Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Review Article

Recent Advances in Palladium-catalyzed Borylation

Author(s): Fall Lamine, C. M. A. Afsina, Rajan Archana and Gopinathan Anilkumar*

Volume 11, Issue 1, 2022

Published on: 18 July, 2022

Page: [16 - 40] Pages: 25

DOI: 10.2174/2211544711666220629110020

Price: $65

Abstract

The synthesis of organoboron compounds was accomplished using borylation catalyzed by palladium. This reaction is ubiquitous due to its widespread utility in coupling reactions and allied applications in synthesis. The attraction of borylation in organic synthesis has been attributed to moderate conditions associated with the reactions and tolerance to different types of functional groups. Their applications spread across pharmaceutical, medical, agricultural and other fields. This review summarizes the recent advances in palladium-catalyzed borylation halides and covers literature from (2012-2021).

Keywords: Palladium, catalysis, borylation, aryl halides, organoboranes, bis(pinacolato)diboron.

Graphical Abstract

[1]
Beller, M.; Bolm, C., Eds.; Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals, 2nd ed; Wiley-VCH Verlag GmbH & Co, 2004.
[http://dx.doi.org/10.1002/9783527619405]
[2]
Heck, R.F. Palladium-catalyzed vinylation of organic halides. Org. React., 1982, 27, 345-390.
[3]
Beletskaya, I.P.; Cheprakov, A.V. The heck reaction as a sharpening stone of palladium catalysis. Chem. Rev., 2000, 100(8), 3009-3066.
[http://dx.doi.org/10.1021/cr9903048] [PMID: 11749313]
[4]
Yi, C.; Hua, R. An efficient palladium-catalyzed Heck coupling of aryl chlorides with alkenes. Tetrahedron Lett., 2006, 47(15), 2573-2576.
[http://dx.doi.org/10.1016/j.tetlet.2006.02.040]
[5]
Bianco, A.; Cavarischia, C.; Guiso, M. The Heck coupling reaction using aryl vinyl ketones: Synthesis of flavonoids. Eur. J. Org. Chem., 2004, 2004(13), 2894-2898.
[http://dx.doi.org/10.1002/ejoc.200400032]
[6]
Miyaura, N.; Suzuki, A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. J. Chem. Soc. Chem. Commun., 1979, (19), 866-867.
[http://dx.doi.org/10.1039/c39790000866]
[7]
Bedford, R.B.; Nakamura, M.; Gower, N.J.; Haddow, M.F.; Hall, M.A.; Huwe, M.; Hashimoto, T.; Okopie, R.A. Iron-catalyzed suzuki coupling? A cautionary tale. Tetrahedron Lett., 2009, 50(45), 6110-6111.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.022]
[8]
Basu, B.; Das, P.; Bhuiyan, M.M.H.; Jha, S. Microwave-assisted suzuki coupling on a KF-alumina surface: Synthesis of polyaryls. Tetrahedron Lett., 2003, 44(19), 3817-3820.
[http://dx.doi.org/10.1016/S0040-4039(03)00731-7]
[9]
Wojcik, P.; Sygellou, L.; Gniewek, A.; Skarzynska, A.; Trzeciak, A. Carbonylative suzuki coupling reaction catalyzed by a hydrospirophosphorane palladium complex. ChemCatChem, 2017, 9(23), 4397-4409.
[http://dx.doi.org/10.1002/cctc.201700946]
[10]
Tamao, K.; Sumitani, K.; Kumada, M. Selective carbon-carbon bond formation by cross-coupling of grignard reagents with organic Halides. Catalysis by nickel-phosphine complexes. J. Am. Chem. Soc., 1972, 94(12), 4374-4376.
[http://dx.doi.org/10.1021/ja00767a075]
[11]
Limmert, M.E.; Roy, A.H.; Hartwig, J.F. Kumada coupling of aryl and vinyl tosylates under mild conditions. J. Org. Chem., 2005, 70(23), 9364-9370.
[http://dx.doi.org/10.1021/jo051394l] [PMID: 16268609]
[12]
Yanes, R.S.; Ceinos, M.G.; Bunuel, E.; Cardenas, D.J. Nickel-catalyzed kumada coupling of benzyl chlorides and vinylogous derivatives. Eur. J. Org. Chem., 2014, 2014(30), 6625-6629.
[http://dx.doi.org/10.1002/ejoc.201403007]
[13]
Ma, X.; Wang, H.; Liu, Y.; Zhao, X.; Zhang, J. Mixed alkyl/aryl diphos ligands for iron-catalyzed negishi and kumada cross coupling towards the synthesis of diarylmethane. ChemCatChem, 2021, 13(24), 5134-5140.
[http://dx.doi.org/10.1002/cctc.202101237]
[14]
Kells, K.W.; Chong, J.M. Stille coupling of stereochemically defined α-sulfonamidoorganostannanes. J. Am. Chem. Soc., 2004, 126(48), 15666-15667.
[http://dx.doi.org/10.1021/ja044354s] [PMID: 15571388]
[15]
Clapham, B.; Sutherland, A.J. Stille coupling reactions of 4-substituted-2,5-diphenyloxazoles. J. Org. Chem., 2001, 66(26), 9033-9037.
[http://dx.doi.org/10.1021/jo0107150] [PMID: 11749641]
[16]
Wang, D.Y.; Kawahata, M.; Yang, Z.K.; Miyamoto, K.; Komagawa, S.; Yamaguchi, K.; Wang, C.; Uchiyama, M. Stille coupling via C-N bond cleavage. Nat. Commun., 2016, 7(1), 12937.
[http://dx.doi.org/10.1038/ncomms12937] [PMID: 27686744]
[17]
King, A.O.; Okukado, N.; Negishi, E-i. Highly general stereo-, regio-, and chemo-selective synthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides. J. Chem. Soc. Chem. Commun., 1977, 19(19), 683-684.
[http://dx.doi.org/10.1039/c39770000683]
[18]
Herbert, J.M. Negishi-type coupling of bromoarenes with dimethylzinc. Tetrahedron Lett., 2004, 45(4), 817-819.
[http://dx.doi.org/10.1016/j.tetlet.2003.11.018]
[19]
Han, C.; Buchwald, S.L. Negishi coupling of secondary alkylzinc halides with aryl bromides and chlorides. J. Am. Chem. Soc., 2009, 131(22), 7532-7533.
[http://dx.doi.org/10.1021/ja902046m] [PMID: 19441851]
[20]
Saijo, H.; Sakaguchi, H.; Ohashi, M.; Ogoshi, S. Base-free hiyama coupling reaction via a group 10 metal fluoride intermediate generated by C–F bond activation. Organometallics, 2014, 33(14), 3669-3672.
[http://dx.doi.org/10.1021/om5005513]
[21]
Lee, J.Y.; Fu, G.C. Room-temperature Hiyama cross-couplings of arylsilanes with alkyl bromides and iodides. J. Am. Chem. Soc., 2003, 125(19), 5616-5617.
[http://dx.doi.org/10.1021/ja0349352] [PMID: 12733884]
[22]
Xie, J.; Sekine, K.; Witzel, S.; Krämer, P.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Light-induced gold-catalyzed hiyama arylation: A coupling access to biarylboronates. Angew. Chem. Int. Ed. Engl., 2018, 57(51), 16648-16653.
[http://dx.doi.org/10.1002/anie.201806427] [PMID: 30300942]
[23]
Astruc, D.; Heuzé, K.; Gatard, S.; Méry, D.; Nlate, S.; Plault, L. Metallodendritic catalysis for redox and carbon-carbon bond formation reactions: A step towards green chemistry. Adv. Synth. Catal., 2005, 347(2-3), 329-338.
[http://dx.doi.org/10.1002/adsc.200404247]
[24]
Elangovan, A.; Wang, Y-H.; Ho, T-I. Sonogashira coupling reaction with diminished homocoupling. Org. Lett., 2003, 5(11), 1841-1844.
[http://dx.doi.org/10.1021/ol034320+] [PMID: 12762666]
[25]
Mohajer, F.; Heravi, M.M.; Zadsirjan, V.; Poormohammad, N. Copper-free Sonogashira cross-coupling reactions: An overview. RSC Advances, 2021, 11(12), 6885-6925.
[http://dx.doi.org/10.1039/D0RA10575A] [PMID: 35423221]
[26]
Guan, J.T.; Chen, G.A.; Weng, L.Q.; Yuan, J.J.; Liu, S.H. CuI/PPh3-catalyzed Sonogashira coupling reaction of aryl iodides with terminal alkynes in water in the absence of palladium. Appl. Organomet. Chem., 2009, 23(2), 75-77.
[http://dx.doi.org/10.1002/aoc.1474]
[27]
Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: Catalytic solutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16(50), 4467-4470.
[http://dx.doi.org/10.1016/S0040-4039(00)91094-3]
[28]
Chinchilla, R.; Najera, C. The Sonogashira reaction: A booming methodology in synthetic organic chemistry. Chem. Rev., 2007, 107(3), 874-922.
[http://dx.doi.org/10.1021/cr050992x] [PMID: 17305399]
[29]
Philippe, J.-L.; Chodkiewicz, W.; Cadiot, P. Couplage des halogeno-1 alcynes avec les acetyleniques vrais. Utilisation des chloro-1 alcynes, role de l’amine, influence de la dilution. Tetrahedron Lett, 1970, 11(21), 1795-1798.
[http://dx.doi.org/10.1016/S0040-4039(01)98085-2.]
[30]
Sindhu, K.S.; Thankachan, A.P.; Sajitha, P.S.; Anilkumar, G. Recent developments and applications of the Cadiot-Chodkiewicz reaction. Org. Biomol. Chem., 2015, 13(25), 6891-6905.
[http://dx.doi.org/10.1039/C5OB00697J] [PMID: 26008847]
[31]
Knutson, P.C.; Fredericks, H.E.; Ferreira, E.M. Synthesis of 1,3-Diynes via cadiot-chodkiewicz coupling of volatile, in situ generated bromoalkynes. Org. Lett., 2018, 20(21), 6845-6849.
[http://dx.doi.org/10.1021/acs.orglett.8b02975] [PMID: 30336061]
[32]
Radhika, S.; Harry, N.A.; Neetha, M.; Anilkumar, G. Recent trends and applications of the Cadiot–Chodkiewicz reaction. Org. Biomol. Chem., 2019, 17(41), 9081-9094.
[http://dx.doi.org/10.1039/C9OB01757G]
[33]
Cadiot, P.; Chodkiewicz, W. Chemistry of Acetylenes. H. G. Viehe, Ed., Marcel Dekker: New York, 1969; p. 597.
[34]
Glaser, C. Beiträge zur Kenntniss des Acetenylbenzols. Ber. Dtsch. Chem. Ges., 1869, 2(1), 422-424.
[http://dx.doi.org/10.1002/cber.186900201183]
[35]
Sindhu, K.S.; Anilkumar, G. Recent advances and applications of glaser coupling employing greener protocols. RSC Advances, 2014, 4(53), 27867-27887.
[http://dx.doi.org/10.1039/C4RA02416H]
[36]
Chen, S.N.; Wu, W.Y.; Tsai, F.Y. Homocoupling reaction of terminal alkynes catalyzed by a reusable cationic 2,2′-bipyridyl palladium(II)/CuI system in water. Green Chem., 2009, 11(2), 269-274.
[http://dx.doi.org/10.1039/B815812F]
[37]
Gao, H.Y.; Wagner, H.; Zhong, D.; Franke, J.H.; Studer, A.; Fuchs, H. Glaser coupling at metal surfaces. Angew. Chem. Int. Ed. Engl., 2013, 52(14), 4024-4028.
[http://dx.doi.org/10.1002/anie.201208597] [PMID: 23424176]
[38]
Ullmann, F.; Bielecki, J. Ueber synthesen in der biphenylreihe. Ber. Dtsch. Chem. Ges., 1901, 34(2), 2174-2185.
[http://dx.doi.org/10.1002/cber.190103402141]
[39]
Mondal, S. Recent advancement of Ullmann-type coupling reactions in the formation of C–C bond. ChemTexts, 2016, 2
[http://dx.doi.org/10.1007/s40828-016-0036-2]
[40]
Sambiagio, C.; Marsden, S.P.; Blacker, A.J.; McGowan, P.C. Copper catalysed ullmann type chemistry: From mechanistic aspects to modern development. Chem. Soc. Rev., 2014, 43(10), 3525-3550.
[http://dx.doi.org/10.1039/C3CS60289C] [PMID: 24585151]
[41]
Blake, M.M.; Nanayakkara, S.U.; Claridge, S.A.; Fernández-Torres, L.C.; Sykes, E.C.H.; Weiss, P.S. Identifying reactive intermediates in the Ullmann coupling reaction by scanning tunneling microscopy and spectroscopy. J. Phys. Chem. A, 2009, 113(47), 13167-13172.
[http://dx.doi.org/10.1021/jp903590c] [PMID: 19658380]
[42]
Yang, M.; Liu, F. An ullmann coupling of aryl iodides and amines using an air-stable diazaphospholane ligand. J. Org. Chem., 2007, 72(23), 8969-8971.
[http://dx.doi.org/10.1021/jo0712291] [PMID: 17935348]
[43]
Goldberg, I. Ueber phenylirungen bei gegenwart von kupfer als katalysator. Ber. Dtsch. Chem. Ges., 1906, 39(2), 1691-1692.
[http://dx.doi.org/10.1002/cber.19060390298]
[44]
Thomas, A.M.; Asha, S.; Anilkumar, G. Goldberg reaction: Development, mechanistic insights and applications. Mini Rev. Org. Chem., 2015, 12(1), 3-23.
[http://dx.doi.org/10.2174/1570193X11666141029002910]
[45]
Teo, Y.C.; Yong, F.F.; Chua, G.L.; Lim, G.S.; Lin, Y. Tetrahedron Lett., 2011, 57, 1169.
[46]
Liu, Y.; Yang, Y.; Zhu, R.; Zhang, D. Computational clarification of synergetic RuII/CuI-metallaphotoredox catalysis in C(sp3)–N cross-coupling reactions of alkyl redox-active esters with anilines. ACS Catal., 2020, 10(9), 5030-5041.
[http://dx.doi.org/10.1021/acscatal.0c00060]
[47]
Paul, F.; Patt, J.; Hartwig, J.F. Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides. J. Am. Chem. Soc., 1994, 116(13), 5969-5970.
[http://dx.doi.org/10.1021/ja00092a058]
[48]
Guram, A.S.; Buchwald, S.L. Palladium-catalyzed aromatic aminations with in situ generated aminostannanes. J. Am. Chem. Soc., 1994, 116(17), 7901-7902.
[http://dx.doi.org/10.1021/ja00096a059]
[49]
Duparc, V.H.; Bano, G.L.; Schaper, F. Chan-evans-lam couplings with copper iminoarylsulfonate complexes: Scope and mechanism. ACS Catal., 2018, 8(8), 7308-7325.
[http://dx.doi.org/10.1021/acscatal.8b01881]
[50]
Steemers, L.; Wijsman, L.; Maarseveen, J.H.V. Regio- and stereoselective chan-lam-evans enol esterification of carboxylic acids with alkenylboroxines. Adv. Synth. Catal., 2018, 360(21), 4241-4245.
[http://dx.doi.org/10.1002/adsc.201800914]
[51]
DalZotto, C.; Michaux, J.; Lurin, E.M.; Campagne, J.M. Chan–lam–evans coupling of cbz-protected histidines. Eur. J. Org. Chem., 2010, 2010(20), 3811-3814.
[http://dx.doi.org/10.1002/ejoc.201000591]
[52]
Tsuji, J., Ed.; Palladium in Organic Synthesis; Springer, 2005, 14, .
(b)Beller, M.; Bolm, C. Palladium-Catalyzed Allylic Substitutions, 2nd ed; Wiley, 2004, p. 1.
[http://dx.doi.org/10.1002/9783527619405.ch2n]
[53]
Zhang, Z.M.; Xu, B.; Wu, L.; Wu, Y.; Qian, Y.; Zhou, L.; Liu, Y.; Zhang, J. Enantioselective dicarbofunctionalization of unactivated alkenes by palladium-catalyzed tandem heck/suzuki coupling reaction. Angew. Chem. Int. Ed. Engl., 2019, 58(41), 14653-14659.
[http://dx.doi.org/10.1002/anie.201907840] [PMID: 31420928]
[54]
Torborg, C.; Beller, M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv. Synth. Catal., 2009, 351(18), 3027-3043.
[http://dx.doi.org/10.1002/adsc.200900587]
[55]
Farsadpour, S.; Ghoochany, L.T.; Shylesh, S.; Dorr, G.; Seifert, A.; Ernst, S.; Theil, W.R. A covalently supported pyrimidinylphosphane palladacycle as a heterogenized catalyst for the suzuki–miyaura cross coupling. ChemCatChem, 2012, 4(3), 401-407.
[http://dx.doi.org/10.1002/cctc.201100309]
[56]
Mkhalid, I.A.I.; Barnard, J.H.; Marder, T.B.; Murphy, J.M.; Hartwig, J.F. C-H activation for the construction of C-B bonds. Chem. Rev., 2010, 110(2), 890-931.
[http://dx.doi.org/10.1021/cr900206p] [PMID: 20028025]
[57]
Wade, L.G. Organic Chemistry; Pearson education, Inc.: Upper saddle river, 2010.
[58]
Rios, I.G.; Rosas-Hernandez, A.; Martin, E. Recent advances in the application of chiral phosphine ligands in Pd-catalysed asymmetric allylic alkylation. Molecules, 2011, 16(1), 970-1010.
[http://dx.doi.org/10.3390/molecules16010970] [PMID: 21258301]
[59]
Lima, C.F.R.A.C.; Rodrigues, A.S.M.C.; Silva, V.L.M.; Silva, A.M.S.; Santos, L.M.N.B.F. Role of the base and control of selectivity in the suzuki–miyaura cross-coupling reaction. ChemCatChem, 2014, 6, 1291-1302.
[http://dx.doi.org/10.1002/cctc.201301080]
[60]
Babu, S.A.; Saranya, S.; Rohit, K.R.; Anilkumar, G. Ligand-free cu-catalyzed suzuki coupling of alkynyl bromides with boronic acids in ethanol under microwave irradiation. ChemistrySelect, 2019, 4(3), 1019-1022.
[http://dx.doi.org/10.1002/slct.201803144]
[61]
Chen, J-Q.; Li, J-H.; Dong, Z-B. A review on the latest progress of Chan-Lam coupling reaction. Adv. Synth. Catal., 2020, 362(16), 3311-3331.
[http://dx.doi.org/10.1002/adsc.202000495]
[62]
Corey, E.J.; Bakshi, R.K.; Shibata, S. Highly enantioselective borane reduction of ketones catalyzed by chiral oxazaborolidines. Mechanism and synthetic implications. J. Am. Chem. Soc., 1987, 109(18), 5551-5553.
[http://dx.doi.org/10.1021/ja00252a056]
[63]
Corey, E.J.; Bakshi, R.K.; Shibata, S.; Chen, C.P.; Singh, V.K. A stable and easily prepared catalyst for the enantioselective reduction of ketones. Applications to multistep syntheses. J. Am. Chem. Soc., 1987, 109(25), 7925-7926.
[http://dx.doi.org/10.1021/ja00259a075]
[64]
Midland, M.M.; Tramontano, A.; Zderic, S.A. The facile reaction of B-alkyl-9-borabicyclo[3.3.1]nonanes with benzaldehyde. J. Organomet. Chem., 1977, 134(1), C17-C19.
[http://dx.doi.org/10.1016/S0022-328X(00)93625-8]
[65]
Midland, M.M.; Tramontano, A.; Zderic, S.A. Preparation of optically active benzyl-.alpha.-d alcohol via reduction by B-3.alpha-Pinanyl-9-borabicyclo[3.3.1]nonane. A new highly effective chiral reducing agent. J. Am. Chem. Soc., 1977, 99(15), 5211-5213.
[http://dx.doi.org/10.1021/ja00457a068]
[66]
Nicholson, K.; Dunne, J.; DaBell, P.; Garcia, A.B.; Bage, A.D.; Docherty, J.H.; Hunt, T.A.; Langer, T.; Thomas, S.P. A boron–oxygen transborylation strategy for a catalytic midland reduction. ACS Catal., 2021, 11(4), 2034-2040.
[http://dx.doi.org/10.1021/acscatal.0c05168]
[67]
Petasis, N.A.; Akritopoulou, I. The boronic acid mannich reaction: A new method for the synthesis of geometrically pure allylamines. Tetrahedron Lett., 1993, 34(4), 583-586.
[http://dx.doi.org/10.1016/S0040-4039(00)61625-8]
[68]
Roush, W.R.; Walts, A.E.; Hoong, L.K. Diastereo- and enantioselective aldehyde addition reactions of 2-allyl-l,3,2-dioxaborolane-4,5-dicarboxylic esters, a useful class of tartrate ester modified allylboronates. J. Am. Chem. Soc., 1985, 107(26), 8186-8190.
[http://dx.doi.org/10.1021/ja00312a062]
[69]
Roush, W.R.; Ando, K.; Powers, D.B.; Halteman, R.L.; Palkowitz, A.D. Enantioselective synthesis using diisopropyl tartrate modified (E)- and (Z)-crotylboronates: Reactions with achiral aldehydes. Tetrahedron Lett., 1988, 29(44), 5579-5582.
[http://dx.doi.org/10.1016/S0040-4039(00)80816-3]
[70]
Roush, W.R.; Grover, P.T. Diisopropyl tartrate (E)-γ-(dimethylphenylsilyl)allylboronate, a chiral allylic alcohol β-carbanion equivalent for the enantioselective synthesis of 2-butene-1,4-diols from aldehydes. Tetrahedron Lett., 1990, 31(52), 7567-7570.
[http://dx.doi.org/10.1016/S0040-4039(00)97300-3]
[71]
Roush, W.R.; Grover, P.T.; Lin, X. Diisopropyl tartrate modified (E)-γ-[(cyclohexyloxy)dimethylsilyl-allylboronate, a chiral reagent for the stereoselective synthesis of anti 1,2-diols via the formal α-hydroxyallylation of aldehydes. Tetrahedron Lett., 1990, 31(52), 7563-7566.
[http://dx.doi.org/10.1016/S0040-4039(00)97299-X]
[72]
Kubota, K.; Iwamoto, H.; Ito, H. Formal nucleophilic borylation and borylative cyclization of organic halides. Org. Biomol. Chem., 2017, 15(2), 285-300.
[http://dx.doi.org/10.1039/C6OB02369J] [PMID: 27906394]
[73]
Chow, W.K.; Yuen, O.Y.; Choy, P.Y.; So, C.M.; Lau, C.P.; Wong, W.T.; Kwong, F.Y. A decade advancement of transition metal-catalyzed borylation of aryl halides and sulfonates. RSC Advances, 2013, 3(31), 12518-12539.
[http://dx.doi.org/10.1039/c3ra22905j]
[74]
Thomas, S.E. The Roles of Boron and SiliconOxford Chemistry Primers; Oxford University Press, 1991, p. 1.
[75]
Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N.R.; Hartwig, J.F. Mild iridium-catalyzed borylation of arenes. High turnover numbers, room temperature reactions, and isolation of a potential intermediate. J. Am. Chem. Soc., 2002, 124(3), 390-391.
[http://dx.doi.org/10.1021/ja0173019] [PMID: 11792205]
[76]
Kuninobu, Y.; Ida, H.; Nishi, M.; Kanai, M. A meta-selective C-H borylation directed by a secondary interaction between ligand and substrate. Nat. Chem., 2015, 7(9), 712-717.
[http://dx.doi.org/10.1038/nchem.2322] [PMID: 26291942]
[77]
Fischer, D.F.; Sarpong, R. Total synthesis of (+)-complanadine A using an iridium-catalyzed pyridine C-H functionalization. J. Am. Chem. Soc., 2010, 132(17), 5926-5927.
[http://dx.doi.org/10.1021/ja101893b] [PMID: 20387895]
[78]
Shinokubo, H. Transition metal catalyzed borylation of functional π-systems. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2014, 90(1), 1-11.
[http://dx.doi.org/10.2183/pjab.90.1] [PMID: 24492644]
[79]
Li, P.; Fu, C.; Ma, S. Gorlos-Phos for palladium-catalyzed borylation of aryl chlorides. Org. Biomol. Chem., 2014, 12(22), 3604-3610.
[http://dx.doi.org/10.1039/c4ob00293h] [PMID: 24781499]
[80]
Iwai, T.; Harada, T.; Tanaka, R.; Sawamura, M. Silica-supported tripod triarylphosphines: Application to palladium-catalyzed borylation of chloroarenes. Chem. Lett., 2014, 43(5), 584-586.
[http://dx.doi.org/10.1246/cl.131161]
[81]
Murata, M.; Hirai, N.; Okuyama, M.; Namikoshi, T.; Watanabe, S. Palladium-catalyzed borylation of aryl iodides with 2,3-dihydro-1H-benzo[d][1,3,2]diazaborole. Heterocycles, 2014, 88(1), 193-199.
[http://dx.doi.org/10.3987/COM-13-S(S)43]
[82]
Xie, D.; Li, R.; Zhang, D.; Hu, J.; Xiao, D.; Li, X.; Xiang, Y.; Jin, W. Palladium-catalyzed borylation of m-dibromobenzene derivative and its applications in one-pot tandem suzuki–Miyaura arenes synthesis. Tetrahedron, 2015, 71(47), 8871-8875.
[http://dx.doi.org/10.1016/j.tet.2015.10.011]
[83]
Molander, G.A.; Trice, S.L.J.; Tschaen, B. A modified procedure for the palladium catalyzed borylation/Suzuki-Miyaura cross-coupling of aryl and heteroaryl halides utilizing bis-boronic acid. Tetrahedron, 2015, 71(35), 5758-5764.
[http://dx.doi.org/10.1016/j.tet.2015.04.026] [PMID: 26257439]
[84]
Chen, Y.; Peng, H.; Pi, Y-X.; Meng, T.; Lian, Z-Y.; Yan, M-Q.; Liu, Y.; Liu, S.H.; Yu, G-A. Efficient phosphine ligands for the one-pot palladium-catalyzed borylation/suzuki-Miyaura cross-coupling reaction. Org. Biomol. Chem., 2015, 13(11), 3236-3242.
[http://dx.doi.org/10.1039/C4OB02436B] [PMID: 25639213]
[85]
Campos, J.; Aldridge, S. Catalytic borylation using an air-stable zinc boryl reagent: Systematic access to elusive acylboranes. Angew. Chem. Int. Ed. Engl., 2015, 54(47), 14159-14163.
[http://dx.doi.org/10.1002/anie.201507627] [PMID: 26411884]
[86]
Guerrand, H.D.S.; Vaultier, M.; Pinet, S.; Pucheault, M. Amine–borane complexes: Air- and moisture-stable partners for palladium-catalyzed borylation of aryl bromides and chlorides. Adv. Synth. Catal., 2015, 357(6), 1167-1174.
[http://dx.doi.org/10.1002/adsc.201401153]
[87]
Yamamoto, Y.; Matsubara, H.; Yorimitsu, H.; Osuka, A. Base-free palladium-catalyzed borylation of aryl chlorides with diborons. ChemCatChem, 2016, 8(14), 2317-2320.
[http://dx.doi.org/10.1002/cctc.201600456]
[88]
Le, T-N.; Trevisan, T.; Lieu, E.; Brook, D.J.R. Suzuki-miyaura coupling of verdazyl radicals. Eur. J. Org. Chem., 2017, 2017(7), 1125-1131.
[http://dx.doi.org/10.1002/ejoc.201601483]
[89]
Ji, H.; Cai, J.; Gan, N.; Wang, Z.; Wu, L.; Li, G.; Yi, T. Palladium-catalyzed borylation of aryl (pseudo)halides and its applications in biaryl synthesis. Chem. Cent. J., 2018, 12(1), 136.
[http://dx.doi.org/10.1186/s13065-018-0510-6] [PMID: 30564982]
[90]
Grosjean, S.; Hassan, Z.; Wöll, C.; Bräse, S. Diverse multi-functionalized oligoarenes and heteroarenes for porous crystalline materials. Eur. J. Org. Chem., 2019, 2019(7), 1446-1460.
[http://dx.doi.org/10.1002/ejoc.201801232]
[91]
Gupta, S.S.; Sharma, K.K.; Prajapati, M.; Rathod, G.K.; Jain, R. Synthesis of biquinolines via a Pd-catalyzed borylation reaction. Asian J. Org. Chem., 2020, 9(10), 1581-1584.
[http://dx.doi.org/10.1002/ajoc.202000356]
[92]
Pandarus, V.; Marion, O.; Gingras, G.; Beland, F.; Ciriminna, R.; Pagliaro, M. Siliacat diphenylphosphine palladium(II) Catalyzed borylation of aryl halides. ChemCatChem, 2014, 6, 1340-1348.
[93]
Martos-Redruejo, A.; López-Durán, R.; Buñuel, E.; Cárdenas, D.J. Ligand-controlled divergent formation of alkenyl- or allylboronates catalyzed by Pd, and synthetic applications. Chem. Commun. (Camb.), 2014, 50(70), 10094-10097.
[http://dx.doi.org/10.1039/C4CC04092A] [PMID: 25050416]
[94]
Zhang, L-S.; Chen, G.; Wang, X.; Guo, Q-Y.; Zhang, X-S.; Pan, F.; Chen, K.; Shi, Z-J. Direct borylation of primary C-H bonds in functionalized molecules by palladium catalysis. Angew. Chem. Int. Ed. Engl., 2014, 53(15), 3899-3903.
[http://dx.doi.org/10.1002/anie.201310000] [PMID: 24596275]
[95]
Tao, Z-L.; Li, X-H.; Han, Z-Y.; Gong, L-Z. Diastereoselective carbonyl allylation with simple olefins enabled by palladium complex-catalyzed C-H oxidative borylation. J. Am. Chem. Soc., 2015, 137(12), 4054-4057.
[http://dx.doi.org/10.1021/jacs.5b00507] [PMID: 25754467]
[96]
Shi, Z.; Cao, Z.; Luo, F.; Shi, W. Direct borylation of benzyl alcohol and its analogues in the absence of bases. Org. Chem. Front., 2015, 2(11), 1505-1510.
[http://dx.doi.org/10.1039/C5QO00243E]
[97]
Böse, D.; Niesobski, P.; Lübcke, M.; Pietruszka, J. A diastereoselective one-pot, three-step cascade toward α-substituted allylboronic esters. J. Org. Chem., 2014, 79(10), 4699-4703.
[http://dx.doi.org/10.1021/jo5004168] [PMID: 24745807]
[98]
Yoshimura, A.; Yoshinaga, M.; Yamashita, H.; Igarashi, M.; Shimada, S.; Sato, K. A convenient and clean synthetic method for borasiloxanes by Pd-catalysed reaction of silanols with diborons. Chem. Commun. (Camb.), 2017, 53(43), 5822-5825.
[http://dx.doi.org/10.1039/C7CC02420G] [PMID: 28497149]
[99]
Kim, Y-R.; Hall, D.G. Optimization and multigram scalability of a catalytic enantioselective borylative migration for the synthesis of functionalized chiral piperidines. Org. Biomol. Chem., 2016, 14(20), 4739-4748.
[http://dx.doi.org/10.1039/C6OB00685J] [PMID: 27143333]
[100]
Minami, H.; Otsuka, S.; Nogi, K.; Yorimitsu, H. Palladium-catalyzed borylation of aryl sulfoniums with diborons. ACS Catal., 2018, 8(1), 579-583.
[http://dx.doi.org/10.1021/acscatal.7b03841]
[101]
Xue, F.; Zhu, Y.; Li, C-G. Development of an efficient process for 3, 6-dihydro 2H-pyran-4-boronic acid pinacol ester. Heterocycles, 2015, 91(8), 1654-1659.
[http://dx.doi.org/10.3987/COM-15-13255]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy