Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Comparison of Laccases and Hemeproteins Systems in Bioremediation of Organic Pollutants

Author(s): João M. Lopes, Dorinda Marques-da-Silva, Paula Q. Videira and Ricardo L. Lagoa*

Volume 23, Issue 6, 2022

Published on: 03 September, 2022

Page: [402 - 423] Pages: 22

DOI: 10.2174/1389203723666220704090416

Price: $65

Abstract

Aim: Laccases and peroxidases have attracted great interest for industrial and environmental applications. These enzymes have a broad substrate range and a robust oxidizing ability. Moreover, using mediators or co-oxidants makes it possible to increase their catalytic activity and extend their substrate scope to more resistant chemical structures.

Background: Fungal laccases and ligninolytic peroxidases, mainly lignin and manganese peroxidases, are the privileged oxidoreductases for bioremediation processes. Nonetheless, an increasing diversity of laccases and peroxidase-type enzymes has been proposed for environmental technologies.

Objective: This article aims to provide an overview of these enzymes and compare their applicability in the degradation of organic pollutants.

Methods: Fundamental properties of the proteins are covered and applications towards polycyclic aromatic hydrocarbons (PAHs) and pesticides are specially focused.

Results: Laccases are multicopper oxidases initially studied for applications in the pulp and paper industry but able to oxidize a variety of environmentally concerning compounds. Relying on O2, laccases do not require peroxides nor auxiliary agents, like Mn2+, although suitable redox mediators are needed to attack the more recalcitrant pollutants (e.g., PAHs). True and pseudo-peroxidases use a stronger oxidant (H2O2) and the redox chemistry at the heme site generates high potential species that allow the oxidation of dyes and some pesticides.

Conclusion: Lately, research efforts have been directed to enzyme discovery, testing with micropollutants, and improving biocatalysts’ stability by immobilization and protein engineering. Further understanding of the effects of natural media components and solvents on the enzymes might lead to competitive enzymatic treatments of highly toxic media.

Keywords: Hemoglobin, lignin peroxidases, versatile peroxidases, horseradish peroxidase, dye-decolorizing peroxidases, enzyme- mediator system, halogenated pesticides, organophosphorus toxicants.

Graphical Abstract

[1]
Stamatelatou, K.; Pakou, C.; Lyberatos, G. Occurrence, toxicity, and biodegradation of selected emerging priority pollutants in municipal sewage sludge. In: Comprehensive Biotechnology; Second, E.; Moo-Young, M.B.T-C.B., Eds.; Elsevier: Burlington, 2011; pp. 473-484.
[http://dx.doi.org/10.1016/B978-0-08-088504-9.00496-7]
[2]
Sakshi; Singh, S.K.; Haritash, A.K. Polycyclic aromatic hydrocarbons: Soil pollution and remediation. Int. J. Environ. Sci. Technol., 2019, 16(10), 6489-6512.
[http://dx.doi.org/10.1007/s13762-019-02414-3]
[3]
Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation techniques-classification based on site of application: Principles, ad-vantages, limitations and prospects. World J. Microbiol. Biotechnol., 2016, 32(11), 180.
[http://dx.doi.org/10.1007/s11274-016-2137-x] [PMID: 27638318]
[4]
Babu, A.G.; Reja, S.I.; Akhtar, N.; Sultana, M.; Deore, P.S.; Ali, F.I. Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs): Current Practices and Outlook, 1st ed; Arora, P.K., Ed.; Springer: Singapore, 2019.
[http://dx.doi.org/10.1007/978-981-13-7462-3_9]
[5]
Sharma. Bioremediation Techniques for Polluted Environment: Concept, Advantages, Limitations, and Prospects. Murillo-Tovar, M.A.; Saldarriaga-Noreña, H.; Saeid, A., Eds.; Trace Metals in the Environment - New Approaches and Recent Advances; IntechOpen, 2021.
[http://dx.doi.org/10.5772/intechopen.90453]
[6]
Vishwakarma, G.S.; Bhattacharjee, G.; Gohil, N.; Singh, V. Current Status, Challenges and Future of Bioremediation. Bioremediation of Pollutants; Chandra Pandey, V; Singh, V., Ed.; Elsevier, 2020, pp. 403-415.
[http://dx.doi.org/10.1016/B978-0-12-819025-8.00020-X]
[7]
Elumalai, P.; Parthipan, P.; Huang, M.; Muthukumar, B.; Cheng, L.; Govarthanan, M.; Rajasekar, A. Enhanced biodegradation of hydro-phobic organic pollutants by the bacterial consortium: Impact of enzymes and biosurfactants. Environ. Pollut., 2021, 289(August), 117956.
[http://dx.doi.org/10.1016/j.envpol.2021.117956] [PMID: 34426181]
[8]
Mishra, S.; Maiti, A. The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: A review. Environ. Sci. Pollut. Res. Int., 2018, 25(9), 8286-8314.
[http://dx.doi.org/10.1007/s11356-018-1273-2] [PMID: 29383646]
[9]
National Research Council. Principles of Bioremediation; National Academies Press: Washington, D.C., 1993.
[http://dx.doi.org/10.17226/2131]
[10]
Lyon, D.Y.; Vogel, T.M. Bioaugmentation as a Strategy for the Treatment of Persistent Pollutants 2nd ed; Moo-Young, M., Ed.; Elsevier: Lyon, 2011; 6, .
[http://dx.doi.org/10.1016/B978-0-08-088504-9.00366-4]
[11]
Kumar; Bharadvaja.Bhatt, P.B.T., Ed.;Enzymatic Bioremediation: A Smart Tool to Fight Environmental Pollutants;; Elsevier, 2019.
[http://dx.doi.org/10.1016/B978-0-12-818307-6.00006-8]
[12]
Rao, M.A.; Scelza, R.; Scotti, R.; Gianfreda, L. Role of enzymes in the remediation of polluted environments. J. Soil Sci. Plant Nutr., 2010, 10(3), 333-353.
[http://dx.doi.org/10.4067/S0718-95162010000100008]
[13]
Karigar, C.S.; Rao, S.S. Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Res., 2011, 2011, 805187.
[http://dx.doi.org/10.4061/2011/805187] [PMID: 21912739]
[14]
Sharma, Babita; Dangi, Arun Kumar; Shukla, Pratyoosh Contemporary enzyme based technologies for bioremediation: A review. J. Environ. Manage., 2018, 210, 10-22.
[http://dx.doi.org/10.1016/j.jenvman.2017.12.075] [PMID: 29329004]
[15]
Peixoto, R.S.; Vermelho, A.B.; Rosado, A.S. Petroleum-degrading enzymes: Bioremediation and new prospects. Enzyme Res., 2011, 2011(1), 475193.
[http://dx.doi.org/10.4061/2011/475193] [PMID: 21811673]
[16]
Bhandari, S.; Poudel, D.K.; Marahatha, R.; Dawadi, S.; Khadayat, K.; Phuyal, S.; Shrestha, S.; Gaire, S.; Basnet, K.; Khadka, U.; Parajuli, N. Microbial enzymes used in bioremediation. J. Chem., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/8849512]
[17]
Mohorčič, M.; Teodorovič, S.; Golob, V.; Friedrich, J. Fungal and enzymatic decolourisation of artificial textile dye baths. Chemosphere, 2006, 63(10), 1709-1717.
[http://dx.doi.org/10.1016/j.chemosphere.2005.09.063] [PMID: 16310823]
[18]
Zdarta, J.; Jesionowski, T.; Pinelo, M.; Meyer, A. S.; Iqbal, H. M. N.; Bilal, M.; Nguyen, L. N.; Nghiem, L. D. Free and immobilized biocatalysts for removing micropollutants from water and wastewater: Recent progress and challenges. Bioresour. Technol, 2022, 344(PB), 126201.
[http://dx.doi.org/10.1016/j.biortech.2021.126201]
[19]
Sellami, K.; Couvert, A.; Nasrallah, N.; Maachi, R.; Abouseoud, M.; Amrane, A. Peroxidase enzymes as green catalysts for bioremediation and biotechnological applications: A review. Sci. Total Environ., 2022, 806(Pt 2), 150500.
[http://dx.doi.org/10.1016/j.scitotenv.2021.150500] [PMID: 34852426]
[20]
Mishra, S.; Maiti, A. Applicability of enzymes produced from different biotic species for biodegradation of textile dyes. Clean Technol. Environ. Policy, 2019, 21(4), 763-781.
[http://dx.doi.org/10.1007/s10098-019-01681-5]
[21]
Torres, E.; Bustos-Jaimes, I.; Le Borgne, S. Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl. Catal. B, 2003, 46(1), 1-15.
[http://dx.doi.org/10.1016/S0926-3373(03)00228-5]
[22]
Baldrian, P. Fungal laccases - occurrence and properties. FEMS Microbiol. Rev., 2006, 30(2), 215-242.
[http://dx.doi.org/10.1111/j.1574-4976.2005.00010.x] [PMID: 16472305]
[23]
Cañas, A.I.; Camarero, S. Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes. Biotechnol. Adv., 2010, 28(6), 694-705.
[http://dx.doi.org/10.1016/j.biotechadv.2010.05.002] [PMID: 20471466]
[24]
Bourbonnais, R.; Paice, M.G. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett., 1990, 267(1), 99-102.
[http://dx.doi.org/10.1016/0014-5793(90)80298-W] [PMID: 2365094]
[25]
Camarero, S.; Ibarra, D.; Martínez, M.J.; Martínez, A.T. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl. Environ. Microbiol., 2005, 71(4), 1775-1784.
[http://dx.doi.org/10.1128/AEM.71.4.1775-1784.2005] [PMID: 15812000]
[26]
Yaropolov, A.I.; Skorobogat’ko, O.V.; Vartanov, S.S.; Varfolomeyev, S.D. Laccase. Appl. Biochem. Biotechnol., 1994, 49(3), 257-280.
[http://dx.doi.org/10.1007/BF02783061]
[27]
Song, Y.; Buettner, G.R. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hy-drogen peroxide. Free Radic. Biol. Med., 2010, 49(6), 919-962.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.05.009] [PMID: 20493944]
[28]
Akbar, H.; Sedzro, D.M.; Khan, M.; Bellah, S.F.; Billah, S.M.S. Structure, function and applications of a classic enzyme: horseradish pe-roxidase. J. Chem. Environ. Biol. Eng., 2018, 2(2), 52-59.
[http://dx.doi.org/10.11648/j.jcebe.20180202.13]
[29]
Eibes, G.; Cajthaml, T.; Moreira, M.T.; Feijoo, G.; Lema, J.M. Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere, 2006, 64(3), 408-414.
[http://dx.doi.org/10.1016/j.chemosphere.2005.11.075] [PMID: 16445965]
[30]
Twala, P.P.; Mitema, A.; Baburam, C.; Feto, N.A. Breakthroughs in the discovery and use of different peroxidase isoforms of microbial origin. AIMS Microbiol., 2020, 6(3), 330-349.
[http://dx.doi.org/10.3934/microbiol.2020020] [PMID: 33134747]
[31]
Bansal, N.; Kanwar, S.S. Peroxidase(s) in environment protection. ScientificWorldJournal, 2013, 2013, 714639.
[http://dx.doi.org/10.1155/2013/714639] [PMID: 24453894]
[32]
Chang, Y.; Yang, D.; Li, R.; Wang, T.; Zhu, Y. Textile dye biodecolorization by manganese peroxidase: A review. Molecules, 2021, 26(15), 4403.
[http://dx.doi.org/10.3390/molecules26154403] [PMID: 34361556]
[33]
Mohit, E.; Tabarzad, M.; Faramarzi, M.A. Biomedical and pharmaceutical-related applications of laccases. Curr. Protein Pept. Sci., 2020, 21(1), 78-98.
[http://dx.doi.org/10.2174/1389203720666191011105624] [PMID: 31660814]
[34]
Margot, J.; Bennati-Granier, C.; Maillard, J.; Blánquez, P.; Barry, D.A.; Holliger, C. Bacterial versus fungal laccase: Potential for micropollu-tant degradation. AMB Express, 2013, 3(1), 63.
[http://dx.doi.org/10.1186/2191-0855-3-63] [PMID: 24152339]
[35]
Guo, X.; Zhou, L.; Zhu, J. Junwen-Li; Wang, L.; Zhong, J.; Zhang, L. Recyclable laccase - filter cartridge system for accelerating nerve agent transformation. Chem. Eng. J., 2021, 413(4), 127568.
[http://dx.doi.org/10.1016/j.cej.2020.127568]
[36]
Xu, F.; Shin, W.; Brown, S.H.; Wahleithner, J.A.; Sundaram, U.M.; Solomon, E.I. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim. Biophys. Acta, 1996, 1292(2), 303-311.
[http://dx.doi.org/10.1016/0167-4838(95)00210-3] [PMID: 8597577]
[37]
Ayala, M. Biocatalysis Based on Heme Peroxidases 1st ed; Torres, E.; Ayala, M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2010.
[http://dx.doi.org/10.1007/978-3-642-12627-7]
[38]
Di Rocco, G.; Battistuzzi, G.; Borsari, M.; Bortolotti, C.A.; Ranieri, A.; Sola, M. The enthalpic and entropic terms of the reduction potential of metalloproteins: Determinants and interplay. Coord. Chem. Rev., 2021, 445, 214071.
[http://dx.doi.org/10.1016/j.ccr.2021.214071]
[39]
Vazquez-Duhalt, R.; Westlake, D.W.S.; Fedorak, P.M. Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Appl. Environ. Microbiol., 1994, 60(2), 459-466.
[http://dx.doi.org/10.1128/aem.60.2.459-466.1994] [PMID: 16349176]
[40]
Chen, C.; Shrestha, R.; Jia, K.; Gao, P.F.; Geisbrecht, B.V.; Bossmann, S.H.; Shi, J.; Li, P. Characterization of dye-decolorizing peroxidase (DyP) from Thermomonospora curvata reveals unique catalytic properties of A-type DyPs. J. Biol. Chem., 2015, 290(38), 23447-23463.
[http://dx.doi.org/10.1074/jbc.M115.658807] [PMID: 26205819]
[41]
Cordas, C.M.; Nguyen, G.S.; Valério, G.N.; Jønsson, M.; Söllner, K.; Aune, I.H.; Wentzel, A.; Moura, J.J.G. Discovery and characteriza-tion of a novel Dyp-type peroxidase from a marine actinobacterium isolated from Trondheim fjord, Norway. J. Inorg. Biochem., 2022, 226, 111651.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111651] [PMID: 34740038]
[42]
Ayala, M.; Roman, R.; Vazquez-Duhalt, R. A catalytic approach to estimate the redox potential of heme-peroxidases. Biochem. Biophys. Res. Commun., 2007, 357(3), 804-808.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.020] [PMID: 17442271]
[43]
Hong, G.; Ivnitski, D.M.; Johnson, G.R.; Atanassov, P.; Pachter, R. Design parameters for tuning the type 1 Cu multicopper oxidase redox potential: Insight from a combination of first principles and empirical molecular dynamics simulations. J. Am. Chem. Soc., 2011, 133(13), 4802-4809.
[http://dx.doi.org/10.1021/ja105586q] [PMID: 21388209]
[44]
Reinhammar, B.R.M. Oxidation-reduction potentials of the electron acceptors in laccases and stellacyanin. Biochim. Biophys. Acta, 1972, 275(2), 245-259.
[http://dx.doi.org/10.1016/0005-2728(72)90045-X] [PMID: 4342730]
[45]
Piontek, K.; Antorini, M.; Choinowski, T. Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution contain-ing a full complement of coppers. J. Biol. Chem., 2002, 277(40), 37663-37669.
[http://dx.doi.org/10.1074/jbc.M204571200] [PMID: 12163489]
[46]
Bourbonnais, R.; Leech, D.; Paice, M.G. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim. Biophys. Acta, 1998, 1379(3), 381-390.
[http://dx.doi.org/10.1016/S0304-4165(97)00117-7] [PMID: 9545600]
[47]
Solís-Oba, M.; Ugalde-Saldívar, V.M.; González, I.; Viniegra-González, G. An electrochemical-spectrophotometrical study of the oxidized forms of the mediator 2,2′-azino-bis-(3-ethylbenzo-thiazoline-6-sulfonic acid) produced by immobilized laccase. J. Electroanal. Chem. (Lausanne), 2005, 579(1), 59-66.
[http://dx.doi.org/10.1016/j.jelechem.2005.01.025]
[48]
Vlasova, I.I. Peroxidase activity of human hemoproteins: Keeping the fire under control. Molecules, 2018, 23(10), 2561.
[http://dx.doi.org/10.3390/molecules23102561] [PMID: 30297621]
[49]
Nagai, M.; Sato, T.; Watanabe, H.; Saito, K.; Kawata, M.; Enei, H. Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl. Microbiol. Biotechnol., 2002, 60(3), 327-335.
[http://dx.doi.org/10.1007/s00253-002-1109-2] [PMID: 12436315]
[50]
Han, M-J.; Choi, H-T.; Song, H-G. Purification and characterization of laccase from the white rot fungus Trametes versicolor. J. Microbiol., 2005, 43(6), 555-560.
[PMID: 16410773]
[51]
Sun, Y.; Liu, Z-L.; Hu, B-Y.; Chen, Q-J.; Yang, A-Z.; Wang, Q-Y.; Li, X-F.; Zhang, J-Y.; Zhang, G-Q.; Zhao, Y-C. Purification and charac-terization of a thermo- and pH-stable laccase from the litter-decomposing fungus Gymnopus luxurians and laccase mediator systems for dye decolorization. Front. Microbiol., 2021, 12, 672620.
[http://dx.doi.org/10.3389/fmicb.2021.672620] [PMID: 34413835]
[52]
Keilin, D.; Mann, T. Laccase, a blue copper-protein oxidase from the latex of Rhus succedanea. Nature, 1939, 143(3610), 23-24.
[http://dx.doi.org/10.1038/143023b0]
[53]
Eggert, C.; Temp, U.; Dean, J.F.D.; Eriksson, K-E.L. A fungal metabolite mediates degradation of non-phenolic lignin structures and syn-thetic lignin by laccase. FEBS Lett., 1996, 391(1-2), 144-148.
[http://dx.doi.org/10.1016/0014-5793(96)00719-3] [PMID: 8706903]
[54]
Qin, P.; Wu, Y.; Adil, B.; Wang, J.; Gu, Y.; Yu, X.; Zhao, K.; Zhang, X.; Ma, M.; Chen, Q.; Chen, X.; Zhang, Z.; Xiang, Q. Optimization of laccase from Ganoderma lucidum decolorizing remazol brilliant blue r and glac1 as main laccase-contributing gene. Molecules, 2019, 24(21), 3914.
[http://dx.doi.org/10.3390/molecules24213914] [PMID: 31671660]
[55]
Lorenzo, M.; Moldes, D.; Rodríguez Couto, S.; Sanromán, M.A. Inhibition of laccase activity from Trametes versicolor by heavy metals and organic compounds. Chemosphere, 2005, 60(8), 1124-1128.
[http://dx.doi.org/10.1016/j.chemosphere.2004.12.051] [PMID: 15993161]
[56]
Olajuyigbe, F.M.; Adetuyi, O.Y.; Fatokun, C.O. Characterization of free and immobilized laccase from Cyberlindnera fabianii and applica-tion in degradation of bisphenol A. Int. J. Biol. Macromol., 2019, 125, 856-864.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.106] [PMID: 30557644]
[57]
Si, J.; Ma, H.; Cao, Y.; Cui, B.; Dai, Y. Introducing a thermo-alkali-stable, metallic ion-tolerant laccase purified from white rot fungus Trametes hirsuta. Front. Microbiol., 2021, 12(670163), 670163.
[http://dx.doi.org/10.3389/fmicb.2021.670163] [PMID: 34093489]
[58]
Kaushik, G.; Thakur, I.S. Purification, characterization and usage of thermotolerant laccase from Bacillus sp. for biodegradation of syn-thetic dyes. Appl. Biochem. Microbiol., 2013, 49(4), 352-359.
[http://dx.doi.org/10.1134/S0003683813040169]
[59]
Dwivedi, U.N.; Singh, P.; Pandey, V.P.; Kumar, A. Structure-function relationship among bacterial, fungal and plant laccases. J. Mol. Catal., B Enzym., 2011, 68(2), 117-128.
[http://dx.doi.org/10.1016/j.molcatb.2010.11.002]
[60]
Xu, F. Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J. Biol. Chem., 1997, 272(2), 924-928.
[http://dx.doi.org/10.1074/jbc.272.2.924] [PMID: 8995383]
[61]
Johannes, C.; Majcherczyk, A. Laccase activity tests and laccase inhibitors. J. Biotechnol., 2000, 78(2), 193-199.
[http://dx.doi.org/10.1016/S0168-1656(00)00208-X] [PMID: 10725542]
[62]
Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP decolorization assay of antioxidant capacity reaction path-ways. Int. J. Mol. Sci., 2020, 21(3), 1131.
[http://dx.doi.org/10.3390/ijms21031131] [PMID: 32046308]
[63]
Niladevi, K.N.; Prema, P. Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor. World J. Microbiol. Biotechnol., 2008, 24(7), 1215-1222.
[http://dx.doi.org/10.1007/s11274-007-9598-x]
[64]
Shleev, S.V.; Morozova, O.V.; Mazhugo, Y.M.; Khalunina, A.S.; Yaropolov, A.I. Phenylpyrazolones, novel oxidoreductase redox media-tors for degradation of xenobiotics. Appl. Biochem. Microbiol., 2004, 40(2), 140-145.
[http://dx.doi.org/10.1023/B:ABIM.0000018916.69491.be]
[65]
Chhabra, M.; Mishra, S.; Sreekrishnan, T.R. Mediator-assisted decolorization and detoxification of textile dyes/dye mixture by Cyathus bulleri laccase. Appl. Biochem. Biotechnol., 2008, 151(2-3), 587-598.
[http://dx.doi.org/10.1007/s12010-008-8234-z] [PMID: 18506632]
[66]
Camarero, S.; Ibarra, D.; Martínez, Á.T.; Romero, J.; Gutiérrez, A.; del Río, J.C. Paper pulp delignification using laccase and natural media-tors. Enzyme Microb. Technol., 2007, 40(5), 1264-1271.
[http://dx.doi.org/10.1016/j.enzmictec.2006.09.016]
[67]
Ardila-Leal, L.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Quevedo-Hidalgo, B.E. A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules, 2021, 26(13), 3813.
[http://dx.doi.org/10.3390/molecules26133813] [PMID: 34206669]
[68]
Camarero, S.; Cañas, A.I.; Nousiainen, P.; Record, E.; Lomascolo, A.; Martínez, M.J.; Martínez, Á.T. P-hydroxycinnamic acids as natural mediators for laccase oxidation of recalcitrant compounds. Environ. Sci. Technol., 2008, 42(17), 6703-6709.
[http://dx.doi.org/10.1021/es8008979] [PMID: 18800552]
[69]
Wang, X.; Yao, B.; Su, X. Linking enzymatic oxidative degradation of lignin to organics detoxification. Int. J. Mol. Sci., 2018, 19(11), 3373.
[http://dx.doi.org/10.3390/ijms19113373] [PMID: 30373305]
[70]
Morsi, R.; Bilal, M.; Iqbal, H.M.N.; Ashraf, S.S. Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Sci. Total Environ., 2020, 714, 136572.
[http://dx.doi.org/10.1016/j.scitotenv.2020.136572] [PMID: 31986384]
[71]
Guardado, A.L.P.; Belleville, M-P.; Rostro Alanis, M. de J.; Parra Saldivar, R.; Sanchez-Marcano, J. Effect of redox mediators in pharma-ceuticals degradation by laccase: A comparative study. Process Biochem., 2019, 78, 123-131.
[http://dx.doi.org/10.1016/j.procbio.2018.12.032]
[72]
Zdarta, J.; Jankowska, K.; Bachosz, K.; Kijeńska-Gawrońska, E.; Zgoła-Grześkowiak, A.; Kaczorek, E.; Jesionowski, T. A promising lac-case immobilization using electrospun materials for biocatalytic degradation of tetracycline: Effect of process conditions and catalytic pathways. Catal. Today, 2019, 2020(348), 127-136.
[http://dx.doi.org/10.1016/j.cattod.2019.08.042]
[73]
Spina, F.; Gea, M.; Bicchi, C.; Cordero, C.; Schilirò, T.; Varese, G.C. Ecofriendly laccases treatment to challenge micropollutants issue in municipal wastewaters. Environ. Pollut., 2020, 257, 113579.
[http://dx.doi.org/10.1016/j.envpol.2019.113579] [PMID: 31810716]
[74]
Kelbert, M.; Pereira, C.S.; Daronch, N.A.; Cesca, K.; Michels, C.; de Oliveira, D.; Soares, H.M. Laccase as an efficacious approach to re-move anticancer drugs: A study of doxorubicin degradation, kinetic parameters, and toxicity assessment. J. Hazard. Mater., 2021, 409, 124520.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124520] [PMID: 33239208]
[75]
Johannes, C.; Majcherczyk, A.; Hüttermann, A. Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl. Microbiol. Biotechnol., 1996, 46(3), 313-317.
[http://dx.doi.org/10.1007/s002530050823] [PMID: 8933845]
[76]
Majcherczyk, A.; Johannes, C.; Hüttermann, A. Oxidation of Polycyclic Aromatic Hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb. Technol., 1998, 22(5), 335-341.
[http://dx.doi.org/10.1016/S0141-0229(97)00199-3]
[77]
Lagoa, R.; Marques-da-Silva, D.; Diniz, M.; Daglia, M.; Bishayee, A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin. Cancer Biol., 2022, 80, 118-144.
[http://dx.doi.org/10.1016/j.semcancer.2020.02.002] [PMID: 32044471]
[78]
Silva, J.; Marques-da-Silva, D.; Lagoa, R. Reassessment of the experimental skin permeability coefficients of polycyclic aromatic hydro-carbons and organophosphorus pesticides. Environ. Toxicol. Pharmacol., 2021, 86, 103671.
[http://dx.doi.org/10.1016/j.etap.2021.103671] [PMID: 33979686]
[79]
Arca-Ramos, A.; Eibes, G.; Feijoo, G.; Lema, J.M.; Moreira, M.T. Coupling extraction and enzyme catalysis for the removal of anthracene present in polluted soils. Biochem. Eng. J., 2015, 93, 289-293.
[http://dx.doi.org/10.1016/j.bej.2014.10.015]
[80]
Perini, B.L.B.; Bitencourt, R.L.; Daronch, N.A.; dos Santos Schneider, A.L.; de Oliveira, D. Surfactant-enhanced in-situ enzymatic oxida-tion: A bioremediation strategy for oxidation of polycyclic aromatic hydrocarbons in contaminated soils and aquifers. J. Environ. Chem. Eng., 2020, 8(4), 104013.
[http://dx.doi.org/10.1016/j.jece.2020.104013]
[81]
Yang, B.; Tang, K.; Wei, S.; Zhai, X.; Nie, N. Preparation of functionalized mesoporous silica as a novel carrier and immobilization of laccase. Appl. Biochem. Biotechnol., 2021, 193(8), 2547-2566.
[http://dx.doi.org/10.1007/s12010-021-03556-2] [PMID: 33783698]
[82]
Jin, X.; Yu, X.; Zhu, G.; Zheng, Z.; Feng, F.; Zhang, Z. Conditions optimizing and application of laccase-mediator System (LMS) for the laccase-catalyzed pesticide degradation. Sci. Rep., 2016, 6(1), 35787.
[http://dx.doi.org/10.1038/srep35787] [PMID: 27775052]
[83]
Vidal-Limon, A.; García Suárez, P.C.; Arellano-García, E.; Contreras, O.E.; Aguila, S.A. Enhanced degradation of pesticide dichlorophen by laccase immobilized on nanoporous materials: A cytotoxic and molecular simulation investigation. Bioconjug. Chem., 2018, 29(4), 1073-1080.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00739] [PMID: 29337540]
[84]
Chauhan, P.S.; Jha, B. Pilot scale production of extracellular thermo-alkali stable laccase from pseudomonas sp. S2 using agro waste and its application in organophosphorous pesticides degradation. J. Chem. Technol. Biotechnol., 2018, 93(4), 1022-1030.
[http://dx.doi.org/10.1002/jctb.5454]
[85]
Srinivasan, P.; Selvankumar, T.; Paray, B. A.; Rehman, M. U.; Kamala-Kannan, S.; Govarthanan, M.; Kim, W.; Selvam, K. Laccase immobilized on iron magnetic nanoparticles. 3 Biotech, 2020, 10(8), 366.
[http://dx.doi.org/10.1007/s13205-020-02363-6]
[86]
Das, A.; Jaswal, V.; Yogalakshmi, K.N. Degradation of chlorpyrifos in soil using laccase immobilized iron oxide nanoparticles and their competent role in deterring the mobility of chlorpyrifos. Chemosphere, 2020, 246, 125676.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125676] [PMID: 31918078]
[87]
Trovaslet-Leroy, M.; Jolivalt, C.; Froment, M-T.; Brasme, B.; Lefebvre, B.; Daveloose, D.; Nachon, F.; Masson, P. Application of laccase-mediator system (LMS) for the degradation of organophosphorus compounds. Chem. Biol. Interact., 2010, 187(1-3), 393-396.
[http://dx.doi.org/10.1016/j.cbi.2010.02.001] [PMID: 20149786]
[88]
Hernandez, C.E.L.R.; Werberich, D.S.; D’Elia, E. Electroenzymatic oxidation of polyaromatic hydrocarbons using chemical redox media-tors in organic media. Electrochem. Commun., 2008, 10(1), 108-112.
[http://dx.doi.org/10.1016/j.elecom.2007.10.028]
[89]
Sack, U.; Hofrichter, M.; Fritsche, W. Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma fro-wardii. FEMS Microbiol. Lett., 1997, 152(2), 227-234.
[http://dx.doi.org/10.1111/j.1574-6968.1997.tb10432.x] [PMID: 9273311]
[90]
Keum, H.; Kim, J.; Joo, Y.H.; Kang, G.; Chung, N. Hemoglobin peroxidase reaction of hemoglobin efficiently catalyzes oxidation of ben-zo[a]pyrene. Chemosphere, 2021, 268, 128795.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128795] [PMID: 33143882]
[91]
Singh, R.S.; Singh, T.; Pandey, A. Microbial enzymes-An overview. Biomass, Biofuels, Biochemicals: Advances in Enzyme Technology; Elsevier, 2019, pp. 1-40.
[http://dx.doi.org/10.1016/B978-0-444-64114-4.00001-7]
[92]
Abdel-Hamid, A.M.; Solbiati, J.O.; Cann, I.K.O. Insights into Lignin Degradation and Its Potential Industrial Applications; Sariaslani, S; Gadd, G.M., Ed.; Elsevier: Illinois, 2013, Vol. 82, .
[http://dx.doi.org/10.1016/B978-0-12-407679-2.00001-6]
[93]
Everse, J. Heme Proteins. Encyclopedia of Biological Chemistry; Lennarz, W.J; Lane, M.D., Ed.; Elsevier: New York, 2013, Vol. 2, pp. 532-538.
[http://dx.doi.org/10.1016/B978-0-12-378630-2.00015-3]
[94]
Krainer, F.W.; Glieder, A. An updated view on horseradish peroxidases: Recombinant production and biotechnological applications. Appl. Microbiol. Biotechnol., 2015, 99(4), 1611-1625.
[http://dx.doi.org/10.1007/s00253-014-6346-7] [PMID: 25575885]
[95]
Dalal, S.; Gupta, M.N. Treatment of phenolic wastewater by horseradish peroxidase immobilized by bioaffinity layering. Chemosphere, 2007, 67(4), 741-747.
[http://dx.doi.org/10.1016/j.chemosphere.2006.10.043] [PMID: 17140630]
[96]
Karim, Z.; Husain, Q. Removal of anthracene from model wastewater by immobilized peroxidase from momordica charantia in batch process as well as in a continuous spiral-bed reactor. J. Mol. Catal., B Enzym., 2010, 66(3-4), 302-310.
[http://dx.doi.org/10.1016/j.molcatb.2010.06.007]
[97]
Mousavi, S.M.; Hashemi, S.A.; Iman Moezzi, S.M.; Ravan, N.; Gholami, A.; Lai, C.W.; Chiang, W-H.; Omidifar, N.; Yousefi, K.; Behbudi, G. Recent advances in enzymes for the bioremediation of pollutants. Biochem. Res. Int., 2021, 2021, 5599204.
[http://dx.doi.org/10.1155/2021/5599204] [PMID: 34401207]
[98]
Gholami-Borujeni, F.; Mahvi, A.H.; Naseri, S.; Faramarzi, M.A.; Nabizadeh, R.; Alimohammadi, M. Application of immobilized horserad-ish peroxidase for removal and detoxification of azo dye from aqueous solution. Res. J. Chem. Environ., 2011, 15, 217-222.
[99]
Silva, M.C.; Torres, J.A.; Castro, A.A.; da Cunha, E.F.F.; Alves de Oliveira, L.C.; Corrêa, A.D.; Ramalho, T.C. Combined experimental and theoretical study on the removal of pollutant compounds by peroxidases: Affinity and reactivity toward a bioremediation catalyst. J. Biomol. Struct. Dyn., 2016, 34(9), 1839-1848.
[http://dx.doi.org/10.1080/07391102.2015.1063456] [PMID: 26130457]
[100]
Routoula, E.; Patwardhan, S.V. Degradation of anthraquinone dyes from effluents: A review focusing on enzymatic dye degradation with industrial potential. Environ. Sci. Technol., 2020, 54(2), 647-664.
[http://dx.doi.org/10.1021/acs.est.9b03737] [PMID: 31913605]
[101]
Na, S-Y.; Lee, Y. Elimination of trace organic contaminants during enhanced wastewater treatment with Horseradish Peroxidase/Hydrogen Peroxide (HRP/H2O2) catalytic process. Catal. Today, 2017, 282, 86-94.
[http://dx.doi.org/10.1016/j.cattod.2016.03.049]
[102]
Steevensz, A.; Cordova Villegas, L.G.; Feng, W.; Taylor, K.E.; Bewtra, J.K.; Biswas, N. Soybean peroxidase for industrial wastewater treatment: A mini review. J. Environ. Eng. Sci., 2014, 9(3), 181-186.
[http://dx.doi.org/10.1680/jees.13.00013]
[103]
Tang, T.; Dong, J.; Ai, S.; Qiu, Y.; Han, R. Electro-enzymatic degradation of chlorpyrifos by immobilized hemoglobin. J. Hazard. Mater., 2011, 188(1-3), 92-97.
[http://dx.doi.org/10.1016/j.jhazmat.2011.01.080] [PMID: 21316849]
[104]
Banci, L.; Camarero, S.; Martínez, A.T.; Martínez, M.J.; Pérez-Boada, M.; Pierattelli, R.; Ruiz-Dueñas, F.J. NMR study of manganese(II) binding by a new versatile peroxidase from the white-rot fungus Pleurotus eryngii. J. Biol. Inorg. Chem., 2003, 8(7), 751-760.
[http://dx.doi.org/10.1007/s00775-003-0476-1] [PMID: 12884090]
[105]
Duan, Z.; Shen, R.; Liu, B.; Yao, M.; Jia, R. Comprehensive investigation of a dye-decolorizing peroxidase and a manganese peroxidase from Irpex lacteus F17, a lignin-degrading basidiomycete. AMB Express, 2018, 8(1), 119.
[http://dx.doi.org/10.1186/s13568-018-0648-6] [PMID: 30019324]
[106]
Eibes, G.; Lú-Chau, T.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Complete degradation of anthracene by manganese peroxidase in organic solvent mixtures. Enzyme Microb. Technol., 2005, 37(4), 365-372.
[http://dx.doi.org/10.1016/j.enzmictec.2004.02.010]
[107]
Williams, R.J.P. Free manganese (II) and iron (II) cations can act as intracellular cell controls. FEBS Lett., 1982, 140(1), 3-10.
[http://dx.doi.org/10.1016/0014-5793(82)80508-5] [PMID: 7084455]
[108]
Manikandan, P.; Nagini, S. Cytochrome P450 structure, function and clinical significance: A review. Curr. Drug Targets, 2018, 19(1), 38-54.
[http://dx.doi.org/10.2174/1389450118666170125144557] [PMID: 28124606]
[109]
Guo, W-J.; Xu, J-K.; Liu, J-J.; Lang, J-J.; Gao, S-Q.; Wen, G-B.; Lin, Y-W. Biotransformation of lignin by an artificial heme enzyme de-signed in myoglobin with a covalently linked heme group. Front. Bioeng. Biotechnol., 2021, 9(May), 664388.
[http://dx.doi.org/10.3389/fbioe.2021.664388] [PMID: 34136471]
[110]
Kumar, S. Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation. Expert Opin. Drug Metab. Toxicol., 2010, 6(2), 115-131.
[http://dx.doi.org/10.1517/17425250903431040] [PMID: 20064075]
[111]
Lamb, S.B.; Lamb, D.C.; Kelly, S.L.; Stuckey, D.C. Cytochrome P450 immobilisation as a route to bioremediation/biocatalysis. FEBS Lett., 1998, 431(3), 343-346.
[http://dx.doi.org/10.1016/S0014-5793(98)00771-6] [PMID: 9714539]
[112]
Kellner, D.G.; Maves, S.A.; Sligar, S.G. Engineering cytochrome P450s for bioremediation. Curr. Opin. Biotechnol., 1997, 8(3), 274-278.
[http://dx.doi.org/10.1016/S0958-1669(97)80003-1] [PMID: 9206006]
[113]
Sugano, Y. DyP-type peroxidases comprise a novel heme peroxidase family. Cell. Mol. Life Sci., 2009, 66(8), 1387-1403.
[http://dx.doi.org/10.1007/s00018-008-8651-8] [PMID: 19099183]
[114]
Catucci, G.; Valetti, F.; Sadeghi, S.J.; Gilardi, G. Biochemical features of dye-decolorizing peroxidases: Current impact on lignin degrada-tion. Biotechnol. Appl. Biochem., 2020, 67(5), 751-759.
[http://dx.doi.org/10.1002/bab.2015] [PMID: 32860433]
[115]
Scocozza, M.F.; Martins, L.O.; Murgida, D.H. Direct electrochemical generation of catalytically competent oxyferryl species of classes I and P dye decolorizing peroxidases. Int. J. Mol. Sci., 2021, 22(22), 12532.
[http://dx.doi.org/10.3390/ijms222212532] [PMID: 34830413]
[116]
Chen, S-F.; Liu, X-C.; Xu, J-K.; Li, L.; Lang, J-J.; Wen, G-B.; Lin, Y-W. Conversion of human neuroglobin into a multifunctional peroxi-dase by rational design. Inorg. Chem., 2021, 60(4), 2839-2845.
[http://dx.doi.org/10.1021/acs.inorgchem.0c03777] [PMID: 33539081]
[117]
Dhankhar, P.; Dalal, V.; Mahto, J.K.; Gurjar, B.R.; Tomar, S.; Sharma, A.K.; Kumar, P. Characterization of dye-decolorizing peroxidase from Bacillus subtilis. Arch. Biochem. Biophys., 2020, 693(July), 108590.
[http://dx.doi.org/10.1016/j.abb.2020.108590] [PMID: 32971035]
[118]
Shrestha, R.; Chen, X.; Ramyar, K.X.; Hayati, Z.; Carlson, E.A.; Bossmann, S.H.; Song, L.; Geisbrecht, B.V.; Li, P. Identification of sur-face-exposed protein radicals and a substrate oxidation site in A-class dye-decolorizing peroxidase from thermomonospora curvata. ACS Catal., 2016, 6(12), 8036-8047.
[http://dx.doi.org/10.1021/acscatal.6b01952] [PMID: 29308294]
[119]
Brissos, V.; Tavares, D.; Sousa, A.C.; Robalo, M.P.; Martins, L.O. Engineering a bacterial DyP-type peroxidase for enhanced oxidation of lignin-related phenolics at alkaline PH. ACS Catal., 2017, 7(5), 3454-3465.
[http://dx.doi.org/10.1021/acscatal.6b03331]
[120]
Tang, Y.; Mu, A.; Zhang, Y.; Zhou, S.; Wang, W.; Lai, Y.; Zhou, X.; Liu, F.; Yang, X.; Gong, H.; Wang, Q.; Rao, Z. Cryo-EM structure of Mycobacterium smegmatis DyP-loaded encapsulin. Proc. Natl. Acad. Sci. USA, 2021, 118(16), e2025658118.
[http://dx.doi.org/10.1073/pnas.2025658118] [PMID: 33853951]
[121]
Athamneh, K.; Alneyadi, A.; Alsadik, A.; Wong, T.S.; Ashraf, S.S. Efficient degradation of various emerging pollutants by wild type and evolved fungal DyP4 peroxidases. PLoS One, 2022, 17(1), e0262492.
[http://dx.doi.org/10.1371/journal.pone.0262492] [PMID: 35025977]
[122]
Rahman Pour, R.; Ehibhatiomhan, A.; Huang, Y.; Ashley, B.; Rashid, G.M.; Mendel-Williams, S.; Bugg, T.D.H. Protein engineering of Pseudomonas fluorescens peroxidase Dyp1B for oxidation of phenolic and polymeric lignin substrates. Enzyme Microb. Technol., 2019, 123(123), 21-29.
[http://dx.doi.org/10.1016/j.enzmictec.2019.01.002] [PMID: 30686347]
[123]
Vuong, T.V.; Singh, R.; Eltis, L.D.; Master, E.R. The comparative abilities of a small laccase and a dye-decoloring peroxidase from the same bacterium to transform natural and technical lignins. Front. Microbiol., 2021, 12(October), 723524.
[http://dx.doi.org/10.3389/fmicb.2021.723524] [PMID: 34733245]
[124]
Díaz-Quintana, A.; Pérez-Mejías, G.; Guerra-Castellano, A.; De la Rosa, M.A.; Díaz-Moreno, I. Wheel and deal in the mitochondrial inner membranes: the tale of cytochrome c and cardiolipin. Oxid. Med. Cell. Longev., 2020, 2020, 6813405.
[http://dx.doi.org/10.1155/2020/6813405] [PMID: 32377304]
[125]
Coates, C.J.; Decker, H. Immunological properties of oxygen-transport proteins: Hemoglobin, hemocyanin and hemerythrin. Cell. Mol. Life Sci., 2017, 74(2), 293-317.
[http://dx.doi.org/10.1007/s00018-016-2326-7] [PMID: 27518203]
[126]
Reeder, B.J. The redox activity of hemoglobins: From physiologic functions to pathologic mechanisms. Antioxid. Redox Signal., 2010, 13(7), 1087-1123.
[http://dx.doi.org/10.1089/ars.2009.2974] [PMID: 20170402]
[127]
Wang, S.; Yu, X.; Lin, Z.; Zhang, S.; Xue, L.; Xue, Q.; Bao, Y. Hemoglobins Likely Function as Peroxidase in Blood Clam Tegillarca granosa Hemocytes. J. Immunol. Res., 2017, 2017, 7125084.
[http://dx.doi.org/10.1155/2017/7125084] [PMID: 28182094]
[128]
Reeder, B.J.; Grey, M.; Silaghi-Dumitrescu, R-L.; Svistunenko, D.A.; Bülow, L.; Cooper, C.E.; Wilson, M.T. Tyrosine residues as redox cofactors in human hemoglobin: Implications for engineering nontoxic blood substitutes. J. Biol. Chem., 2008, 283(45), 30780-30787.
[http://dx.doi.org/10.1074/jbc.M804709200] [PMID: 18728007]
[129]
Kapralov, A.; Vlasova, I.I.; Feng, W.; Maeda, A.; Walson, K.; Tyurin, V.A.; Huang, Z.; Aneja, R.K.; Carcillo, J.; Bayir, H.; Kagan, V.E. Peroxidase activity of hemoglobin-haptoglobin complexes: Covalent aggregation and oxidative stress in plasma and macrophages. J. Biol. Chem., 2009, 284(44), 30395-30407.
[http://dx.doi.org/10.1074/jbc.M109.045567] [PMID: 19740759]
[130]
Stark, B.C.; Urgun-Demirtas, M.; Pagilla, K.R. Role of hemoglobin in improving biodegradation of aromatic contaminants under hypoxic conditions. J. Mol. Microbiol. Biotechnol., 2008, 15(2-3), 181-189.
[http://dx.doi.org/10.1159/000121329] [PMID: 18685270]
[131]
Vazquez-Duhalt, R. Cytochrome c as a biocatalyst. J. Mol. Catal., B Enzym., 1999, 7(1-4), 241-249.
[http://dx.doi.org/10.1016/S1381-1177(99)00033-8]
[132]
Zhu, J.; Xu, M.; Meng, X.; Shang, K.; Fan, H.; Ai, S. Electro-enzymatic degradation of carbofuran with the graphene oxide-fe3o4-hemoglobin composite in an electrochemical reactor. Process Biochem., 2012, 47(12), 2480-2486.
[http://dx.doi.org/10.1016/j.procbio.2012.10.006]
[133]
Alvarado-Ramírez, L.; Rostro-Alanis, M.; Rodríguez-Rodríguez, J.; Castillo-Zacarías, C.; Sosa-Hernández, J.E.; Barceló, D.; Iqbal, H.M.N.; Parra-Saldívar, R. Exploring current tendencies in techniques and materials for immobilization of laccases - A review. Int. J. Biol. Macromol., 2021, 181, 683-696.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.175] [PMID: 33798577]
[134]
Acevedo, F.; Pizzul, L.; Castillo, M.D.; González, M.E.; Cea, M.; Gianfreda, L.; Diez, M.C. Degradation of polycyclic aromatic hydrocar-bons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor. Chemosphere, 2010, 80(3), 271-278.
[http://dx.doi.org/10.1016/j.chemosphere.2010.04.022] [PMID: 20435332]
[135]
Bilal, M.; Iqbal, H.M.N. Lignin peroxidase immobilization on ca-alginate beads and its dye degradation performance in a packed bed reac-tor system. Biocatal. Agric. Biotechnol., 2019, 20, 101205.
[http://dx.doi.org/10.1016/j.bcab.2019.101205]
[136]
Gonçalves, C.R.; Delabona, P. da S. Strategies for bioremediation of pesticides: Challenges and perspectives of the brazilian scenario for global application - a review. Environ. Adv., 2022, 8(January), 100220.
[http://dx.doi.org/10.1016/j.envadv.2022.100220]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy