, N. Singh, and S. Yadav, "Solid state transformer for electrical system: Challenges and solution", In: 2018 2nd International Conference on Electronics, Materials Engineering & Nano- Technology (IEMENTech), 4-5 May, 2018,, Kolkata, India, 2018, pp. 1-5.
[http://dx.doi.org/10.1109/IEMENTECH.2018.8465315]
[48]
L. Wang, and D.N. Truong, "Stability enhancement of DFIG-based offshore wind farm fed to a multi-machine system using a STATCOM", IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2882-2889, 2013.
[http://dx.doi.org/10.1109/TPWRS.2013.2248173]
[49]
X. Zheng, and G. Xu, "Study on LVRT of DFIG under the asymmetric grid voltage based on fuzzy PID D-STATCOM", Electronic and Automation Control Conference (IMCEC), 3-5 Oct, 2016, Xi'an, China, 2016, pp. 237-242.
[50]
X. Zheng, and X. Chen, "Enhancement on transient stability of LVRT of DFIG based on neural network D-STATCOM and crowbar", In 2017 11th IEEE International Conference on Anticounterfeiting, Security, and Identification (ASID), 27-29 Oct, 2017, Xiamen, China,, 2017, pp. 64-68.
[http://dx.doi.org/10.1109/ICASID.2017.8285745]
[51]
S.M. Abd-Elazi, and E.S. Ali, "Optimal location of STATCOM in multimachine power system for increasing loadability by Cuckoo Search algorithm", Int. J. Electr. Power Energy Syst., vol. 80, pp. 240-251, 2016.
[http://dx.doi.org/10.1016/j.ijepes.2016.01.023]
[52]
A.M. Yousef, and F.K. Aboelyousr, "Voltage sag improvement of dynamic and static load distrbution network by using DSTATCOM", 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), 19-21 Dec, 2017,, Cairo, Egypt, 2017, pp. 427-476.
[http://dx.doi.org/10.1109/MEPCON.2017.8301222]
[53]
K. Ilango, A. Bhargav, A. Trivikram, P.S. Kavya, G. Mounika, and M.G. Nair, "Power quality improvement using STATCOM with renewable energy sources", 2012 IEEE 5th India International Conference on Power Electronics (IICPE), 6-8 Dec, 2012, Delhi, India, 2012, pp. 1-6.
[http://dx.doi.org/10.1109/IICPE.2012.6450462]
[54]
Y. Tang, H. He, Z. Ni, J. Wen, and T. Huang, "Adaptive modulation for DFIG and STATCOM with high-voltage direct current transmission", IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 8, pp. 1762-1772, 2016.
[http://dx.doi.org/10.1109/TNNLS.2015.2504035] [PMID: 26701900]
[55]
Y. Tan, K.M. Muttaqi, L. Meegahapola, and P. Ciufo, "Deadband control of doubly-fed induction generator around synchronous speed", IEEE Trans. Energ. Convers., vol. 31, no. 4, pp. 1610-1621, 2016.
[http://dx.doi.org/10.1109/TEC.2016.2586974]
[56]
W. Qiao, R.G. Harley, and G.K. Venayagamoorthy, "Coordinated reactive power control of a large wind farm and a STATCOM using heuristic dynamic programming", IEEE Trans. Energ. Convers., vol. 24, no. 2, pp. 493-503, 2009.
[http://dx.doi.org/10.1109/TEC.2008.2001456]
[57]
B. Mukhopadhyay, and R.K. Mandal, "Voltage compensation using PSO-PI controlled STATCOM in a DFIG-based grid-connected wind energy system", In 2016 International Conference on Electrical Power and Energy Systems (ICEPES), 2016, pp. 88-93. Bhopal.
[http://dx.doi.org/10.1109/ICEPES.2016.7915911]
[58]
R. Sitharthan, C.K. Sundarabalan, K.R. Devabalaji, S.K. Nataraj, and M. Karthikeyan, "Improved fault ride through capability of DFIG-wind turbines using customized dynamic voltage restorer", Sustain Cities Soc., vol. 39, pp. 114-125, 2018.
[http://dx.doi.org/10.1016/j.scs.2018.02.008]
[59]
M.A. Saleh, M.N. Eskander, S. Amer, and M.N. Nashed, "Enhancing the LVRT capability of grid connected wind energy conversion system using unified power quality controller", In: 2014 IEEE Conference and Expo Transportation Electrification Asia- Pacific (ITEC Asia-Pacific), 2014, pp. 1-5.
[http://dx.doi.org/10.1109/ITEC-AP.2014.6940906]
[60]
R. Bhavani, N.R. Prabha, and C. Kanmani, "Fuzzy controlled UPQC for power quality enhancement in a DFIG based grid connected wind power system In 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015], 19- 20 March, 2015, Nagercoil, India,", In: 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015], 19- 20 March, 2015, Nagercoil, India, 2015, pp. 1-7.
[http://dx.doi.org/10.1109/ICCPCT.2015.7159410]
[61]
S. Samal, P.K. Hota, and P.K. Barik, "Fuel cell integrated UPQC system for power quality improvement", In: 2017 IEEE Calcutta Conference (CALCON), 2-3 Dec, 2017, Kolkata, India, 2017, pp. 325-330.
[http://dx.doi.org/10.1109/CALCON.2017.8280749]
[62]
H.G. Junior, and P.J. Serni, "A review of project of the controllers for an UPS", IEEE Latin Am. Trans., vol. 16, no. 2, pp. 314-321, 2018.
[http://dx.doi.org/10.1109/TLA.2018.8327381]
[63]
M.O. Durham, K.D. Durham, and R.A. Durham, "TVSS designs", IEEE Ind. Appl. Mag., vol. 8, no. 5, pp. 31-36, 2002.
[http://dx.doi.org/10.1109/MIA.2002.1028388]
[64]
P. Upadhvay, N. Singh, S. Yadav, and S. Gupta, "Voltage quality compensation of DFIG with series DVR (SDVR) under three phase fault", In: 2018 2nd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), 2018.
[http://dx.doi.org/10.1109/IEMENTECH.2018.8465397]
[65]
A.O. Ibrahim, T.H. Nguyen, D.C. Lee, and S.C. Kim, "A fault ride-through technique of DFIG wind turbine systems using dynamic voltage restorers", IEEE Trans. Energ. Convers., vol. 26, no. 3, pp. 871-882, 2011.
[http://dx.doi.org/10.1109/TEC.2011.2158102]
[66]
X. Chen, L. Yan, X. Zhou, and H. Sun, "A novel DVR-ESS-embedded wind-energy conversion system", IEEE Trans. Sustain. Energy, vol. 9, no. 3, pp. 1265-1274, 2018.
[http://dx.doi.org/10.1109/TSTE.2017.2781287]
[67]
R.A. Amalorpavaraj, P. Kaliannan, S. Padmanaban, U. Subramaniam, and V.K. Ramachandaramurthy, "Improved fault ride through capability in DFIG based wind turbines using dynamic voltage restorer with combined feed-forward and feed-back control", IEEE Access, vol. 5, pp. 20494-20503, 2017.
[http://dx.doi.org/10.1109/ACCESS.2017.2750738]
[68]
P.Z. Xu, Y.G. Lu, and X.M. Cao, "Overview of subsynchronous oscillation in grid-connected wind farm", Recent Adv. Electr. Electron. Eng., vol. 13, no. 7, pp. 969-979, 2020.
[69]
S. Das, D. Chatterjee, and S.K. Goswami, "Tuned-TSC based SVC for reactive power compensation and harmonic reduction in unbalanced distribution system", IET Gener. Transm. Distrib., vol. 12, no. 3, pp. 571-585, 2018.
[http://dx.doi.org/10.1049/iet-gtd.2017.0033]
[70]
S. Uong, and I. Ngamroo, "Coordinated control of DFIG wind turbine and SVC for robust power system stabilization", In 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI- CON), 24-27 June, 2015, Hua Hin, Thailand,",
[http://dx.doi.org/10.1109/ECTICon.2015.7207012]
[71]
A.Y. Abdelaziz, and E.S. Ali, "Static VAR compensator damping controller design based on flower pollination algorithm for a multi-machine power system", Electr. Power Compon. Syst., vol. 43, no. 11, pp. 1268-1277, 2015.
[http://dx.doi.org/10.1080/15325008.2015.1028116]
[72]
A.M.M. Rashad, and S. Kamel, "Enhancement of hybrid wind farm performance using tuned sssc based on multi-objective genetic algorithm ", In: 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), 27-29 Dec 2016, Cairo, Egypt, 2016, pp. 786-791.
[http://dx.doi.org/10.1109/MEPCON.2016.7836983]
[73]
M.A. Ortega-Vazquez, and D.S. Kirschen, "Estimating the spinning reserve requirements in systems with significant wind power generation penetration", IEEE Trans. Power Syst., vol. 24, no. 1, pp. 114-124, 2009.
[http://dx.doi.org/10.1109/TPWRS.2008.2004745]
[74]
G.D. Marques, and M.F. Iacchetti, "DFIG topologies for dc networks: A review on control and design features", IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1299-1316, 2019.
[http://dx.doi.org/10.1109/TPEL.2018.2829546]
[75]
C.M. Osorio, J.S. Chaves, A.L. Murari, and A.J. Sguarezi Filho, "Comparative analysis of the Doubly Fed Induction Generator (DFIG) under balanced voltage sag using a deadbeat controller", IEEE Latin Am. Trans., vol. 15, no. 5, pp. 869-876, 2017.
[76]
V.F. Mendes, C.V. de Sousa, W. Hofmann, and S.R. Silva, "Doubly-fed induction generator ride-through fault capability using resonant controllers for asymmetrical voltage sags", IET Renew. Power Gener., vol. 9, no. 7, pp. 783-791, 2015.
[http://dx.doi.org/10.1049/iet-rpg.2014.0373]
[77]
Z. Xie, X. Zhang, X. Zhang, S. Yang, and L. Wang, "Improved ride-through control of DFIG during grid voltage swell", IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3584-3594, 2015.
[78]
A. Djoudi, S. Bacha, H. Chekireb, H. Iman-Eini, and C. Boudinet, "Adaptive Sensorless SM-DPC of DFIG-based WECS under disturbed grid: Study and experimental results", IEEE Trans. Sustain. Energy, vol. 9, no. 2, pp. 570-581, 2018.
[http://dx.doi.org/10.1109/TSTE.2017.2748966]
[79]
S. Priyavarthini, C. Nagamani, G. Saravana Ilango, and M.A. Asha Rani, "An improved control for simultaneous sag/swell mitigation and reactive power support in a grid-connected wind farm with DVR", Int. J. Electr. Power Energy Syst., vol. 101, pp. 38-49, 2018.
[http://dx.doi.org/10.1016/j.ijepes.2018.03.016]
[80]
C. Cheng, and H. Nian, "Low-complexity model predictive stator current control of DFIG under harmonic grid voltages", IEEE Trans. Energ. Convers., vol. 32, no. 3, pp. 1072-1080, 2017.
[http://dx.doi.org/10.1109/TEC.2017.2694849]
[81]
P. Xiong, and D. Sun, "Backstepping-based dpc strategy of a wind turbine-driven DFIG under normal and harmonic grid voltage", IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4216-4225, 2016.
[http://dx.doi.org/10.1109/TPEL.2015.2477442]
[82]
L. Li, H. Nian, L. Ding, and B. Zhou, "Direct power control of DFIG system without phase-locked loop under unbalanced and harmonically distorted voltage", IEEE Trans. Energ. Convers., vol. 33, no. 1, pp. 395-405, 2018.
[http://dx.doi.org/10.1109/TEC.2017.2741473]
[83]
Y. Song, and H. Nian, "Sinusoidal output current implementation of DFIG using repetitive control under a generalized harmonic power grid with frequency deviation", IEEE Trans. Power Electron., vol. 30, no. 12, pp. 6751-6762, 2015.
[http://dx.doi.org/10.1109/TPEL.2015.2390213]
[84]
X.S. Baros, and M.D. Ilić, "Distributed torque control of deloaded wind DFIGS for wind farm power output regulation", IEEE Trans. Power Syst., vol. 32, no. 6, pp. 4590-4599, 2017.
[http://dx.doi.org/10.1109/TPWRS.2017.2663661]
[85]
X. Xi, H. Geng, G. Yang, S. Li, and F. Gao, "Torsional oscillation damping control for DFIG-based wind farm participating in power system frequency regulation", IEEE Trans. Ind. Appl., vol. 54, no. 4, pp. 3687-3701, 2018.
[http://dx.doi.org/10.1109/TIA.2018.2814559]
[86]
S.M. Cruz, G.D. Marques, P.F. Goncalves, and M.F. Iacchetti, "Predictive torque and rotor flux control of a DFIG-DC system for torque-ripple compensation and loss minimization", IEEE Trans. Ind. Electron., vol. 65, no. 12, pp. 9301-9310, 2018.
[http://dx.doi.org/10.1109/TIE.2018.2818667]
[87]
C. Wu, and H. Nian, "An improved repetitive control of DFIG-DC system for torque ripple suppression", IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7634-7644, 2018.
[http://dx.doi.org/10.1109/TPEL.2017.2766886]
[88]
M.M. Vayeghan, and S.A. Davari, "Torque ripple reduction of DFIG by a new and robust predictive torque control method", IET Renew. Power Gener., vol. 11, no. 11, pp. 1345-1352, 2017.
[http://dx.doi.org/10.1049/iet-rpg.2016.0695]
[89]
K.C. Wong, S.L. Ho, and K.W. Cheng, "Direct control algorithm for doubly fed induction generators in weak grids", IET Electr. Power Appl., vol. 3, no. 4, pp. 371-380, 2009.
[http://dx.doi.org/10.1049/iet-epa.2008.0039]
[90]
J. Mohammadi, S. Vaez-Zadeh, E. Ebrahimzadeh, and F. Blaabjerg, "Combined control method for grid-side converter of doubly fed induction generator-based wind energy conversion systems", IET Renew. Power Gener., vol. 12, no. 8, pp. 943-952, 2018.
[http://dx.doi.org/10.1049/iet-rpg.2017.0539]
[91]
G.P. Prajapat, N. Senroy, and I. Narayan Kar, "Stability enhancement of DFIG-based wind turbine system through linear quadratic regulator", IET Gener. Transm. Distrib., vol. 12, no. 6, pp. 1331-1338, 2018.
[http://dx.doi.org/10.1049/iet-gtd.2017.0776]
[92]
P. Kou, D. Liang, J. Li, L. Gao, and Q. Ze, "Finite-control-set model predictive control for DFIG wind turbines", IEEE Trans. Autom. Sci. Eng., vol. 15, no. 3, pp. 1004-1013, 2018.
[http://dx.doi.org/10.1109/TASE.2017.2682559]
[93]
J. Ma, Z. Song, Y. Zhang, Y. Zhao, and J.S. Thorp, "Robust stochastic stability analysis method of DFIG integration on power system considering virtual inertia control", IEEE Trans. Power Syst., vol. 32, no. 5, pp. 4069-4079, 2017.
[http://dx.doi.org/10.1109/TPWRS.2017.2657650]
[94]
D. Zhu, X. Zou, S. Zhou, W. Dong, Y. Kang, and J. Hu, "Feedforward current references control for dfig-based wind turbine to improve transient control performance during grid faults", IEEE Trans. Energ. Convers., vol. 33, no. 2, pp. 670-681, 2018.
[http://dx.doi.org/10.1109/TEC.2017.2779864]
[95]
D. Zheng, J. Ouyang, and X. Xiong, "Controllable powers range and control method of DFIG for transient stability of power system", J. Eng., vol. 2017, no. 13, pp. 1614-1620, 2017.
[http://dx.doi.org/10.1049/joe.2017.0605]
[96]
K. Liao, Y. Xu, Y. Wang, Z. He, and H. Marzooghi, "Hybrid fast damping control strategy for doubly fed induction generators against power system inter-area oscillations", IET Renew. Power Gener., vol. 12, no. 4, pp. 463-471, 2018.
[http://dx.doi.org/10.1049/iet-rpg.2017.0196]
[97]
C. Pradhan, C.N. Bhende, and A.K. Samanta, "Adaptive virtual inertia-based frequency regulation in wind power systems", Renew. Energy, vol. 115, pp. 558-574, 2018.
[http://dx.doi.org/10.1016/j.renene.2017.08.065]
[98]
M. Ammar, and M.E. Ammar, "Enhanced flicker mitigation in DFIG-based distributed generation of wind power", IEEE Trans. Industr. Inform., vol. 12, no. 6, pp. 2041-2049, 2016.
[http://dx.doi.org/10.1109/TII.2016.2586461]
[99]
Y. Zhang, Z. Chen, W. Hu, and M. Cheng, "Flicker mitigation by individual pitch control of variable speed wind turbines with DFIG", IEEE Trans. Energ. Convers., vol. 29, no. 1, pp. 20-28, 2014.
[http://dx.doi.org/10.1109/TEC.2013.2294992]
[100]
Y.S. Kim, and D.J. Won, "Mitigation of the flicker level of a DFIG using power factor angle control", IEEE Trans. Power Deliv., vol. 24, no. 4, pp. 2457-2458, 2009.
[http://dx.doi.org/10.1109/TPWRD.2009.2021023]
[101]
D. Mascarella, P. Venne, D. Guérette, and G. Joos, "Flicker mitigation via dynamic volt/var control of power-electronic interfaced WTGs", IEEE Trans. Power Deliv., vol. 30, no. 6, pp. 2451-2459, 2015.
[http://dx.doi.org/10.1109/TPWRD.2015.2394237]
[102]
T.K. Chau, S.S. Yu, T.L. Fernando, H.H.C. Iu, and M. Small, "A novel control strategy of DFIG wind turbines in complex power systems for enhancement of primary frequency response and LFOD", IEEE Trans. Power Syst., vol. 33, no. 2, pp. 1811-1823, 2018.
[http://dx.doi.org/10.1109/TPWRS.2017.2726160]
[103]
S.M. Abd Elazim, and E.S. Ali, "Optimal SSSC design for damping power systems oscillations via gravitational search algorithm", Int. J. Electr. Power Energy Syst., vol. 82, pp. 161-168, 2016.
[http://dx.doi.org/10.1016/j.ijepes.2016.02.023]
[104]
D. Li, T. Wang, W. Pan, X. Ding, and J. Gong, "A comprehensive review of improving power quality using active power filters", Electr. Power Syst. Res., vol. 199, p. 107389, 2021.
[http://dx.doi.org/10.1016/j.epsr.2021.107389]
[105]
M. Ammar, and G. Joós, "Impact of distributed wind generators reactive power behavior on flicker severity", IEEE Trans. Energ. Convers., vol. 28, no. 2, pp. 425-433, 2013.
[http://dx.doi.org/10.1109/TEC.2013.2256425]
[106]
C.K. Duffey, and R.P. Stratford, "IEEE recommended practice and requirements for harmonic control in electric power systems", IEEE Trans. Ind. Appl., vol. 25, no. 6, pp. 1025-1034, 1989.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy