Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Assessment of Shear Bond Strength and Cytotoxicity of Orthodontic Adhesive with Addition of Silver Nanoparticles in Varying Concentrations

Author(s): Crystal R. Soans*, Keerthan Shashidhar, Shalin Shersha, Rahila Mansoor and K. Gauthami

Volume 12, Issue 3, 2022

Published on: 27 August, 2022

Article ID: e300622206547 Pages: 10

DOI: 10.2174/2210681212666220630160535

Price: $65

Abstract

Background: Prolonged treatment with fixed orthodontic appliances tend to compromise oral hygiene maintenance in patients, increasing their susceptibility to white spot lesions and caries. Incorporating silver nanoparticles into adhesives and orthodontic appliances is known to improve its antimicrobial properties.

Aim and Objectives: The aim of the present study was to assess and compare the bond strength of orthodontic adhesive when silver nanoparticles were added in varying concentrations and also to assess their cytotoxicity on periodontal ligament fibroblasts.

Materials and Methods: Various concentrations of silver nanoparticles (1%, 5%, 10%w/w) were incorporated into Transbond XT composite adhesive and their shear bond strength and cytotoxicity were compared to a control group. Brackets were bonded to extracted premolar teeth and shear bond strength was assessed using Instron Universal Testing Machine. The viability of periodontal ligament fibroblasts was assessed after incubating with the experimental composite for 24 hours and 1 week using an MTT assay.

Results: There was a decrease in the shear bond strength when 1% and 5% of silver nanoparticles were incorporated into the adhesive. However, it was within the clinically recommended range for bonding brackets. When the concentration was increased to 10%, the SBS was not acceptable for orthodontic bonding. The composite incorporated with silver nanoparticles was cytotoxic to fibroblasts at all concentrations at both time intervals.

Conclusion: The shear bond of orthodontic adhesive with nanosilver is comparable to plain Transbond XT in low concentrations, however, the addition of silver nanoparticles seems to increase the time-bound cytotoxicity of orthodontic adhesive.

Keywords: Silver nanoparticles, shear bond strength, cytotoxicity, orthodontic adhesive, nanocomposite, fibroblasts.

Graphical Abstract

[1]
Artun, J.; Brobakken, B.O. Prevalence of carious white spots after orthodontic treatment with multibonded appliances. Eur. J. Orthod., 1986, 8(4), 229-234.
[http://dx.doi.org/10.1093/ejo/8.4.229] [PMID: 3466795]
[2]
Gorelick, L.; Geiger, A.M.; Gwinnett, A.J. Incidence of white spot formation after bonding and banding. Am. J. Orthod., 1982, 81(2), 93-98.
[http://dx.doi.org/10.1016/0002-9416(82)90032-X] [PMID: 6758594]
[3]
O’Reilly, M.M.; Featherstone, J.D.B. Demineralization and remineralization around orthodontic appliances: An in vivo study. Am. J. Orthod. Dentofacial Orthop., 1987, 92(1), 33-40.
[http://dx.doi.org/10.1016/0889-5406(87)90293-9] [PMID: 3300270]
[4]
de Almeida, C.M.; da Rosa, W.L.O.; Meereis, C.T.W.; de Almeida, S.M.; Ribeiro, J.S.; da Silva, A.F.; Lund, R.G. Efficacy of antimicrobial agents incorporated in orthodontic bonding systems: A systematic review and meta-analysis. J. Orthod., 2018, 45(2), 79-93.
[http://dx.doi.org/10.1080/14653125.2018.1443872] [PMID: 29504867]
[5]
Manfred, L.; Covell, D.A.; Crowe, J.J.; Tufekci, E.; Mitchell, J.C. A novel biomimetic orthodontic bonding agent helps prevent white spot lesions adjacent to brackets. Angle Orthod., 2013, 83(1), 97-103.
[http://dx.doi.org/10.2319/110811-689.1] [PMID: 22765388]
[6]
Brown, M.L.; Davis, H.B.; Tufekci, E.; Crowe, J.J.; Covell, D.A.; Mitchell, J.C. Ion release from a novel orthodontic resin bonding agent for the reduction and/or prevention of white spot lesions. An in vitro study. Angle Orthod., 2011, 81(6), 1014-1020.
[http://dx.doi.org/10.2319/120710-708.1] [PMID: 22007662]
[7]
Fleisch, A.F.; Sheffield, P.E.; Chinn, C.; Edelstein, B.L.; Landrigan, P.J. Bisphenol A and related compounds in dental materials. Pediatrics, 2010, 126(4), 760-768.
[http://dx.doi.org/10.1542/peds.2009-2693] [PMID: 20819896]
[8]
Kanerva, L.; Henriks-Eckerman, M.L.; Estlander, T.; Jolanki, R.; Tarvainen, K. Occupational allergic contact dermatitis and composition of acrylates in dental bonding systems. J. Eur. Acad. Dermatol. Venereol., 1994, 3(2), 157-168.
[http://dx.doi.org/10.1111/j.1468-3083.1994.tb00091.x]
[9]
Albers, C.E.; Hofstetter, W.; Siebenrock, K.A.; Landmann, R.; Klenke, F.M. In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology, 2013, 7(1), 30-36.
[http://dx.doi.org/10.3109/17435390.2011.626538] [PMID: 22013878]
[10]
Geraldeli, S.; Perdigao, J. Microleakage of a new restorative system in posterior teeth. J. Dent. Res., 2003, 81, 1276.
[11]
Krishna, G.; Singara, C.M. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. J. Exp. Nanosci., 2016, 11(9), 714-721.
[http://dx.doi.org/10.1080/17458080.2016.1139196]
[12]
Greulich, C.; Kittler, S.; Epple, M.; Muhr, G.; Köller, M. Studies on the biocompatibility and the interaction of silver nanoparticles with human Mesenchymal Stem Cells (hMSCs). Langenbecks Arch. Surg., 2009, 394(3), 495-502.
[http://dx.doi.org/10.1007/s00423-009-0472-1] [PMID: 19280220]
[13]
Samaneh, S.; Baharak, H.; Giti, E. The impact of silver nanoparticles on bacterial aerobic nitrate reduction process. J. Bioprocess. Biotech., 2014, 4(3), 152.
[14]
Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc., 2018, (6), pp. 15-30.
[15]
Moszner, N.; Salz, U. New developments of polymeric dental composites. Prog. Polym. Sci., 2001, 26(4), 535-576.
[http://dx.doi.org/10.1016/S0079-6700(01)00005-3]
[16]
Soans, C.; Jenitta, E.P.; Murali, P.S.; Shetty, A.V.; Ravi, M.S.; Nayak, U.S.K. Evaluation of antimicrobial properties of orthodontic adhesive mixed with silver nanoparticles: An in vitro study. Indian J. Public Health Res. Dev., 2019, 10(10), 32-38.
[http://dx.doi.org/10.5958/0976-5506.2019.02764.5]
[17]
Ahn, S.J.; Lee, S.J.; Kook, J.K.; Lim, B.S. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent. Mater. J., 2009, 25(2), 206-213.
[http://dx.doi.org/10.1016/j.dental.2008.06.002] [PMID: 18632145]
[18]
Beyth, N.; Houri-Haddad, Y.; Baraness-Hadar, L.; Yudovin-Farber, I.; Domb, A.J.; Weiss, E.I. Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles. Biomaterials, 2008, 29(31), 4157-4163.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.003] [PMID: 18678404]
[19]
Reynolds, I.R. A review of direct orthodontic bonding. Br. J. Orthod., 1975, 2(3), 171-178.
[http://dx.doi.org/10.1080/0301228X.1975.11743666]
[20]
Eslamian, L.; Borzabadi-Farahani, A.; Karimi, S.; Saadat, S.; Badiee, M.R. Evaluation of the shear bond strength and antibacterial activity of orthodontic adhesive containing silver nanoparticle, an in-vitro study. Nanomaterials, 2020, 10(8), 1466.
[http://dx.doi.org/10.3390/nano10081466] [PMID: 32727028]
[21]
Poosti, M.; Ramazanzadeh, B.; Zebarjad, M.; Javadzadeh, P.; Naderinasab, M.; Shakeri, M.T. Shear bond strength and antibacterial effects of orthodontic composite containing TiO2 nanoparticles. Eur. J. Orthod., 2013, 35(5), 676-679.
[http://dx.doi.org/10.1093/ejo/cjs073] [PMID: 23264617]
[22]
Faedmaleki, F.; H Shirazi, F.; Salarian, A.A.; Ahmadi Ashtiani, H.; Rastegar, H. Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. Iran. J. Pharm. Res., 2014, 13(1), 235-242.
[PMID: 24734076]
[23]
Heravi, F.; Ramezani, M.; Poosti, M.; Hosseini, M.; Shajiei, A.; Ahrari, F. In vitro cytotoxicity assessment of an orthodontic composite containing titanium-dioxide nano-particles. J. Dent. Res. Dent. Clin. Dent. Prospect., 2013, 7(4), 192-198.
[PMID: 24578816]
[24]
Ryu, H.S.; Bae, I.H.; Lee, K.G.; Hwang, H.S.; Lee, K.H.; Koh, J.T.; Cho, J.H. Antibacterial effect of silver-platinum coating for orthodontic appliances. Angle Orthod., 2012, 82(1), 151-157.
[http://dx.doi.org/10.2319/021411-111.1] [PMID: 21810004]
[25]
Gliga, A.R.; Skoglund, S.; Wallinder, I.O.; Fadeel, B.; Karlsson, H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol., 2014, 11(1), 11.
[http://dx.doi.org/10.1186/1743-8977-11-11] [PMID: 24529161]
[26]
Stoehr, L.C.; Gonzalez, E.; Stampfl, A.; Casals, E.; Duschl, A.; Puntes, V.; Oostingh, G.J. Shape matters: Effects of silver nanospheres and wires on human alveolar epithelial cells. Part. Fibre Toxicol., 2011, 8(1), 36.
[http://dx.doi.org/10.1186/1743-8977-8-36] [PMID: 22208550]
[27]
Carlson, C.; Hussain, S.M.; Schrand, A.M.K.; Braydich-Stolle, L.K.; Hess, K.L.; Jones, R.L.; Schlager, J.J. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J. Phys. Chem. B, 2008, 112(43), 13608-13619.
[http://dx.doi.org/10.1021/jp712087m] [PMID: 18831567]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy