Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Novel Delivery Technologies: Triggering the Biopharmaceutical Potential of Boswellic Acids

Author(s): Daphisha Marbaniang*, Anup Kumar Das, Paulami Pal, Niva Rani Gogoi, Ananta Saikia, Subhabrata Ray and Bhaskar Mazumder

Volume 13, Issue 5, 2023

Published on: 10 October, 2022

Article ID: e300622206524 Pages: 8

DOI: 10.2174/2210315512666220630105018

Price: $65

Abstract

Boswellic acids are a series of pentacyclic triterpenes derived from the gum resin of Boswellia genus, mostly from Boswellia serrata Roxb. (Burseraceae) tree commonly known as Indian Frankincense or salai guggul and traditionally used as an anti-inflammatory agent. It acts by inhibiting 5-Lipoxygenase, C3-convertase, cyclooxygenase, preferably COX-1, Human Leukocyte Elastase, NF- κB expression, Topoisomerase I and II and microsomal Prostaglandin E2 synthase-1. Boswellia species are reported to have various pharmacological potentials like anti-inflammatory, anti-cancer, antimicrobial, anti-arthritic, immunomodulatory activity, neuroprotective activity, and are also proved to be effective against ileitis, ulcerative colitis, hypolipidemic, hypertension and hepatotoxicity. Regardless of their multiple uses, pharmacokinetic studies of Boswellic acids revealed their poor oral bioavailability, high lipophilicity, and their degradation by the hepatic Phase I mechanism. With low solubility and poor bioavailability, different approaches have been applied to improve the poor pharmacokinetic profile of Boswellic acids. Designing and developing novel delivery systems for their enhanced permeability and improved bioavailability with better efficacy have been of great interest.

Keywords: Boswellia serrata, 11-keto-β-boswellic acid, acetyl-11-keto-β-boswellic acid, anti-inflammatory, Novel drug delivery system

Graphical Abstract

[1]
Dubey, N.K.; Kumar, R.; Tripathi, P. Global promotion of herbal medicine: India’s opportunity. Curr. Sci., 2004, 86, 37-41.
[2]
Sharma, A.; Shanker, C.; Tyagi, L.K.; Singh, M.; Rao, C.V. Herbal medicine for market potential in India: An overview. Acad. J. Plant Sci., 2008, 1, 26-36.
[3]
Siddiqui, M.Z. Boswellia serrata, a potential antiinflammatory agent: An overview. Indian J. Pharm. Sci., 2011, 73(3), 255-261.
[PMID: 22457547]
[4]
Ammon, H.P. Boswellic acids in chronic inflammatory diseases. Planta Med., 2006, 72(12), 1100-1116.
[http://dx.doi.org/10.1055/s-2006-947227] [PMID: 17024588]
[5]
Banno, N.; Akihisa, T.; Yasukawa, K.; Tokuda, H.; Tabata, K.; Nakamura, Y.; Nishimura, R.; Kimura, Y.; Suzuki, T. Anti-inflammatory activities of the triterpene acids from the resin of Boswellia carteri. J. Ethnopharmacol., 2006, 107(2), 249-253.
[http://dx.doi.org/10.1016/j.jep.2006.03.006] [PMID: 16621377]
[6]
Singh, G.B.; Singh, S.; Bani, S. Anti-inflammatory actions of boswellic acids. Phytomedicine, 1996, 3(1), 81-85.
[http://dx.doi.org/10.1016/S0944-7113(96)80017-1] [PMID: 23194868]
[7]
Umar, S.; Umar, K.; Sarwar, A.H.; Khan, A.; Ahmad, N.; Ahmad, S.; Katiyar, C.K.; Husain, S.A.; Khan, H.A. Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis. Phytomedicine, 2014, 21(6), 847-856.
[http://dx.doi.org/10.1016/j.phymed.2014.02.001] [PMID: 24667331]
[8]
Pungle, P.; Banavalikar, M.; Suthar, A.; Biyani, M.; Mengi, S. Immunomodulatory activity of boswellic acids of Boswellia serrata Roxb. Indian J. Exp. Biol., 2003, 41(12), 1460-1462.
[PMID: 15320503]
[9]
Krieglstein, C.F.; Anthoni, C.; Rijcken, E.J.; Laukötter, M.; Spiegel, H.U.; Boden, S.E.; Schweizer, S.; Safayhi, H.; Senninger, N.; Schürmann, G. Acetyl-11-keto-beta-boswellic acid, a constituent of a herbal medicine from Boswellia serrata resin, attenuates experimental ileitis. Int. J. Colorectal Dis., 2001, 16(2), 88-95.
[http://dx.doi.org/10.1007/s003840100292] [PMID: 11355324]
[10]
Anthoni, C.; Laukoetter, M.G.; Rijcken, E.; Vowinkel, T.; Mennigen, R.; Müller, S.; Senninger, N.; Russell, J.; Jauch, J.; Bergmann, J.; Granger, D.N.; Krieglstein, C.F. Mechanisms underlying the anti-inflammatory actions of boswellic acid derivatives in experimental colitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2006, 290(6), G1131-G1137.
[http://dx.doi.org/10.1152/ajpgi.00562.2005] [PMID: 16423918]
[11]
Lu, M.; Xia, L.; Hua, H.; Jing, Y. Acetyl-keto-beta-boswellic acid induces apoptosis through a death receptor 5-mediated pathway in prostate cancer cells. Cancer Res., 2008, 68(4), 1180-1186.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2978] [PMID: 18281494]
[12]
Zutsi, U.; Roa, P.G.; Kaur, S. Mechanism of cholesterol lowering effect of Salai guggal ex. Boswellia serrata Roxb. Indian J. Pharmacol., 1986, 18, 182-183.
[13]
Moussaieff, A.; Shein, N.A.; Tsenter, J.; Grigoriadis, S.; Simeonidou, C.; Alexandrovich, A.G.; Trembovler, V.; Ben-Neriah, Y.; Schmitz, M.L.; Fiebich, B.L.; Munoz, E.; Mechoulam, R.; Shohami, E. Incensole acetate: a novel neuroprotective agent isolated from Boswellia carterii. J. Cereb. Blood Flow Metab., 2008, 28(7), 1341-1352.
[http://dx.doi.org/10.1038/jcbfm.2008.28] [PMID: 18414499]
[14]
Siemoneit, U.; Pergola, C.; Jazzar, B.; Northoff, H.; Skarke, C.; Jauch, J.; Werz, O. On the interference of boswellic acids with 5-lipoxygenase: Mechanistic studies in vitro and pharmacological relevance. Eur. J. Pharmacol., 2009, 606(1-3), 246-254.
[http://dx.doi.org/10.1016/j.ejphar.2009.01.044] [PMID: 19374837]
[15]
Safayhi, H.; Mack, T.; Sabieraj, J.; Anazodo, M.I.; Subramanian, L.R.; Ammon, H.P. Boswellic acids: Novel, specific, nonredox inhibitors of 5-lipoxygenase. J. Pharmacol. Exp. Ther., 1992, 261(3), 1143-1146.
[PMID: 1602379]
[16]
Cao, H.; Yu, R.; Choi, Y.; Ma, Z.Z.; Zhang, H.; Xiang, W.; Lee, D.Y-W.; Berman, B.M.; Moudgil, K.D.; Fong, H.H.S.; van Breemen, R.B. Discovery of cyclooxygenase inhibitors from medicinal plants used to treat inflammation. Pharmacol. Res., 2010, 61(6), 519-524.
[http://dx.doi.org/10.1016/j.phrs.2010.02.007] [PMID: 20188172]
[17]
Siemoneit, U.; Hofmann, B.; Kather, N.; Lamkemeyer, T.; Madlung, J.; Franke, L.; Schneider, G.; Jauch, J.; Poeckel, D.; Werz, O. Identification and functional analysis of cyclooxygenase-1 as a molecular target of boswellic acids. Biochem. Pharmacol., 2008, 75(2), 503-513.
[http://dx.doi.org/10.1016/j.bcp.2007.09.010] [PMID: 17945191]
[18]
Safayhi, H.; Rall, B.; Sailer, E.R.; Ammon, H.P. Inhibition by boswellic acids of human leukocyte elastase. J. Pharmacol. Exp. Ther., 1997, 281(1), 460-463.
[PMID: 9103531]
[19]
Kapil, A.; Moza, N. Anticomplementary activity of boswellic acidsan inhibitor of C3-convertase of the classical complement pathway. Int. J. Immunopharmacol., 1992, 14(7), 1139-1143.
[http://dx.doi.org/10.1016/0192-0561(92)90048-P] [PMID: 1452399]
[20]
Verhoff, M.; Seitz, S.; Paul, M.; Noha, S.M.; Jauch, J.; Schuster, D.; Werz, O. Tetra- and pentacyclic triterpene acids from the ancient anti-inflammatory remedy frankincense as inhibitors of microsomal prostaglandin E(2) synthase-1. J. Nat. Prod., 2014, 77(6), 1445-1451.
[http://dx.doi.org/10.1021/np500198g] [PMID: 24844534]
[21]
Koeberle, A.; Henkel, A.; Verhoff, M.; Tausch, L.; König, S.; Fischer, D.; Kather, N.; Seitz, S.; Paul, M.; Jaunch, J.; Werz, O. Triterpene acids from frankincense and semi-synthetic derivatives that inhibit 5-lipoxygenase and cathepsin G. Molecules, 2018, 23(2), E506.
[22]
Tausch, L.; Henkel, A.; Siemoneit, U.; Poeckel, D.; Kather, N.; Franke, L.; Hofmann, B.; Schneider, G.; Angioni, C.; Geisslinger, G.; Skarke, C.; Holtmeier, W.; Beckhaus, T.; Karas, M.; Jauch, J.; Werz, O. Identification of human cathepsin G as a functional target of boswellic acids from the anti-inflammatory remedy frankincense. J. Immunol., 2009, 183(5), 3433-3442.
[http://dx.doi.org/10.4049/jimmunol.0803574] [PMID: 19648270]
[23]
Henkel, A.; Kather, N.; Mönch, B.; Northoff, H.; Jauch, J.; Werz, O. Boswellic acids from frankincense inhibit lipopolysaccharide functionality through direct molecular interference. Biochem. Pharmacol., 2012, 83(1), 115-121.
[http://dx.doi.org/10.1016/j.bcp.2011.09.026] [PMID: 22001311]
[24]
Syrovets, T.; Büchele, B.; Gedig, E.; Slupsky, J.R.; Simmet, T. Acetyl-boswellic acids are novel catalytic inhibitors of human topoisomerases I and IIalpha. Mol. Pharmacol., 2000, 58(1), 71-81.
[http://dx.doi.org/10.1124/mol.58.1.71] [PMID: 10860928]
[25]
Chashoo, G.; Singh, S.K.; Sharma, P.R.; Mondhe, D.M.; Hamid, A.; Saxena, A.; Andotra, S.S.; Shah, B.A.; Qazi, N.A.; Taneja, S.C.; Saxena, A.K. A propionyloxy derivative of 11-keto-β-boswellic acid induces apoptosis in HL-60 cells mediated through topoisomerase I & II inhibition. Chem. Biol. Interact., 2011, 189(1-2), 60-71.
[http://dx.doi.org/10.1016/j.cbi.2010.10.017] [PMID: 21056033]
[26]
Park, B.; Prasad, S.; Yadav, V.; Sung, B.; Aggarwal, B.B. Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets. PLoS One, 2011, 6(10), e26943.
[http://dx.doi.org/10.1371/journal.pone.0026943] [PMID: 22066019]
[27]
Cuaz-Pérolin, C.; Billiet, L.; Baugé, E.; Copin, C.; Scott-Algara, D.; Genze, F.; Büchele, B.; Syrovets, T.; Simmet, T.; Rouis, M. Antiinflammatory and antiatherogenic effects of the NF-kappaB inhibitor acetyl-11-keto-β-boswellic acid in LPS-challenged ApoE-/- mice. Arterioscler. Thromb. Vasc. Biol., 2008, 28(2), 272-277.
[http://dx.doi.org/10.1161/ATVBAHA.107.155606] [PMID: 18032778]
[28]
Takada, Y.; Ichikawa, H.; Badmaev, V.; Aggarwal, B.B. Acetyl-11-keto-β-boswellic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing NF-κ B and NF-κ B-regulated gene expression. J. Immunol., 2006, 176(5), 3127-3140.
[http://dx.doi.org/10.4049/jimmunol.176.5.3127] [PMID: 16493072]
[29]
Sterk, V.; Büchele, B.; Simmet, T. Effect of food intake on the bioavailability of boswellic acids from a herbal preparation in healthy volunteers. Planta Med., 2004, 70(12), 1155-1160.
[http://dx.doi.org/10.1055/s-2004-835844] [PMID: 15643550]
[30]
Gerbeth, K.; Hüsch, J.; Fricker, G.; Werz, O.; Schubert-Zsilavecz, M.; Abdel-Tawab, M. In vitro metabolism, permeation, and brain availability of six major boswellic acids from Boswellia serrata gum resins. Fitoterapia, 2013, 84, 99-106.
[http://dx.doi.org/10.1016/j.fitote.2012.10.009] [PMID: 23103296]
[31]
Sharma, S.; Thawani, V.; Hingorani, L.; Shrivastava, M.; Bhate, V.R.; Khiyani, R. Pharmacokinetic study of 11-keto beta-boswellic acid. Phytomedicine, 2004, 11(2-3), 255-260.
[http://dx.doi.org/10.1078/0944-7113-00290] [PMID: 15070181]
[32]
Karlina, M.V.; Pozharitskaya, O.N.; Kosman, V.M.; Ivanova, S.A. Bioavailability of boswellic acids: In vitro/in vivo correlation. Pharm. Chem. J., 2007, 41(11), 569-572.
[http://dx.doi.org/10.1007/s11094-008-0017-x]
[33]
Karlina, M.V.; Eshenko, A.Y.; D’yachuk, G.I.; Pozharitskaya, O.N. Proceedings of the 9th Int. Congr. Phytopharm, 2005, pp. 665-669.
[34]
Bagul, P.; Khomane, K.S.; Bansal, A.K. Investigating permeability related hurdles in oral delivery of 11-keto-β-boswellic acid. Int. J. Pharm., 2014, 464(1-2), 104-110.
[http://dx.doi.org/10.1016/j.ijpharm.2014.01.019] [PMID: 24463070]
[35]
Skarke, C.; Kuczka, K.; Tausch, L.; Werz, O.; Rossmanith, T.; Barrett, J.S.; Harder, S.; Holtmeier, W.; Schwarz, J.A. Increased bioavailability of 11-keto-β-boswellic acid following single oral dose frankincense extract administration after a standardized meal in healthy male volunteers: Modeling and simulation considerations for evaluating drug exposures. J. Clin. Pharmacol., 2012, 52(10), 1592-1600.
[http://dx.doi.org/10.1177/0091270011422811] [PMID: 22167571]
[36]
Krüger, P.; Daneshfar, R.; Eckert, G.P.; Klein, J.; Volmer, D.A.; Bahr, U.; Müller, W.E.; Karas, M.; Schubert-Zsilavecz, M.; Abdel-Tawab, M. Metabolism of boswellic acids in vitro and in vivo. Drug Metab. Dispos., 2008, 36(6), 1135-1142.
[http://dx.doi.org/10.1124/dmd.107.018424] [PMID: 18356270]
[37]
Pedretti, A.; Capezzera, R.; Zane, C.; Facchinetti, E.; Calzavara-Pinton, P. Effects of topical boswellic acid on photo and age-damaged skin: Clinical, biophysical, and echographic evaluations in a double-blind, randomized, split-face study. Planta Med., 2010, 76(6), 555-560.
[http://dx.doi.org/10.1055/s-0029-1240581] [PMID: 19918712]
[38]
Calzavara-Pinton, P.; Zane, C.; Facchinetti, E.; Capezzera, R.; Pedretti, A. Topical Boswellic acids for treatment of photoaged skin. Dermatol. Ther., 2010, 23(1)(Suppl. 1), S28-S32.
[http://dx.doi.org/10.1111/j.1529-8019.2009.01284.x] [PMID: 20136919]
[39]
Del Pup, L. Treatment of atrophic and irritative vulvovaginal symptoms with an anhydrous lipogel and its complementary effect with vaginal estrogenic therapy: New evidences. Minerva Ginecol., 2010, 62(4), 287-291.
[PMID: 20827246]
[40]
Yusif, R.M.; Abu Hashim, I.I.; Mohamed, E.A.; Badria, F.A. Gastroretentive matrix tablets of Boswellia oleogum resin: Preparation, optimization, in vitro evaluation, and cytoprotective effect on indomethacin-induced gastric ulcer in rabbits. AAPS PharmSciTech, 2016, 17(2), 328-338.
[http://dx.doi.org/10.1208/s12249-015-0351-8] [PMID: 26092303]
[41]
Mukherjee, P.K.; Harwansh, R.K.; Bhattacharyya, S. Evidence-Based Validation of Herbal Medicine. In: Bioavailability of herbal products: approach toward improved pharmacokinetics; Mukherjee, P.K., Ed.; Elsevier Inc: Amsterdam, 2015, pp. 217-245.
[42]
Khan, J.; Alexander, A. Ajazuddin; Saraf, S.; Saraf, S. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J. Control. Release, 2013, 168(1), 50-60.
[http://dx.doi.org/10.1016/j.jconrel.2013.02.025] [PMID: 23474031]
[43]
Ajazuddin, S.S.; Saraf, S. Applications of novel drug delivery system for herbal formulations. Fitoterapia, 2010, 81(7), 680-689.
[http://dx.doi.org/10.1016/j.fitote.2010.05.001] [PMID: 20471457]
[44]
Gangadharappa, H.V.; Pramod Kumar, T.M.; Shiva Kumar, H.G. Gastric floating drug delivery system: A review. Indian J. Pharm. Educ. Res, 2007, 41, 329-336.
[45]
Fartyal, S.; Jha, S.K.; Karchuli, M.S.; Gupta, R.; Vajpayee, A. Formulation and evaluation of floating microspheres of boswellic acid. Int. J. Pharm. Tech. Res., 2011, 3(1), 76-81.
[46]
Shrestha, H.; Bala, R.; Arora, S. Lipid-based drug delivery systems. J. Pharm. (Cairo), 2014, 2014, 801820.
[http://dx.doi.org/10.1155/2014/801820] [PMID: 26556202]
[47]
Sharma, A.; Gupta, N.K.; Dixit, V.K. Complexation with phosphatidyl choline as a strategy for absorption enhancement of boswellic acid. Drug Deliv., 2010, 17(8), 587-595.
[http://dx.doi.org/10.3109/10717544.2010.501461] [PMID: 20624027]
[48]
Riva, A.; Morazzoni, P.; Artaria, C.; Allegrini, P.; Meins, J.; Savio, D.; Appendino, G.; Schubert-Zsilavecz, M.; Abdel-Tawab, M. A single-dose, randomized, cross-over, two-way, open-label study for comparing the absorption of boswellic acids and its lecithin formulation. Phytomedicine, 2016, 23(12), 1375-1382.
[http://dx.doi.org/10.1016/j.phymed.2016.07.009] [PMID: 27765357]
[49]
Viswanad, V.; Awasthi, R.; Priyanka, S.; Raheela, A.V. Formulation of anti-inflammatory gel containing boswellic acid from Boswellia serrata gum. RJPT, 2014, 7(11), 1305-1310.
[50]
Hüsch, J.; Gerbeth, K.; Fricker, G.; Setzer, C.; Zirkel, J.; Rebmann, H.; Schubert-Zsilavecz, M.; Abdel-Tawab, M. Effect of phospholipid-based formulations of Boswellia serrata extract on the solubility, permeability, and absorption of the individual boswellic acid constituents present. J. Nat. Prod., 2012, 75(10), 1675-1682.
[http://dx.doi.org/10.1021/np300009w] [PMID: 23013292]
[51]
Hüsch, J.; Bohnet, J.; Fricker, G.; Skarke, C.; Artaria, C.; Appendino, G.; Schubert-Zsilavecz, M.; Abdel-Tawab, M. Enhanced absorption of boswellic acids by a lecithin delivery form (Phytosome®) of Boswellia extract. Fitoterapia, 2013, 84, 89-98.
[http://dx.doi.org/10.1016/j.fitote.2012.10.002] [PMID: 23092618]
[52]
Riva, A.; Giacomelli, L.; Togni, S.; Franceschi, F.; Eggenhoffner, R.; Zuccarini, M.C.; Belcaro, G. Oral administration of a lecithin-based delivery form of boswellic acids (Casperome®) for the prevention of symptoms of irritable bowel syndrome: A randomized clinical study. Minerva Gastroenterol. Dietol., 2019, 65(1), 30-35.
[http://dx.doi.org/10.23736/S1121-421X.18.02530-8] [PMID: 30676012]
[53]
Loeser, K.; Seemann, S.; König, S.; Lenhardt, I.; Abdel-Tawab, M.; Koeberle, A.; Werz, O.; Lupp, A. Protective effect of Casperome®, an orally bioavailable frankincense extract, on lipopolysaccharide- induced systemic inflammation in mice. Front. Pharmacol., 2018, 9, 387.
[http://dx.doi.org/10.3389/fphar.2018.00387] [PMID: 29731716]
[54]
Franceschi, F.; Togni, S.; Belcaro, G.; Dugall, M.; Luzzi, R.; Ledda, A.; Pellegrini, L.; Eggenhoffner, R.; Giacomelli, L. A novel lecithin based delivery form of Boswellic acids (Casperome®) for the management of osteo-muscular pain: A registry study in young rugby players. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(19), 4156-4161.
[PMID: 27775780]
[55]
Pellegrini, L.; Milano, E.; Franceschi, F.; Belcaro, G.; Gizzi, G.; Feragalli, B.; Dugall, M.; Luzzi, R.; Togni, S.; Eggenhoffner, R.; Giacomelli, L. Managing ulcerative colitis in remission phase: Usefulness of Casperome®, an innovative lecithin-based delivery system of Boswellia serrata extract. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(12), 2695-2700.
[PMID: 27383325]
[56]
Togni, S.; Maramaldi, G.; Di Pierro, F.; Biondi, M. A cosmeceutical formulation based on boswellic acids for the treatment of erythematous eczema and psoriasis. Clin. Cosmet. Investig. Dermatol., 2014, 7, 321-327.
[PMID: 25419153]
[57]
Hu, C.; Rhodes, D.G. Proniosomes: A novel drug carrier preparation. Int. J. Pharm., 1999, 185(1), 23-35.
[http://dx.doi.org/10.1016/S0378-5173(99)00122-2] [PMID: 10425362]
[58]
Mehta, M.; Dureja, H.; Garg, M. Development and optimization of boswellic acid-loaded proniosomal gel. Drug Deliv., 2016, 23(8), 3072-3081.
[http://dx.doi.org/10.3109/10717544.2016.1149744] [PMID: 26953869]
[59]
McClements, D.J.; Decker, E.A.; Weiss, J. Emulsion-based delivery systems for lipophilic bioactive components. J. Food Sci., 2007, 72(8), R109-R124.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00507.x] [PMID: 17995616]
[60]
Mostafa, D.M.; Ammar, N.M.; Basha, M.; Hussein, R.A.; El Awdan, S.; Awad, G. Transdermal microemulsions of Boswellia carterii Bird: Formulation, characterization and in vivo evaluation of anti-inflammatory activity. Drug Deliv., 2015, 22(6), 748-756.
[http://dx.doi.org/10.3109/10717544.2014.898347] [PMID: 24725029]
[61]
Kohli, K. Development of self-nano emulsifying drug delivery system of Boswellia serrata extract for enhanced bioavailability. Biochem. Pharmacol., 2013, 2(4), 196.
[62]
Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2007, 2(4), MR17-MR71.
[http://dx.doi.org/10.1116/1.2815690] [PMID: 20419892]
[63]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[64]
Das, S.; Jagan, L.; Isiah, R.; Rajesh, B.; Backianathan, S.; Subhashini, J. Nanotechnology in oncology: Characterization and in vitro release kinetics of cisplatin-loaded albumin nanoparticles: Implications in anticancer drug delivery. Indian J. Pharmacol., 2011, 43(4), 409-413.
[http://dx.doi.org/10.4103/0253-7613.83111] [PMID: 21844995]
[65]
Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res., 2010, 62(2), 90-99.
[http://dx.doi.org/10.1016/j.phrs.2010.03.005] [PMID: 20380880]
[66]
Ding, Y.; Qiao, Y.; Wang, M.; Zhang, H.; Li, L.; Zhang, Y.; Ge, J.; Song, Y.; Li, Y.; Wen, A. Enhanced neuroprotection of acetyl-11-keto-β-boswellic acid (AKBA)-loaded o-carboxymethyl chitosan nanoparticles through antioxidant and anti-inflammatory pathways. Mol. Neurobiol., 2016, 53(6), 3842-3853.
[http://dx.doi.org/10.1007/s12035-015-9333-9] [PMID: 26162321]
[67]
Bairwa, K.; Jachak, S.M. Nanoparticle formulation of 11-keto-β-boswellic acid (KBA): Anti-inflammatory activity and in vivo pharmacokinetics. Pharm. Biol., 2016, 54(12), 2909-2916.
[http://dx.doi.org/10.1080/13880209.2016.1194437] [PMID: 27305832]
[68]
Snima, K.S.; Nair, R.S.; Nair, S.V.; Kamath, C.R.; Lakshmanan, V.K. Combination of anti-diabetic drug metformin and boswellic acid nanoparticles: A novel strategy for pancreatic cancer therapy. J. Biomed. Nanotechnol., 2015, 11(1), 93-104.
[http://dx.doi.org/10.1166/jbn.2015.1877] [PMID: 26301303]
[69]
Goel, A.; Ahmad, F.J.; Singh, R.M.; Singh, G.N. Anti-inflammatory activity of nanogel formulation of 3-acetyl-11-keto-β-boswellic acid. Pharmacologyonline, 2009, 3, 311-318.
[70]
Meins, J.; Behnam, D.; Abdel-Tawab, M. Enhanced absorption of boswellic acids by a micellar solubilized delivery form of Boswellia extract. NFS Journal,, 2018, 11, 12-16.
[http://dx.doi.org/10.1016/j.nfs.2018.04.001]
[71]
Khayyal, M.T.; El-Hazek, R.M.; El-Sabbagh, W.A.; Frank, J.; Behnam, D.; Abdel-Tawab, M. Micellar solubilisation enhances the antiinflammatory activities of curcumin and boswellic acids in rats with adjuvant-induced arthritis. Nutrition, 2018, 54, 189-196.
[http://dx.doi.org/10.1016/j.nut.2018.03.055] [PMID: 30048884]
[72]
Goel, A.; Ahmad, F.J.; Singh, R.M.; Singh, G.N. 3-Acetyl-11-keto-beta-boswellic acid loaded-polymeric nanomicelles for topical anti-inflammatory and anti-arthritic activity. J. Pharm. Pharmacol., 2010, 62(2), 273-278.
[http://dx.doi.org/10.1211/jpp.62.02.0016] [PMID: 20487208]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy