Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Advantages of Self-assembled Nano Peptide Hydrogels in Biological Tissue Engineering

Author(s): Ailing Tian, Junshuai Xue and Nianfeng Sun*

Volume 23, Issue 6, 2022

Published on: 26 August, 2022

Page: [395 - 401] Pages: 7

DOI: 10.2174/1389203723666220617093402

Price: $65

Abstract

With the development of tissue engineering research, biological scaffolds have been widely studied and applied in the field of regenerative medicine. Self-assembling nanopeptide hydrogels have good biocompatibility, and their seed cells can be used for their biological activities and have no toxic side effects. The products can be absorbed and degraded by the organism and have great advantages in tissue engineering and regenerative medicine. Studies have shown that the self-assembled nano peptide hydrogel and adipose-derived mesenchymal stem cells (ADMSCs) mixed solution are "biological ink". 3D related biological printing technology can be used to print related tissue models and induce ADMSCs to differentiate into blood vessels. It is further illustrated that the use of self-assembled nano peptide hydrogel scaffolds to load stem cells has a good application prospect in stem cell transplantation and 3D biological printing.

Keywords: Self-assembled nano peptide hydrogels, biological scaffolds, stem cell 3D biological printing technology, biological tissue engineering, seed cells, tissue engineering research.

Graphical Abstract

[1]
Gaharwar, A.K.; Singh, I.; Khademhosseini, A. Engineered biomaterials for in situ tissue regeneration. Nat. Rev. Mater., 2020, 5(9), 686-705.
[http://dx.doi.org/10.1038/s41578-020-0209-x]
[2]
Tsintou, M.; Dalamagkas, K.; Seifalian, A.M. Advances in regenerative therapies for spinal cord injury: A biomaterials approach. Neural Regen. Res., 2015, 10(5), 726-742.
[http://dx.doi.org/10.4103/1673-5374.156966] [PMID: 26109946]
[3]
Saracino, G.A.; Cigognini, D.; Silva, D.; Caprini, A.; Gelain, F. Nanomaterials design and tests for neural tissue engineering. Chem. Soc. Rev., 2013, 42(1), 225-262.
[http://dx.doi.org/10.1039/C2CS35065C] [PMID: 22990473]
[4]
Wisser, D.; Steffes, J. Skin replacement with a collagen based dermal substitute, autologous keratinocytes and fibroblasts in burn trauma. Burns, 2003, 29(4), 375-380.
[http://dx.doi.org/10.1016/S0305-4179(03)00013-5] [PMID: 12781618]
[5]
Romagnoli, G.; De Luca, M.; Faranda, F.; Bandelloni, R.; Franzi, A.T.; Cataliotti, F.; Cancedda, R. Treatment of posterior hypospadias by the autologous graft of cultured urethral epithelium. N. Engl. J. Med., 1990, 323(8), 527-530.
[http://dx.doi.org/10.1056/NEJM199008233230806] [PMID: 2377177]
[6]
Saito, A.; Suzuki, Y.; Ogata, S.; Ohtsuki, C.; Tanihara, M. Accelerated bone repair with the use of a synthetic BMP-2-derived peptide and bone-marrow stromal cells. J. Biomed. Mater. Res. A, 2005, 72(1), 77-82.
[http://dx.doi.org/10.1002/jbm.a.30208] [PMID: 15543633]
[7]
Diduch, D.R.; Jordan, L.C.; Mierisch, C.M.; Balian, G. Marrow stromal cells embedded in alginate for repair of osteochondral defects. J. Arthr. Relat. Surg., 2000, 16(2), 571-577.
[http://dx.doi.org/10.1053/jars.2000.4827]
[8]
Jiang, J.; Wan, F.; Yang, J.; Hao, W.; Wang, Y.; Yao, J.; Shao, Z.; Zhang, P.; Chen, J.; Zhou, L.; Chen, S. Enhancement of osseointegration of polyethylene terephthalate artificial ligament by coating of silk fibroin and depositing of hydroxyapatite. Int. J. Nanomedicine, 2014, 9(11), 4569-4580.
[http://dx.doi.org/10.2147/IJN.S69137] [PMID: 25302023]
[9]
Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 2003, 24(24), 4337-4351.
[http://dx.doi.org/10.1016/S0142-9612(03)00340-5] [PMID: 12922147]
[10]
Verrier, S.; Pallu, S.; Bareille, R.; Jonczyk, A.; Meyer, J.; Dard, M.; Amédée, J. Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion process. Biomaterials, 2002, 23(2), 585-596.
[http://dx.doi.org/10.1016/S0142-9612(01)00145-4] [PMID: 11761179]
[11]
Zhang, S.; Gelain, F.; Zhao, X. Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin. Cancer Biol., 2005, 15(5), 413-420.
[http://dx.doi.org/10.1016/j.semcancer.2005.05.007] [PMID: 16061392]
[12]
Zhang, S.; Holmes, T.; Lockshin, C.; Rich, A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. USA, 1993, 90(8), 3334-3338.
[http://dx.doi.org/10.1073/pnas.90.8.3334] [PMID: 7682699]
[13]
Altman, M.; Lee, P.; Rich, A.; Zhang, S. Conformational behavior of ionic self-complementary peptides. Protein Sci., 2000, 9(8), 1095-1105.
[http://dx.doi.org/10.1110/ps.9.6.1095]
[14]
Yokoi, H.; Kinoshita, T.; Zhang, S. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc. Natl. Acad. Sci. USA, 2005, 102(24), 8414-8419.
[http://dx.doi.org/10.1073/pnas.0407843102] [PMID: 15939888]
[15]
Mershin, A.; Cook, B.; Kaiser, L.; Zhang, S. A classic assembly of nanobiomaterials. Nat. Biotechnol., 2005, 23(11), 1379-1380.
[http://dx.doi.org/10.1038/nbt1105-1379] [PMID: 16273069]
[16]
Vauthey, S.; Santoso, S.; Gong, H.; Watson, N.; Zhang, S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl. Acad. Sci. USA, 2002, 99(8), 5355-5360.
[http://dx.doi.org/10.1073/pnas.072089599] [PMID: 11929973]
[17]
Lomander, A.; Hwang, W.; Zhang, S. Hierarchical self-assembly of a coiled-coil peptide into fractal structure. Nano Lett., 2005, 5(7), 1255-1260.
[http://dx.doi.org/10.1021/nl050203r] [PMID: 16178220]
[18]
Gcnovd, E.; Carrin, P.; Borrs, S. Instructivebio-inspired self-assem blingpeptide nano-fiberen hancehep atocytephenoty peinvitro. Desalination, 2006, 199(2), 263-264.
[19]
Sun, T.; Chan, M.L.; Quek, C.H. Improving mechanical stability and density distribution of hcpatocytemi crocapsules by fibrinclot and goldnano-particles. J. Biotechnol., 2004, 111(2), 169-177.
[PMID: 15219403]
[20]
Zhang, S.; Holmes, T.C.; DiPersio, C.M.; Hynes, R.O.; Su, X.; Rich, A. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials, 1995, 16(18), 1385-1393.
[http://dx.doi.org/10.1016/0142-9612(95)96874-Y] [PMID: 8590765]
[21]
Kisiday, J.; Jin, M.; Kurz, B.; Hung, H.; Semino, C.; Zhang, S.; Grodzinsky, A.J. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair. Proc. Natl. Acad. Sci. USA, 2002, 99(15), 9996-10001.
[http://dx.doi.org/10.1073/pnas.142309999] [PMID: 12119393]
[22]
Tosoratti, E.; Fisch, P.; Taylor, S.; Laurent-Applegate, L.A.; Zenobi-Wong, M. 3D-printed reinforcement scaffolds with targeted biodegra-dation properties for the tissue engineering of articular cartilage. Adv. Healthc. Mater., 2021, 10(23), e2101094.
[http://dx.doi.org/10.1002/adhm.202101094] [PMID: 34633151]
[23]
Yuan, Liangliang Peng, Liang Structural characteristics and application advantages of self-assembled polypeptide nanofiber scaffold. Chinese Tissue Eng. Res., 2013, 17(12), 5379-5386.
[24]
Liu, X.; Wang, X.; Horii, A.; Wang, X.; Qiao, L.; Zhang, S.; Cui, F.Z. In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane. Nanoscale, 2012, 4(8), 2720-2727.
[http://dx.doi.org/10.1039/c2nr00001f] [PMID: 22430460]
[25]
Liu, Z.A.; Huang, W.; Zhou, G.; Fan, L.; Shao, W.; Hu, S. Study on functional self-assembled nano-polypeptide hydrogel loaded with adipose-derived mesenchymal stem cells. Chin. J. Exp. Surg., 2015, 32(12), 3007-3009.
[26]
Ling, J.; Tian, A.; Fan, L.; Shao, W.; Han, W.; Yang, J. Study on paracrine of adipose-derived mesenchymal stem cells under three-dimensional culture of functionalized self-assembled nano-polypeptide hydrogel. Chin. J. Exp. Surg., 2018, 35(2), 250-252.
[27]
Moroni, L.; Boland, T.; Burdick, J.A.; De Maria, C.; Derby, B.; Forgacs, G.; Groll, J.; Li, Q.; Malda, J.; Mironov, V.A.; Mota, C.; Nakamu-ra, M.; Shu, W.; Takeuchi, S.; Woodfield, T.B.F.; Xu, T.; Yoo, J.J.; Vozzi, G. Biofabrication: A guide to technology and terminology. Trends Biotechnol., 2018, 36(4), 384-402.
[http://dx.doi.org/10.1016/j.tibtech.2017.10.015] [PMID: 29137814]
[28]
Moroni, L.; Burdick, J.A.; Highley, C.; Lee, S.J.; Morimoto, Y.; Takeuchi, S.; Yoo, J.J. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater., 2018, 3(5), 21-37.
[http://dx.doi.org/10.1038/s41578-018-0006-y] [PMID: 31223488]
[29]
Tomasina, C.; Bodet, T.; Mota, C.; Moroni, L.; Camarero-Espinosa, S. Bioprinting vasculature: Materials, cells and emergent techniques. Materials (Basel), 2019, 12(17), 2701-2742.
[http://dx.doi.org/10.3390/ma12172701] [PMID: 31450791]
[30]
Byambaa, B.; Annabi, N.; Yue, K.; Trujillo-de Santiago, G.; Alvarez, M.M.; Jia, W.; Kazemzadeh-Narbat, M.; Shin, S.R.; Tamayol, A.; Khademhosseini, A. Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv. Healthc. Mater., 2017, 6(16), 1700-1715.
[http://dx.doi.org/10.1002/adhm.201700015] [PMID: 28524375]
[31]
Choi, Y.J.; Jun, Y.J.; Kim, D.Y.; Yi, H.G.; Chae, S.H.; Kang, J.; Lee, J.; Gao, G.; Kong, J.S.; Jang, J.; Chung, W.K.; Rhie, J.W.; Cho, D.W. A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss. Biomaterials, 2019, 206(1), 160-169.
[http://dx.doi.org/10.1016/j.biomaterials.2019.03.036] [PMID: 30939408]
[32]
Wang, K.; Lin, R.Z.; Melero-Martin, J.M. Bioengineering human vascular networks: Trends and directions in endothelial and perivascular cell sources. Cell. Mol. Life Sci., 2019, 76(3), 421-439.
[http://dx.doi.org/10.1007/s00018-018-2939-0] [PMID: 30315324]
[33]
Skardal, A.; Zhang, J.; Prestwich, G.D. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral poly-ethylene glycol tetracrylates. Biomaterials, 2010, 31(24), 6173-6181.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.045] [PMID: 20546891]
[34]
Blaeser, A.; Duarte Campos, D.F.; Weber, M.; Neuss, S.; Theek, B.; Fischer, H.; Jahnen-Dechent, W. Biofabrication under fluorocarbon: A novel freeform fabrication technique to generate high aspect ratio tissue-engineered constructs. Biores. Open Access, 2013, 2(5), 374-384.
[http://dx.doi.org/10.1089/biores.2013.0031] [PMID: 24083093]
[35]
Miller, J.S.; Stevens, K.R.; Yang, M.T.; Baker, B.M.; Nguyen, D.H.; Cohen, D.M.; Toro, E.; Chen, A.A.; Galie, P.A.; Yu, X.; Chaturvedi, R.; Bhatia, S.N.; Chen, C.S. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater., 2012, 11(9), 768-774.
[http://dx.doi.org/10.1038/nmat3357] [PMID: 22751181]
[36]
Kolesky, D.B.; Truby, R.L.; Gladman, A.S.; Busbee, T.A.; Homan, K.A.; Lewis, J.A. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater., 2014, 26(19), 3124-3130.
[http://dx.doi.org/10.1002/adma.201305506] [PMID: 24550124]
[37]
Zhou, G.; Ling, J.; Fan, L.; Shao, W.; Sun, N. Research on 3D printing tissue model based on self-assembled nano-peptides and adipose-derived mesenchymal stem cells. Chin. J. Exp. Surg., 2017, 34(4), 460-462.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy