Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Hyperglycaemic Metabolic Complications of Ischemic Brain: Current Therapeutics, Anti-Diabetics and Stem Cell Therapy

Author(s): Vishal Chavda and Snehal Patel*

Volume 22, Issue 6, 2023

Published on: 26 August, 2022

Page: [832 - 856] Pages: 25

DOI: 10.2174/1871527321666220609200852

open access plus

Abstract

Stroke is the leading cause of morbidity and mortality in diabetic patients. Diabetes alters the endothelial function and disrupts brain pathways, resulting in a variety of systemic metabolic complications. Diabetics not only have impaired neurotransmission, but also have progressive neurodegeneration, which leads to long-term neurological complications. Diabetes risk factors and physiology alter the frequency and severity of cardiovascular and cerebrovascular events, necessitating more hospitalizations. Stroke and diabetes have a mutually reinforcing relationship that worsens their outcomes. Diabetes has far-reaching systemic consequences for human physiology as a metabolic syndrome. As a result, diabetic stroke patients require dual-therapeutics with dual protection. Scientific researchers have made tremendous progress in diabetes-related stroke and its therapeutics over the last few decades. We have summarised diabetic brain and associated risk factors, co-morbidities, biomarkers, and hyperglycemia-associated neurovascular insult and cognitive demur. In addition to providing an overview of the effects of hyperglycaemia on brain physiology, this article aims to summarise the evidence from current glucose-lowering treatment, recent advances in stroke therapeutics as well as exploring stem cell therapy in the management of diabetes-associated stroke.

Keywords: Cerebrovascular stroke, diabetes, neurovascular complications, Hyperglycaemia, ischemic insult, neurodegeneration.

Graphical Abstract

[1]
Intercollegiate Stroke Working Party. National clinical guideline for stroke, 4th edition. London: Royal College of Physicians 2012.
[2]
Ergul A, Kelly-Cobbs A, Abdalla M, Fagan SC. Cerebrovascular complications of diabetes: Focus on stroke. Endocr. Metab. Immune Disord. Drug Targets 2012; 12(2): 148-58.
[http://dx.doi.org/10.2174/187153012800493477] [PMID: 22236022]
[3]
Tuttolomondo A, Maida C, Maugeri R, Iacopino G, Pinto A. Relationship between diabetes and ischemic stroke: Analysis of diabetes-related risk factors for stroke and of specific patterns of stroke associated with diabetes mellitus. J. Diabetes Metab. 2015; 6(5): 544.
[http://dx.doi.org/10.4172/2155-6156.1000544]
[4]
Karapanayiotides T, Piechowski-Jozwiak B, van Melle G, Bogousslavsky J, Devuyst G. Stroke patterns, etiology, and prognosis in patients with diabetes mellitus. Neurology 2004; 62(9): 1558-62.
[http://dx.doi.org/10.1212/01.WNL.0000123252.55688.05] [PMID: 15136681]
[5]
Chen R, Ovbiagele B, Feng W. Diabetes and stroke: Epidemiology, pathophysiology, pharmaceuticals and outcomes. Am. J. Med. Sci. 2016; 351(4): 380-6.
[http://dx.doi.org/10.1016/j.amjms.2016.01.011] [PMID: 27079344]
[6]
Saeedi P, Inga P, Paraskevi S, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas. Diabetes Res. Clin. Pract. 2019; 157(107843)
[http://dx.doi.org/10.1016/j.diabres.2019.107843]
[7]
Li P, Quan W, Lu D, et al. Association between metabolic syndrome and cognitive impairment after acute ischemic stroke: A cross-sectional study in a Chinese population. PLoS One 2016; 11(12): e0167327.
[http://dx.doi.org/10.1371/journal.pone.0167327] [PMID: 27936074]
[8]
Fonville S, Zandbergen AAM, Koudstaal PJ, den Hertog HM. Prediabetes in patients with stroke or transient ischemic attack: Prevalence, risk and clinical management. Cerebrovasc. Dis. 2014; 37(6): 393-400.
[http://dx.doi.org/10.1159/000360810] [PMID: 24993381]
[9]
Air EL, Kissela BM. Diabetes, the metabolic syndrome, and ischemic stroke: Epidemiology and possible mechanisms. Diabetes Care 2007; 30(12): 3131-40.
[http://dx.doi.org/10.2337/dc06-1537] [PMID: 17848611]
[10]
Banerjee C, Moon YP, Paik MC, et al. Duration of diabetes and risk of ischemic stroke: The northern manhattan study. Stroke 2012; 43(5): 1212-7.
[http://dx.doi.org/10.1161/STROKEAHA.111.641381] [PMID: 22382158]
[11]
Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends Neurosci. 2013; 36(10): 587-97.
[http://dx.doi.org/10.1016/j.tins.2013.07.001] [PMID: 23968694]
[12]
Frank HJ, Pardridge WM. Insulin binding to brain microvessels. Adv. Metab. Disord. 1983; 10: 291-302.
[http://dx.doi.org/10.1016/B978-0-12-027310-2.50016-5] [PMID: 6364716]
[13]
McCall AL, Gould JB, Ruderman NB. Diabetes-induced alterations of glucose metabolism in rat cerebral microvessels. Am. J. Physiol. 1984; 247(4 Pt 1): E462-7.
[http://dx.doi.org/10.1152/ajpendo.1984.247.4.E462] [PMID: 6496667]
[14]
Lei H, Gruetter R. Effect of chronic hypoglycaemia on glucose concentration and glycogen content in rat brain: A localized 13C NMR study. J. Neurochem. 2006; 99(1): 260-8.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04115.x] [PMID: 16987249]
[15]
Biessels GJ, Kappelle AC, Bravenboer B, Erkelens DW, Gispen WH. Cerebral function in diabetes mellitus. Diabetologia 1994; 37(7): 643-50.
[http://dx.doi.org/10.1007/BF00417687] [PMID: 7958534]
[16]
Go Y, Kitaoka H, Hanafusa T. Effects of diabetes and diabetes control on susceptibility to learned helplessness in streptozotocin-induced diabetic rats. Diabetol. Int. 2014; 5(1): 53-61.
[http://dx.doi.org/10.1007/s13340-013-0132-0]
[17]
Penckofer S, Doyle T, Byrn M, Lustman PJ. State of the science: Depression and type 2 diabetes. West. J. Nurs. Res. 2014; 36(9): 1158-82.
[http://dx.doi.org/10.1177/0193945914524491] [PMID: 24577866]
[18]
Dokken BB. The pathophysiology of cardiovascular disease and diabetes: Beyond blood pressure and lipids. Diabetes Spectr. 2008; 21(3): 160-5.
[http://dx.doi.org/10.2337/diaspect.21.3.160]
[19]
Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol. Dis. 2008; 32(2): 200-19.
[http://dx.doi.org/10.1016/j.nbd.2008.08.005] [PMID: 18790057]
[20]
Shimizu F, Nishihara H, Kanda T. Blood-brain barrier dysfunction in immuno-mediated neurological diseases. Immunol. Med. 2018; 41(3): 120-8.
[http://dx.doi.org/10.1080/25785826.2018.1531190] [PMID: 30938273]
[21]
Reeson P, Tennant KA, Gerrow K, et al. Delayed inhibition of VEGF signaling after stroke attenuates blood-brain barrier breakdown and improves functional recovery in a comorbidity-dependent manner. J. Neurosci. 2015; 35(13): 5128-43.
[http://dx.doi.org/10.1523/JNEUROSCI.2810-14.2015] [PMID: 25834040]
[22]
Borlongan CV, Glover LE, Sanberg PR, Hess DC. Permeating the blood brain barrier and abrogating the inflammation in stroke: Implications for stroke therapy. Curr. Pharm. Des. 2012; 18(25): 3670-6.
[http://dx.doi.org/10.2174/138161212802002841] [PMID: 22574981]
[23]
Wang S, Wang J, Zhao A, Li J. SIRT1 activation inhibits hyperglycemia-induced apoptosis by reducing oxidative stress and mitochondrial dysfunction in human endothelial cells. Mol. Med. Rep. 2017; 16(3): 3331-8.
[http://dx.doi.org/10.3892/mmr.2017.7027] [PMID: 28765962]
[24]
Yuan T, Yang T, Chen H, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019; 20: 247-60.
[http://dx.doi.org/10.1016/j.redox.2018.09.025] [PMID: 30384259]
[25]
Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul. Pharmacol. 2018; 100: 1-19.
[http://dx.doi.org/10.1016/j.vph.2017.05.005] [PMID: 28579545]
[26]
Mogi M, Horiuchi M. Neurovascular coupling in cognitive impairment associated with diabetes mellitus. Circ. J. 2011; 75(5): 1042-8.
[http://dx.doi.org/10.1253/circj.CJ-11-0121] [PMID: 21441696]
[27]
Shah GN, Morofuji Y, Banks WA, Price TO. High glucose-induced mitochondrial respiration and reactive oxygen species in mouse cerebral pericytes is reversed by pharmacological inhibition of mitochondrial carbonic anhydrases: Implications for cerebral microvascular disease in diabetes. Biochem. Biophys. Res. Commun. 2013; 440(2): 354-8.
[http://dx.doi.org/10.1016/j.bbrc.2013.09.086] [PMID: 24076121]
[28]
Dias IH, Griffiths HR. Oxidative stress in diabetes - circulating advanced glycation end products, lipid oxidation and vascular disease. Ann. Clin. Biochem. 2014; 51(Pt 2): 125-7.
[http://dx.doi.org/10.1177/0004563213508747] [PMID: 24146184]
[29]
Shao B, Bayraktutan U. Hyperglycaemia promotes cerebral barrier dysfunction through activation of protein kinase C-β. Diabetes Obes. Metab. 2013; 15(11): 993-9.
[http://dx.doi.org/10.1111/dom.12120] [PMID: 23617822]
[30]
Ceriello A. The emerging challenge in diabetes: the “metabolic memory”. Vascul. Pharmacol. 2012; 57(5-6): 133-8.
[http://dx.doi.org/10.1016/j.vph.2012.05.005] [PMID: 22609133]
[31]
Serban AI, Stanca L, Geicu OI, Munteanu MC, Dinischiotu A. RAGE and TGF-β1 cross-talk regulate extracellular matrix turnover and cytokine synthesis in AGes exposed fibroblast cells. PLoS One 2016; 11(3): e0152376.
[http://dx.doi.org/10.1371/journal.pone.0152376] [PMID: 27015414]
[32]
Rojas A, Morales MA, Araya P, González I. RAGE - The receptor of advanced glycation end products. eLS 2017; 1-7.
[http://dx.doi.org/10.1002/9780470015902.a0027298]
[33]
Wang S, Cao C, Chen Z, et al. Pericytes regulate vascular basement membrane remodeling and govern neutrophil extravasation during inflammation. PLoS One 2012; 7(9): e45499.
[http://dx.doi.org/10.1371/journal.pone.0045499] [PMID: 23029055]
[34]
Kim LA, Wong LL, Amarnani DS, et al. Characterization of cells from patient-derived fibrovascular membranes in proliferative diabetic retinopathy. Mol. Vis. 2015; 21: 673-87.
[PMID: 26120272]
[35]
Safiah Mokhtar S. M Vanhoutte P, W S Leung S, et al. Reduced expression of prostacyclin synthase and nitric oxide synthase in subcutaneous arteries of type 2 diabetic patients. Tohoku J. Exp. Med. 2013; 231(3): 217-22.
[http://dx.doi.org/10.1620/tjem.231.217] [PMID: 24225501]
[36]
De Meyts P. 2000 The Insulin Receptor and Its Signal Transduction Network. South Dartmouth, MA: Entotext 2016. Available from:https://www.ncbi.nlm.nih.gov/books/NBK378978/
[37]
Dienel GA. Brain glucose metabolism: Integration of energetics with function. Physiol. Rev. 2019; 99(1): 949-1045.
[http://dx.doi.org/10.1152/physrev.00062.2017] [PMID: 30565508]
[38]
Rehni AK, Dave KR. Impact of hypoglycemia on brain metabolism during diabetes. Mol. Neurobiol. 2018; 55(12): 9075-88.
[http://dx.doi.org/10.1007/s12035-018-1044-6] [PMID: 29637442]
[39]
Pinchefsky EF, Hahn CD, Kamino D, et al. Hyperglycemia and glucose variability are associated with worse brain function and seizures in neonatal encephalopathy: A prospective cohort study. J. Pediatr. 2019; 209: 23-32.
[http://dx.doi.org/10.1016/j.jpeds.2019.02.027] [PMID: 30982528]
[40]
Bharmal SH, Pendharkar SA, Singh RG, Goodarzi MO, Pandol SJ, Petrov MS. Relationship between circulating levels of pancreatic proteolytic enzymes and pancreatic hormones. Pancreatology 2017; 17(6): 876-83.
[http://dx.doi.org/10.1016/j.pan.2017.09.007] [PMID: 28958690]
[41]
Arafa NMS, Marie M-AS, AlAzimi SAM. Effect of canagliflozin and metformin on cortical neurotransmitters in a diabetic rat model. Chem. Biol. Interact. 2016; 258: 79-88.
[http://dx.doi.org/10.1016/j.cbi.2016.08.016] [PMID: 27566243]
[42]
Lin L-W, Tsai FS, Yang WT, et al. Differential change in cortical and hippocampal monoamines, and behavioral patterns in streptozotocin-induced type 1 diabetic rats. Iran. J. Basic Med. Sci. 2018; 21(10): 1026-34.
[http://dx.doi.org/10.22038/IJBMS.2018.29810.7197] [PMID: 30524676]
[43]
Rahman MH, Bhusal A, Lee W-H, Lee I-K, Suk K. Hypothalamic inflammation and malfunctioning glia in the pathophysiology of obesity and diabetes: Translational significance. Biochem. Pharmacol. 2018; 153: 123-33.
[http://dx.doi.org/10.1016/j.bcp.2018.01.024] [PMID: 29337002]
[44]
Rubega M, Sparacino G. Neurological changes in hypoglycemia. Diabetes Technol. Ther. 2017; 19(2): 73-5.
[http://dx.doi.org/10.1089/dia.2017.0009] [PMID: 28118047]
[45]
Laclaustra M, Moreno-Franco B, Lou-Bonafonte JM, et al. Impaired sensitivity to thyroid hormones is associated with diabetes and metabolic syndrome. Diabetes Care 2019; 42(2): 303-10.
[http://dx.doi.org/10.2337/dc18-1410] [PMID: 30552134]
[46]
Rojas-Carranza CA, Bustos-Cruz RH, Pino-Pinzon CJ, Ariza-Marquez YV, Gomez-Bello RM, Canadas-Garre M. Diabetes-related neurological implications and pharmacogenomics. Curr. Pharm. Des. 2018; 24(15): 1695-710.
[http://dx.doi.org/10.2174/1381612823666170317165350] [PMID: 28322157]
[47]
Zilliox LA, Chadrasekaran K, Kwan JY, Russell JW. Diabetes and cognitive impairment. Curr. Diab. Rep. 2016; 16(9): 87.
[http://dx.doi.org/10.1007/s11892-016-0775-x] [PMID: 27491830]
[48]
Knip M, Siljander H, Ilonen J, Simell O, Veijola R. Role of humoral beta-cell autoimmunity in type 1 diabetes. Pediatr. Diabetes 2016; 17 (Suppl. 22): 17-24.
[http://dx.doi.org/10.1111/pedi.12386] [PMID: 27411432]
[49]
Nwokolo M, Amiel SA, O’Daly O, et al. Hypoglycemic thalamic activation in type 1 diabetes is associated with preserved symptoms despite reduced epinephrine. J. Cereb. Blood Flow Metab. 2020; 40(4): 787-98.
[http://dx.doi.org/10.1177/0271678X19842680] [PMID: 31006309]
[50]
Phadke D, Beller JP, Tribble C. The disparate effects of epinephrine and norepinephrine on hyperglycemia in cardiovascular surgery. Heart Surg. Forum 2018; 21(6): E522-6.
[http://dx.doi.org/10.1532/hsf.2008] [PMID: 30604678]
[51]
Benrick A, Kokosar M, Hu M, et al. Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture. FASEB J. 2017; 31(8): 3288-97.
[http://dx.doi.org/10.1096/fj.201601381R] [PMID: 28404742]
[52]
Tups A, Benzler J, Sergi D, Ladyman SR, Williams LM. Central regulation of glucose homeostasis. Compr. Physiol. 2017; 7(2): 741-64.
[http://dx.doi.org/10.1002/cphy.c160015] [PMID: 28333388]
[53]
Gurney MA, Laubitz D, Ghishan FK, Kiela PR. Pathophysiology of intestinal Na+/H+ exchange. Cell. Mol. Gastroenterol. Hepatol. 2017; 3(1): 27-40.
[http://dx.doi.org/10.1016/j.jcmgh.2016.09.010] [PMID: 28090568]
[54]
Baeza-Lehnert F, Saab AS, Gutiérrez R, et al. Non-canonical control of neuronal energy status by the Na+ pump. Cell Metab. 2019; 29(3): 668-680.e4.
[http://dx.doi.org/10.1016/j.cmet.2018.11.005] [PMID: 30527744]
[55]
Pan X, Meriin A, Huang G, Kandror KV. Insulin-responsive amino peptidase follows the Glut4 pathway but is dispensable for the formation and translocation of insulin-responsive vesicles. Mol. Biol. Cell 2019; 30(12): 1536-43.
[http://dx.doi.org/10.1091/mbc.E18-12-0792] [PMID: 30943117]
[56]
Tramutola A, Lanzillotta C, Perluigi M, Butterfield DA. Oxidative stress, protein modification and Alzheimer disease. Brain Res. Bull. 2017; 133: 88-96.
[http://dx.doi.org/10.1016/j.brainresbull.2016.06.005] [PMID: 27316747]
[57]
Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019; 20(3): 148-60.
[http://dx.doi.org/10.1038/s41583-019-0132-6] [PMID: 30737462]
[58]
Abolhassani N, Leon J, Sheng Z, et al. Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer’s disease brain. Mech Ageing Dev 2017; 161(Pt A): 95-104.
[http://dx.doi.org/10.1016/j.mad.2016.05.005] [PMID: 27233446]
[59]
Lin S-M, Shi C-M, Mu M-M, Chen Y-J, Luo L. Effect of high dietary starch levels on growth, hepatic glucose metabolism, oxidative status and immune response of juvenile largemouth bass, Micropterus salmoides. Fish Shellfish Immunol. 2018; 78: 121-6.
[http://dx.doi.org/10.1016/j.fsi.2018.04.046] [PMID: 29684600]
[60]
Tian Y, Yang J, Zhang K, Zhao J. Effects of inflammatory response and oxidative stress on the GLUT-1 signal transduction in the placenta of patients with gestational diabetes mellitus. Hainan Yixueyuan Xuebao 2018; 24(2): 67-70.
[61]
Mudi SR, Akhter M, Biswas SK, et al. Effect of aqueous extract of Aegle marmelos fruit and leaf on glycemic, insulinemic and lipidemic status of type 2 diabetic model rats. J. Complement. Integr. Med. 2017; 14(2)
[http://dx.doi.org/10.1515/jcim-2016-0111] [PMID: 28284036]
[62]
Birudu R, Pamulapati P, Manoharan S. Evaluation of biochemical changes in diabetic rats treated with Aegle marmelos (L.) methanolic leaf extract. Pharmacognosy Res. 2020; 12(2): 127.
[http://dx.doi.org/10.4103/pr.pr_53_19]
[63]
Borgohain R, Pathak P, Mohan R. Anti-diabetic and Reno-protective effect of the ethanolic extract of solanum indicum in alloxan-induced diabetic rats. J. Evol. Med. Dent. Sci. 2016; 5(99): 7294-8.
[http://dx.doi.org/10.14260/jemds/2016/1650]
[64]
Thakur P, Kumar A, Kumar A. Targeting oxidative stress through antioxidants in diabetes mellitus. J. Drug Target. 2018; 26(9): 766-76.
[http://dx.doi.org/10.1080/1061186X.2017.1419478] [PMID: 29285960]
[65]
Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ. Med. J. 2012; 12(1): 5-18.
[http://dx.doi.org/10.12816/0003082] [PMID: 22375253]
[66]
Aydemir B, Baykara O, Cinemre FB, et al. LOX-1 gene variants and maternal levels of plasma oxidized LDL and malondialdehyde in patients with gestational diabetes mellitus. Arch. Gynecol. Obstet. 2016; 293(3): 517-27.
[http://dx.doi.org/10.1007/s00404-015-3851-6] [PMID: 26296941]
[67]
Robson R, Kundur AR, Singh I. Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab. Syndr. 2018; 12(3): 455-62.
[http://dx.doi.org/10.1016/j.dsx.2017.12.029] [PMID: 29307576]
[68]
Jebur A, Mokhamer M, El-Demerdash F. A review on oxidative stress and role of antioxidants in diabetes mellitus. Austin endocrinol. Diabetes Case Reports 2016; 1: 1006.
[69]
Henriksen EJ. Role of oxidative stress in the pathogenesis of insulin resistance and type 2 diabetes. In: Bioactive Food as Dietary Interventions for Diabetes. Tucson, AZ, USA: Acedemic Press 2019; pp. 3-17.
[http://dx.doi.org/10.1016/B978-0-12-397153-1.00001-9]
[70]
de Souza Bastos A, Graves DT, de Melo Loureiro AP, et al. Diabetes and increased lipid peroxidation are associated with systemic inflammation even in well-controlled patients. J. Diabetes Complications 2016; 30(8): 1593-9.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.07.011] [PMID: 27497685]
[71]
Balbi ME, Tonin FS, Mendes AM, et al. Antioxidant effects of vitamins in type 2 diabetes: A meta-analysis of randomized controlled trials. Diabetol. Metab. Syndr. 2018; 10(1): 18.
[http://dx.doi.org/10.1186/s13098-018-0318-5] [PMID: 29568330]
[72]
Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018; 9(2): 119.
[http://dx.doi.org/10.1038/s41419-017-0135-z] [PMID: 29371661]
[73]
Hagberg H, Mallard C, Rousset CI, Thornton C. Mitochondria: Hub of injury responses in the developing brain. Lancet Neurol. 2014; 13(2): 217-32.
[http://dx.doi.org/10.1016/S1474-4422(13)70261-8] [PMID: 24457191]
[74]
Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005; 54(6): 1615-25.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[75]
Zhong Y, Wang JJ, Zhang SX. Intermittent but not constant high glucose induces ER stress and inflammation in human retinal pericytes. In: Retinal degenerative disease. Boston, MA: Springer 2012; pp. 285-92.
[http://dx.doi.org/10.1007/978-1-4614-0631-0_37]
[76]
Yorulmaz H, Kaptan E, Seker FB, Oztas B. Type 1 diabetes exacerbates blood-brain barrier alterations during experimental epileptic seizures in an animal model. Cell Biochem. Funct. 2015; 33(5): 285-92.
[http://dx.doi.org/10.1002/cbf.3113] [PMID: 26011758]
[77]
Yoo DY, Yim HS, Jung HY, et al. Chronic type 2 diabetes reduces the integrity of the blood-brain barrier by reducing tight junction proteins in the hippocampus. J. Vet. Med. Sci. 2016; 78(6): 957-62.
[http://dx.doi.org/10.1292/jvms.15-0589] [PMID: 26876499]
[78]
Davidson TL, Monnot A, Neal AU, Martin AA, Horton JJ, Zheng W. The effects of a high-energy diet on hippocampal-dependent discrimination performance and blood-brain barrier integrity differ for diet-induced obese and diet-resistant rats. Physiol. Behav. 2012; 107(1): 26-33.
[http://dx.doi.org/10.1016/j.physbeh.2012.05.015] [PMID: 22634281]
[79]
Chronopoulos A, Tang A, Beglova E, Trackman PC, Roy S. High glucose increases lysyl oxidase expression and activity in retinal endothelial cells: Mechanism for compromised extracellular matrix barrier function. Diabetes 2010; 59(12): 3159-66.
[http://dx.doi.org/10.2337/db10-0365] [PMID: 20823103]
[80]
Tien T, Muto T, Barrette K, Challyandra L, Roy S. Downregulation of Connexin 43 promotes vascular cell loss and excess permeability associated with the development of vascular lesions in the diabetic retina. Mol. Vis. 2014; 20: 732-41.
[PMID: 24940027]
[81]
Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD. Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: Contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia 2007; 50(1): 202-11.
[http://dx.doi.org/10.1007/s00125-006-0485-z] [PMID: 17143608]
[82]
Shimizu F, Sano Y, Tominaga O, Maeda T, Abe MA, Kanda T. Advanced glycation end-products disrupt the blood-brain barrier by stimulating the release of transforming growth factor-β by pericytes and vascular endothelial growth factor and matrix metalloproteinase-2 by endothelial cells in vitro. Neurobiol. Aging 2013; 34(7): 1902-12.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.01.012] [PMID: 23428182]
[83]
Wang J, Li G, Wang Z, et al. High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes. Neuroscience 2012; 202: 58-68.
[http://dx.doi.org/10.1016/j.neuroscience.2011.11.062] [PMID: 22178606]
[84]
Xie Y, Yu N, Chen Y, Zhang K, Ma HY, Di Q. HMGB1 regulates P-glycoprotein expression in status epilepticus rat brains via the RAGE/NF-κB signaling pathway. Mol. Med. Rep. 2017; 16(2): 1691-700.
[http://dx.doi.org/10.3892/mmr.2017.6772] [PMID: 28627626]
[85]
Singh H, Sodhi RK, Chahal SK, Madan J. Meclizine ameliorates memory deficits in streptozotocin-induced experimental dementia in mice: role of nuclear pregnane X receptors. Can. J. Physiol. Pharmacol. 2020; 98(6): 383-90.
[http://dx.doi.org/10.1139/cjpp-2019-0421] [PMID: 231935134]
[86]
Arboleda-Velasquez JF, Valdez CN, Marko CK, D’Amore PA. From pathobiology to the targeting of pericytes for the treatment of diabetic retinopathy. Curr. Diab. Rep. 2015; 15(2): 573.
[http://dx.doi.org/10.1007/s11892-014-0573-2] [PMID: 25620405]
[87]
Patrick P, Price TO, Diogo AL, Sheibani N, Banks WA, Shah GN. Topiramate protects pericytes from glucotoxicity: Role for mitochondrial CA VA in cerebromicrovascular disease in diabetes. J. Endocrinol. Diabetes 2015; 2(2): 1-7.
[http://dx.doi.org/10.15226/2374-6890/2/2/00123] [PMID: 26167540]
[88]
Persidsky Y, Hill J, Zhang M, et al. Dysfunction of brain pericytes in chronic neuroinflammation. J. Cereb. Blood Flow Metab. 2016; 36(4): 794-807.
[http://dx.doi.org/10.1177/0271678X15606149] [PMID: 26661157]
[89]
Xie X, Lan T, Chang X, et al. Connexin43 mediates NF-κB signalling activation induced by high glucose in GMCs: Involvement of c-Src. Cell Commun. Signal. 2013; 11(1): 38.
[http://dx.doi.org/10.1186/1478-811X-11-38] [PMID: 23718910]
[90]
Min LJ, Mogi M, Shudou M, et al. Peroxisome proliferator-activated receptor-γ activation with angiotensin II type 1 receptor blockade is pivotal for the prevention of blood-brain barrier impairment and cognitive decline in type 2 diabetic mice. Hypertension 2012; 59(5): 1079-88.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.192401] [PMID: 22454480]
[91]
Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier. Glia 2013; 61(12): 1939-58.
[http://dx.doi.org/10.1002/glia.22575] [PMID: 24123158]
[92]
Gandhi GK, Ball KK, Cruz NF, Dienel GA. Hyperglycaemia and diabetes impair gap junctional communication among astrocytes. ASN Neuro 2010; 2(2): e00030.
[http://dx.doi.org/10.1042/AN20090048] [PMID: 20396375]
[93]
Obermeier B, Verma A, Ransohoff RM. The blood-brain barrier. Handbook of Clinical Neurology. Elsevier: Cambridge, MA, USA 2016; pp. 39-59.
[http://dx.doi.org/10.1016/B978-0-444-63432-0.00003-7]
[94]
Xu L, Nirwane A, Yao Y. Basement membrane and blood-brain barrier. Stroke Vasc. Neurol. 2018; 4(2): 78-82.
[http://dx.doi.org/10.1136/svn-2018-000198] [PMID: 31338215]
[95]
Prasad S, Sajja RK, Naik P, Cucullo L. Diabetes mellitus and blood-brain barrier dysfunction: An overview. J. Pharmacovigil. 2014; 2(2): 125.
[http://dx.doi.org/10.4172/2329-6887.1000125] [PMID: 25632404]
[96]
Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front. Neurosci. 2019; 12: 1019.
[http://dx.doi.org/10.3389/fnins.2018.01019] [PMID: 30686985]
[97]
Campisi M, Shin Y, Osaki T, Hajal C, Chiono V, Kamm RD. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 2018; 180: 117-29.
[http://dx.doi.org/10.1016/j.biomaterials.2018.07.014] [PMID: 30032046]
[98]
Bell RD, Zlokovic BV. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathol. 2009; 118(1): 103-13.
[http://dx.doi.org/10.1007/s00401-009-0522-3] [PMID: 19319544]
[99]
Herland A, van der Meer AD, FitzGerald EA, Park TE, Sleeboom JJ, Ingber DE. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip. PLoS One 2016; 11(3): e0150360.
[http://dx.doi.org/10.1371/journal.pone.0150360] [PMID: 26930059]
[100]
Sonar SA, Lal G. Blood-brain barrier and its function during inflammation and autoimmunity. J. Leukoc. Biol. 2018; 103(5): 839-53.
[http://dx.doi.org/10.1002/JLB.1RU1117-428R] [PMID: 29431873]
[101]
Quintana FJ. Astrocytes to the rescue! Glia limitans astrocytic endfeet control CNS inflammation. J. Clin. Invest. 2017; 127(8): 2897-9.
[http://dx.doi.org/10.1172/JCI95769] [PMID: 28737511]
[102]
Zhang S, Wu M, Peng C, Zhao G, Gu R. GFAP expression in injured astrocytes in rats. Exp. Ther. Med. 2017; 14(3): 1905-8.
[http://dx.doi.org/10.3892/etm.2017.4760] [PMID: 28962102]
[103]
Carnagarin R, Matthews VB, Herat LY, Ho JK, Schlaich MP. Autonomic regulation of glucose homeostasis: A specific role for sympathetic nervous system activation. Curr Diab Rep 2018; 18(11): 107.a.
[http://dx.doi.org/10.1007/s11892-018-1069-2] [PMID: 30232652]
[104]
Xu Z, Zeng W, Sun J, et al. The quantification of blood-brain barrier disruption using dynamic contrast-enhanced magnetic resonance imaging in aging rhesus monkeys with spontaneous type 2 diabetes mellitus. Neuroimage 2017; 158: 480-7.
[http://dx.doi.org/10.1016/j.neuroimage.2016.07.017] [PMID: 27402601]
[105]
Acharya NK, Qi X, Goldwaser EL, et al. Retinal pathology is associated with increased blood-retina barrier permeability in a diabetic and hypercholesterolaemic pig model: Beneficial effects of the LpPLA2 inhibitor Darapladib. Diab. Vasc. Dis. Res. 2017; 14(3): 200-13.
[http://dx.doi.org/10.1177/1479164116683149] [PMID: 28301218]
[106]
Huber JD, VanGilder RL, Houser KA. Streptozotocin-induced diabetes progressively increases blood-brain barrier permeability in specific brain regions in rats. Am. J. Physiol. Heart Circ. Physiol. 2006; 291(6): H2660-8.
[http://dx.doi.org/10.1152/ajpheart.00489.2006] [PMID: 16951046]
[107]
Umemura T, Kawamura T, Hotta N. Pathogenesis and neuroimaging of cerebral large and small vessel disease in type 2 diabetes: A possible link between cerebral and retinal microvascular abnormalities. J. Diabetes Investig. 2017; 8(2): 134-48.
[http://dx.doi.org/10.1111/jdi.12545] [PMID: 27239779]
[108]
Kanyal N. The science of ischemic stroke: Pathophysiology & pharmacological treatment. Int. J. Pharma Res. Rev. 2015; 4: 65-84.
[109]
Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2019; 50(12): e344-418.
[http://dx.doi.org/10.1161/STR.0000000000000211] [PMID: 31662037]
[110]
Shah P, Chavda V, Patel S, Bhadada S, Ashraf GM. Promising anti-stroke signature of voglibose: Investigation through in silico molecular docking and virtual screening in in vivo animal studies. Curr. Gene Ther. 2020; 20(3): 223-35.
[http://dx.doi.org/10.2174/1566523220999200726225457] [PMID: 33054705]
[111]
Stegmayr B, Asplund K. Diabetes as a risk factor for stroke. A population perspective. Diabetologia 1995; 38(9): 1061-8.
[http://dx.doi.org/10.1007/BF00402176] [PMID: 8591820]
[112]
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol. Rev. 2013; 93(1): 137-88.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[113]
Humberto C-M. Y Zajarias-Fainsod D, Ibarr A. Pharmacological treatment of acute ischemic stroke.Neurodegenerative Diseases. In: Uday K, Ed. IntechOpen 2013.
[http://dx.doi.org/10.5772/53774]
[114]
Shukla V, Shakya AK, Perez-Pinzon MA, Dave KR. Cerebral ischemic damage in diabetes: An inflammatory perspective. J Neuroinflam 2017; 14(1): 21.
[http://dx.doi.org/10.1186/s12974-016-0774-5] [PMID: 28115020]
[115]
Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: part I. Eur. Heart J. 2013; 34(31): 2436-43.
[http://dx.doi.org/10.1093/eurheartj/eht149] [PMID: 23641007]
[116]
Zavoreo I, Madžar Z, Demarin V, Kes VB. Vascular cognitive impairment in diabetes mellitus: Are prevention and treatment effective? Acta Clin. Croat. 2014; 53(3): 326-33.
[PMID: 25509243]
[117]
Wynne K, Devereaux B, Dornhorst A. Diabetes of the exocrine pancreas. J. Gastroenterol. Hepatol. 2019; 34(2): 346-54.
[http://dx.doi.org/10.1111/jgh.14451] [PMID: 30151918]
[118]
Ho N, Sommers MS, Lucki I. Effects of diabetes on hippocampal neurogenesis: Links to cognition and depression. Neurosci. Biobehav. Rev. 2013; 37(8): 1346-62.
[http://dx.doi.org/10.1016/j.neubiorev.2013.03.010] [PMID: 23680701]
[119]
Biessels GJ, Reijmer YD. Brain changes underlying cognitive dysfunction in diabetes: What can we learn from MRI? Diabetes 2014; 63(7): 2244-52.
[http://dx.doi.org/10.2337/db14-0348] [PMID: 24931032]
[120]
Ruis C, Biessels GJ, Gorter KJ, van den Donk M, Kappelle LJ, Rutten GE. Cognition in the early stage of type 2 diabetes. Diabetes Care 2009; 32(7): 1261-5.
[http://dx.doi.org/10.2337/dc08-2143] [PMID: 19366968]
[121]
Zanoveli JM, Morais H, Dias IC, Schreiber AK, Souza CP, Cunha JM. Depression associated with diabetes: From pathophysiology to treatment. Curr. Diabetes Rev. 2016; 12(3): 165-78.
[http://dx.doi.org/10.2174/1573399811666150515125349] [PMID: 25981499]
[122]
Feinkohl I, Price JF, Strachan MWJ, Frier BM. The impact of diabetes on cognitive decline: Potential vascular, metabolic, and psychosocial risk factors. Alzheimers Res. Ther. 2015; 7(1): 46.
[http://dx.doi.org/10.1186/s13195-015-0130-5] [PMID: 26060511]
[123]
Jiang Y, Liu N, Han J, et al. Diabetes mellitus/poststroke hyperglycemia: A detrimental factor for tPA thrombolytic stroke therapy. Transl. Stroke Res. 2021; 12(3): 416-27.
[http://dx.doi.org/10.1007/s12975-020-00872-3] [PMID: 33140258]
[124]
Hazari MAH, Ram Reddy B, Uzma N, Santhosh Kumar B. Cognitive impairment in type 2 diabetes mellitus. Int. J. Diabetes Mellit. 2015; 3(1): 19-24.
[http://dx.doi.org/10.1016/j.ijdm.2011.01.001]
[125]
Mizrahi EH, Waitzman A, Blumstein T, Arad M, Adunsky A. Diabetes mellitus predicts cognitive impairment in patients with ischemic stroke. Am. J. Alzheimers Dis. Other Demen. 2010; 25(4): 362-6.
[http://dx.doi.org/10.1177/1533317510365343] [PMID: 20360596]
[126]
Joseph JJ, Golden SH. Cortisol dysregulation: The bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann. N. Y. Acad. Sci. 2017; 1391(1): 20-34.
[http://dx.doi.org/10.1111/nyas.13217] [PMID: 27750377]
[127]
Asuzu CC, Walker RJ, Williams JS, Egede LE. Pathways for the relationship between diabetes distress, depression, fatalism and glycemic control in adults with type 2 diabetes. J. Diabetes Complications 2017; 31(1): 169-74.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.09.013] [PMID: 27746088]
[128]
Moulton CD, Pickup JC, Ismail K. The link between depression and diabetes: The search for shared mechanisms. Lancet Diabetes Endocrinol. 2015; 3(6): 461-71.
[http://dx.doi.org/10.1016/S2213-8587(15)00134-5] [PMID: 25995124]
[129]
Teasell R, Salter K, Faltynek P, Cotoi A, Eskes G. Post-stroke cognitive disorders. In: Evidence-Based Rev. 2018; pp. 1-86.
[130]
Ovbiagele B, Kautz S, Feng W, Adkins DL. Poststroke outcomes. Stroke Res. Treat. 2014; 2014: 828435.
[http://dx.doi.org/10.1155/2014/828435] [PMID: 25379321]
[131]
Crichton SL, Bray BD, McKevitt C, Rudd AG, Wolfe CD. Patient outcomes up to 15 years after stroke: Survival, disability, quality of life, cognition and mental health. J. Neurol. Neurosurg. Psychiatry 2016; 87(10): 1091-8.
[http://dx.doi.org/10.1136/jnnp-2016-313361] [PMID: 27451353]
[132]
Shichita T, Ito M, Yoshimura A. Post-ischemic inflammation regulates neural damage and protection. Front. Cell. Neurosci. 2014; 8: 319.
[http://dx.doi.org/10.3389/fncel.2014.00319] [PMID: 25352781]
[133]
Sheikhbahaei S, Manizheh D, Mohammad S, et al. Can MiR-503 be used as a marker in diabetic patients with ischemic stroke? BMC Endocr. Disord. 2019; 19(1): 42.
[http://dx.doi.org/10.1186/s12902-019-0371-6] [PMID: 31035988]
[134]
Lyden PD. Thrombolytic therapy for acute ischemic stroke. Stroke 2019; 50(9): 2597-603.
[http://dx.doi.org/10.1161/STROKEAHA.119.025699] [PMID: 31327316]
[135]
Robinson T, Zaheer Z, Mistri AK. Thrombolysis in acute ischaemic stroke: An update. Ther. Adv. Chronic Dis. 2011; 2(2): 119-31.
[http://dx.doi.org/10.1177/2040622310394032] [PMID: 23251746]
[136]
Adams HP Jr, Brott TG, Furlan AJ, et al. Guidelines for thrombolytic therapy for acute stroke: A supplement to the guidelines for the management of patients with acute ischemic stroke. A statement for healthcare professionals from a Special Writing Group of the Stroke Council, American Heart Association. Circulation 1996; 94(5): 1167-74.
[http://dx.doi.org/10.1161/01.CIR.94.5.1167] [PMID: 8790069]
[137]
Bansal S, Sangha KS, Khatri P. Drug treatment of acute ischemic stroke. Am. J. Cardiovasc. Drugs 2013; 13(1): 57-69.
[http://dx.doi.org/10.1007/s40256-013-0007-6] [PMID: 23381911]
[138]
Shahpouri MM, Mousavi S, Khorvash F, Mousavi SM, Hoseini T. Anticoagulant therapy for ischemic stroke: A review of literature. J. Res. Med. Sci. 2012; 17(4): 396-401.
[PMID: 23267405]
[139]
Coull BM, Williams LS, Goldstein LB, et al. Anticoagulants and antiplatelet agents in acute ischemic stroke: report of the Joint Stroke Guideline Development Committee of the American Academy of Neurology and the American Stroke Association (a division of the American Heart Association). Stroke 2002; 33(7): 1934-42.
[http://dx.doi.org/10.1161/01.STR.0000028456.18614.93] [PMID: 12105379]
[140]
Hankey GJ. Secondary stroke prevention. Lancet Neurol. 2014; 13(2): 178-94.
[http://dx.doi.org/10.1016/S1474-4422(13)70255-2] [PMID: 24361114]
[141]
Stringberg A, Camden R, Qualls K, Naqvi SH. Update on dual antiplatelet therapy for secondary stroke prevention. Mo. Med. 2019; 116(4): 303-7.
[PMID: 31527979]
[142]
Wang Y, Chen W, Lin Y, et al. Ticagrelor plus aspirin versus clopidogrel plus aspirin for platelet reactivity in patients with minor stroke or transient ischaemic attack: Open label, blinded endpoint, randomised controlled phase II trial. BMJ 2019; 365: l2211.
[http://dx.doi.org/10.1136/bmj.l2211] [PMID: 31171523]
[143]
Albay CEQ, Leyson FGD, Cheng FC. Dual versus mono antiplatelet therapy for acute non- cardio embolic ischemic stroke or transient ischemic attack, an efficacy and safety analysis - updated meta-analysis. BMC Neurol. 2020; 20(1): 224.
[http://dx.doi.org/10.1186/s12883-020-01808-y] [PMID: 32493229]
[144]
Yip S, Benavente O. Antiplatelet agents for stroke prevention. Neurotherapeutics 2011; 8(3): 475-87.
[http://dx.doi.org/10.1007/s13311-011-0060-2] [PMID: 21761240]
[145]
Spence JD, Viscoli CM, Inzucchi SE, et al. Pioglitazone therapy in patients with stroke and prediabetes: A post hoc analysis of the IRIS randomized clinical trial. JAMA Neurol. 2019; 76(5): 526-35.
[http://dx.doi.org/10.1001/jamaneurol.2019.0079] [PMID: 30734043]
[146]
Caprio FZ, Sorond FA. Cerebrovascular disease: Primary and secondary stroke prevention. Med. Clin. North Am. 2019; 103(2): 295-308.
[http://dx.doi.org/10.1016/j.mcna.2018.10.001] [PMID: 30704682]
[147]
McDermott M, Jacobs T, Morgenstern L. Critical care in acute ischemic stroke. In: Handbook of Clinical Neurology. MI, USA: Elsevier 2017; pp. 153-76.
[http://dx.doi.org/10.1016/B978-0-444-63600-3.00010-6]
[148]
Jahan R. Solitaire flow-restoration device for treatment of acute ischemic stroke: Safety and recanalization efficacy study in a swine vessel occlusion model. AJNR Am. J. Neuroradiol. 2010; 31(10): 1938-43.
[http://dx.doi.org/10.3174/ajnr.A2169] [PMID: 20634306]
[149]
Marei HE, Hasan A, Rizzi R, et al. Potential of stem cell-based therapy for ischemic stroke. Front. Neurol. 2018; 9: 34.
[http://dx.doi.org/10.3389/fneur.2018.00034] [PMID: 29467713]
[150]
George PM, Steinberg GK. Novel stroke therapeutics: Unraveling stroke pathophysiology and its impact on clinical treatments. Neuron 2015; 87(2): 297-309.
[http://dx.doi.org/10.1016/j.neuron.2015.05.041] [PMID: 26182415]
[151]
Alawieh A, Zhao J, Feng W. Factors affecting post-stroke motor recovery: Implications on neurotherapy after brain injury. Behav. Brain Res. 2018; 340: 94-101.
[http://dx.doi.org/10.1016/j.bbr.2016.08.029] [PMID: 27531500]
[152]
Venkat P, Chopp M, Chen J. Cell-based and exosome therapy in diabetic stroke. Stem Cells Transl. Med. 2018; 7(6): 451-5.
[http://dx.doi.org/10.1002/sctm.18-0014] [PMID: 29498242]
[153]
Venkat P, Cui C, Chopp M, et al. MiR-126 mediates brain endothelial cell exosome treatment–induced neurorestorative effects after stroke in type 2 diabetes mellitus mice. Stroke 2019; 50(10): 2865-74.
[http://dx.doi.org/10.1161/STROKEAHA.119.025371] [PMID: 31394992]
[154]
Collins L, Costello RA. Glucagon-like peptide-1 receptor agonists, statpearls. StatPearls Publishing 2020.
[155]
Milonas D, Didangelos T, Hatzitolios AI, Tziomalos K. Incretin-based antihyperglycemic agents for the management of acute ischemic stroke in patients with diabetes mellitus: A review. Diabetes Ther. 2019; 10(2): 429-35.
[http://dx.doi.org/10.1007/s13300-019-0580-z] [PMID: 30725400]
[156]
Castilla-Guerra L, Fernandez-Moreno MDC, Leon-Jimenez D, Carmona-Nimo E. Antidiabetic drugs and stroke risk. Current evidence. Eur. J. Intern. Med. 2018; 48: 1-5.
[http://dx.doi.org/10.1016/j.ejim.2017.09.019] [PMID: 28939005]
[157]
Pathak R, Bridgeman MB. Dipeptidyl peptidase-4 (DPP-4) inhibitors in the management of diabetes. P&T 2010; 35(9): 509-13.
[PMID: 20975810]
[158]
Zhou Z, Lindley RI, Rådholm K, et al. Canagliflozin and stroke in type 2 diabetes mellitus. Stroke 2019; 50(2): 396-404.
[http://dx.doi.org/10.1161/STROKEAHA.118.023009] [PMID: 30591006]
[159]
Guo M, Ding J, Li J, et al. SGLT2 inhibitors and risk of stroke in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes. Metab. 2018; 20(8): 1977-82.
[http://dx.doi.org/10.1111/dom.13295] [PMID: 29573118]
[160]
Arnott C, Li Q, Kang A, et al. Sodium-glucose cotransporter 2 inhibition for the prevention of cardiovascular events in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. J. Am. Heart Assoc. 2020; 9(3): e014908.
[http://dx.doi.org/10.1161/JAHA.119.014908] [PMID: 31992158]
[161]
Pasternak B, Ueda P, Eliasson B, et al. Use of sodium glucose cotransporter 2 inhibitors and risk of major cardiovascular events and heart failure: Scandinavian register based cohort study. BMJ 2019; 366: l4772.
[http://dx.doi.org/10.1136/bmj.l4772] [PMID: 31467044]
[162]
Choi CI. Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors from natural products: Discovery of next-generation antihyperglycemic agents. Molecules 2016; 21(9): 1136.
[http://dx.doi.org/10.3390/molecules21091136] [PMID: 27618891]
[163]
den Hertog HM, van der Worp HB, van Gemert HM, et al. The paracetamol (Acetaminophen) in stroke (PAIS) trial: A multicentre, randomised, placebo-controlled, phase III trial. Lancet Neurol. 2009; 8(5): 434-40.
[http://dx.doi.org/10.1016/S1474-4422(09)70051-1] [PMID: 19297248]
[164]
Golden SH, Hill-Briggs F, Williams K, Stolka K, Mayer RS. Management of diabetes during acute stroke and inpatient stroke rehabilitation. Arch. Phys. Med. Rehabil. 2005; 86(12): 2377-84.
[http://dx.doi.org/10.1016/j.apmr.2005.07.306] [PMID: 16344038]
[165]
Magkou D, Tziomalos K. Antidiabetic treatment, stroke severity and outcome. World J. Diabetes 2014; 5(2): 84-8.
[http://dx.doi.org/10.4239/wjd.v5.i2.84] [PMID: 24748923]
[166]
Fuentes B. Antidiabetic drugs for stroke prevention in patients with type-2 diabetes. The neurologist’s point of view. In: Med Clínica (English Ed). 2018; 150: pp. 275-81.
[http://dx.doi.org/10.1016/j.medcle.2018.01.017]
[167]
Ahn CH, Lim S. Effects of thiazolidinedione and new antidiabetic agents on stroke. J. Stroke 2019; 21(2): 139-50.
[http://dx.doi.org/10.5853/jos.2019.00038] [PMID: 31161759]
[168]
Arbeláez-Quintero I, Palacios M. To use or not to use metformin in cerebral ischemia: A review of the application of metformin in stroke rodents. Stroke Res. Treat. 2017; 2017: 9756429.
[http://dx.doi.org/10.1155/2017/9756429] [PMID: 28634570]
[169]
Lim S, Oh TJ, Dawson J, Sattar N. Diabetes drugs and stroke risk: Intensive versus conventional glucose-lowering strategies, and implications of recent cardiovascular outcome trials. Diabetes Obes. Metab. 2020; 22(1): 6-15.
[http://dx.doi.org/10.1111/dom.13850] [PMID: 31379119]
[170]
Semplicini A, Calò L. Administering antihypertensive drugs after acute ischemic stroke: Timing is everything. CMAJ 2005; 172(5): 625-6.
[http://dx.doi.org/10.1503/cmaj.1041393] [PMID: 15738482]
[171]
Bowry R, Navalkele DD, Gonzales NR. Blood pressure management in stroke: Five new things. Neurol. Clin. Pract. 2014; 4(5): 419-26.
[http://dx.doi.org/10.1212/CPJ.0000000000000085] [PMID: 25317377]
[172]
Gueyffier F, Boissel JP, Boutitie F, et al. Effect of antihypertensive treatment in patients having already suffered from stroke. Gathering the evidence. The INDANA (INdividual Data ANalysis of Antihypertensive intervention trials) Project Collaborators. Stroke 1997; 28(12): 2557-62.
[http://dx.doi.org/10.1161/01.STR.28.12.2557] [PMID: 9412649]
[173]
Khan NA, Yun L, Humphries K, Kapral M. Antihypertensive drug use and adherence after stroke: Are there sex differences? Stroke 2010; 41(7): 1445-9.
[http://dx.doi.org/10.1161/STROKEAHA.110.579375] [PMID: 20508191]
[174]
Wu QJ, Tymianski M. Targeting NMDA receptors in stroke: New hope in neuroprotection. Mol. Brain 2018; 11(1): 15.
[http://dx.doi.org/10.1186/s13041-018-0357-8] [PMID: 29534733]
[175]
Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 2002; 1(6): 383-6.
[http://dx.doi.org/10.1016/S1474-4422(02)00164-3] [PMID: 12849400]
[176]
Akpan N, Troy CM. Caspase inhibitors: Prospective therapies for stroke. Neuroscientist 2013; 19(2): 129-36.
[http://dx.doi.org/10.1177/1073858412447875] [PMID: 22645109]
[177]
Awosika OO, Cohen LG. Transcranial direct current stimulation in stroke rehabilitation: Present and future. In: Practical Guide to Transcranial Direct Current Stimulation. Springer Cham 2019; pp. 509-39.
[http://dx.doi.org/10.1007/978-3-319-95948-1_17]
[178]
Schlaug G, Renga V, Nair D. Transcranial direct current stimulation in stroke recovery. Arch. Neurol. 2008; 65(12): 1571-6.
[http://dx.doi.org/10.1001/archneur.65.12.1571] [PMID: 19064743]
[179]
Du J, Yang F, Hu J, et al. Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: Evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments. Neuroimage Clin. 2019; 21: 101620.
[http://dx.doi.org/10.1016/j.nicl.2018.101620] [PMID: 30527907]
[180]
Hoyer EH, Celnik PA. Understanding and enhancing motor recovery after stroke using transcranial magnetic stimulation. Restor. Neurol. Neurosci. 2011; 29(6): 395-409.
[http://dx.doi.org/10.3233/RNN-2011-0611] [PMID: 22124033]
[181]
Winstein CJ, Wolf SL, Dromerick AW, et al. Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke the ICARE randomized clinical trial. JAMA 2016; 315(6): 571-81.
[http://dx.doi.org/10.1001/jama.2016.0276] [PMID: 26864411]
[182]
Brewer BR, McDowell SK, Worthen-Chaudhari LC. Poststroke upper extremity rehabilitation: A review of robotic systems and clinical results. Top. Stroke Rehabil. 2007; 14(6): 22-44.
[http://dx.doi.org/10.1310/tsr1406-22] [PMID: 18174114]
[183]
Brainin M, Zorowitz RD. Advances in stroke: Recovery and rehabilitation. Stroke 2013; 44(2): 311-3.
[http://dx.doi.org/10.1161/STROKEAHA.111.000342] [PMID: 23321444]
[184]
Chang WH, Kim Y-H. Robot-assisted therapy in stroke rehabilitation. J. Stroke 2013; 15(3): 174-81.
[http://dx.doi.org/10.5853/jos.2013.15.3.174] [PMID: 24396811]
[185]
Krebs HI, Hogan N. Robotic therapy: The tipping point. Am. J. Phys. Med. Rehabil. 2012; 91(11) (Suppl. 3): S290-7.
[http://dx.doi.org/10.1097/PHM.0b013e31826bcd80] [PMID: 23080044]
[186]
Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. 2018; 9(9): CD006876.
[http://dx.doi.org/10.1002/14651858.CD006876.pub5] [PMID: 30175845]
[187]
Schweighofer N, Choi Y, Winstein C, Gordon J. Task-oriented rehabilitation robotics. Am. J. Phys. Med. Rehabil. 2012; 91(11) (Suppl. 3): S270-9.
[http://dx.doi.org/10.1097/PHM.0b013e31826bcd42] [PMID: 23080042]
[188]
Weber LM, Stein J. The use of robots in stroke rehabilitation: A narrative review. NeuroRehabilitation 2018; 43(1): 99-110.
[http://dx.doi.org/10.3233/NRE-172408] [PMID: 30056437]
[189]
Norouzi-Gheidari N, Archambault PS, Fung J. Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: Systematic review and meta-analysis of the literature. J. Rehabil. Res. Dev. 2012; 49(4): 479-96.
[http://dx.doi.org/10.1682/JRRD.2010.10.0210] [PMID: 22773253]
[190]
Balasubramanian S, Klein J, Burdet E. Robot-assisted rehabilitation of hand function. Curr. Opin. Neurol. 2010; 23(6): 661-70.
[http://dx.doi.org/10.1097/WCO.0b013e32833e99a4] [PMID: 20852421]
[191]
Azad TD, Veeravagu A, Steinberg GK. Neurorestoration after stroke. Neurosurg. Focus 2016; 40(5): E2.
[http://dx.doi.org/10.3171/2016.2.FOCUS15637] [PMID: 27132523]
[192]
Cervera MA, Soekadar SR, Ushiba J, et al. Brain-computer interfaces for post-stroke motor rehabilitation: A meta-analysis. Ann. Clin. Transl. Neurol. 2018; 5(5): 651-63.
[http://dx.doi.org/10.1002/acn3.544] [PMID: 29761128]
[193]
Silvoni S, Ramos-Murguialday A, Cavinato M, et al. Brain-computer interface in stroke: A review of progress. Clin. EEG Neurosci. 2011; 42(4): 245-52.
[http://dx.doi.org/10.1177/155005941104200410] [PMID: 22208122]
[194]
Rehni AK, Liu A, Perez-Pinzon MA, Dave KR. Diabetic aggravation of stroke and animal models. Exp. Neurol. 2017; 292: 63-79.
[http://dx.doi.org/10.1016/j.expneurol.2017.03.004] [PMID: 28274862]
[195]
Martini SR, Kent TA. Hyperglycemia in acute ischemic stroke: A vascular perspective. J. Cereb. Blood Flow Metab. 2007; 27(3): 435-51.
[http://dx.doi.org/10.1038/sj.jcbfm.9600355] [PMID: 16804552]
[196]
Ergul A, Li W, Elgebaly MM, Bruno A, Fagan SC. Hyperglycemia, diabetes and stroke: Focus on the cerebrovasculature. Vascul. Pharmacol. 2009; 51(1): 44-9.
[http://dx.doi.org/10.1016/j.vph.2009.02.004] [PMID: 19258053]
[197]
Vannucci SJ, Willing LB, Goto S, et al. Experimental stroke in the female diabetic, db/db, mouse. J. Cereb. Blood Flow Metab. 2001; 21(1): 52-60.
[http://dx.doi.org/10.1097/00004647-200101000-00007] [PMID: 11149668]
[198]
Tureyen K, Kapadia R, Bowen KK, et al. Peroxisome proliferator-activated receptor-gamma agonists induce neuroprotection following transient focal ischemia in normotensive, normoglycemic as well as hypertensive and type-2 diabetic rodents. J. Neurochem. 2007; 101(1): 41-56.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04376.x] [PMID: 17394460]
[199]
Kumari R, Willing LB, Patel SD, et al. The PPAR-gamma agonist, darglitazone, restores acute inflammatory responses to cerebral hypoxia-ischemia in the diabetic ob/ob mouse. J. Cereb. Blood Flow Metab. 2010; 30(2): 352-60.
[http://dx.doi.org/10.1038/jcbfm.2009.221] [PMID: 19861974]
[200]
Iwanami J, Mogi M, Tsukuda K, et al. Low dose of telmisartan prevents ischemic brain damage with peroxisome proliferator-activated receptor-gamma activation in diabetic mice. J. Hypertens. 2010; 28(8): 1730-7.
[http://dx.doi.org/10.1097/HJH.0b013e32833a551a] [PMID: 20498620]
[201]
Ergul A, Elgebaly MM, Middlemore ML, et al. Increased hemorrhagic transformation and altered infarct size and localization after experimental stroke in a rat model type 2 diabetes. BMC Neurol. 2007; 7(1): 33.
[http://dx.doi.org/10.1186/1471-2377-7-33] [PMID: 17937795]
[202]
Li W, Qu Z, Prakash R, et al. Comparative analysis of the neurovascular injury and functional outcomes in experimental stroke models in diabetic Goto-Kakizaki rats. Brain Res. 2013; 1541: 106-14.
[http://dx.doi.org/10.1016/j.brainres.2013.10.021] [PMID: 24144674]
[203]
Elgebaly MM, Prakash R, Li W, et al. Vascular protection in diabetic stroke: role of matrix metalloprotease-dependent vascular remodeling. J. Cereb. Blood Flow Metab. 2010; 30(12): 1928-38.
[http://dx.doi.org/10.1038/jcbfm.2010.120] [PMID: 20664613]
[204]
Elewa HF, Kozak A, El-Remessy AB, et al. Early atorvastatin reduces hemorrhage after acute cerebral ischemia in diabetic rats. J. Pharmacol. Exp. Ther. 2009; 330(2): 532-40.
[http://dx.doi.org/10.1124/jpet.108.146951] [PMID: 19478137]
[205]
Osmond JM, Mintz JD, Dalton B, Stepp DW. Obesity increases blood pressure, cerebral vascular remodeling, and severity of stroke in the Zucker rat. Hypertension 2009; 53(2): 381-6.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.124149] [PMID: 19104000]
[206]
Garcia-Serrano AM, Duarte JMN. Brain metabolism alterations in type 2 diabetes: What did we learn from diet-induced diabetes models? Front. Neurosci. 2020; 14: 229.
[http://dx.doi.org/10.3389/fnins.2020.00229] [PMID: 32265637]
[207]
Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med. 2008; 359(13): 1317-29.
[http://dx.doi.org/10.1056/NEJMoa0804656] [PMID: 18815396]
[208]
Wahlgren N, Ahmed N, Dávalos A, et al. Thrombolysis with alteplase 3-4.5 h after acute ischaemic stroke (SITS-ISTR): An observational study. Lancet 2008; 372(9646): 1303-9.
[http://dx.doi.org/10.1016/S0140-6736(08)61339-2] [PMID: 18790527]
[209]
Woo MH, Lee HS, Kim J. Effect of pioglitazone in acute ischemic stroke patients with diabetes mellitus: A nested case-control study. Cardiovasc. Diabetol. 2019; 18(1): 67.
[http://dx.doi.org/10.1186/s12933-019-0874-5] [PMID: 31151454]
[210]
Lee EJ, Kim YH, Kim N, Kang DW. Deep into the brain: Artificial intelligence in stroke imaging. J. Stroke 2017; 19(3): 277-85.
[http://dx.doi.org/10.5853/jos.2017.02054] [PMID: 29037014]
[211]
Choi Y, Gordon J, Park H, Schweighofer N. Feasibility of the adaptive and automatic presentation of tasks (ADAPT) system for rehabilitation of upper extremity function post-stroke. J. Neuroeng. Rehabil. 2011; 8(1): 42.
[http://dx.doi.org/10.1186/1743-0003-8-42] [PMID: 21813010]
[212]
Dave KR, Tamariz J, Desai KM, et al. Recurrent hypoglycemia exacerbates cerebral ischemic damage in streptozotocin-induced diabetic rats. Stroke 2011; 42(5): 1404-11.
[http://dx.doi.org/10.1161/STROKEAHA.110.594937] [PMID: 21454816]
[213]
Gorelick PB, Nyenhuis D. Stroke and cognitive decline. JAMA 2015; 314(1): 29-30.
[http://dx.doi.org/10.1001/jama.2015.7149] [PMID: 26151263]
[214]
Li W, Prakash R, Kelly-Cobbs AI, et al. Adaptive cerebral neovascularization in a model of type 2 diabetes: Relevance to focal cerebral ischemia. Diabetes 2010; 59(1): 228-35.
[http://dx.doi.org/10.2337/db09-0902] [PMID: 19808897]
[215]
Makrides V, Dolgodilina E, Virgintino D, Lyck R, Enzmann G. The Blood Brain Barrier and Inflammation. Springer International Publishing 2017.
[http://dx.doi.org/10.1007/978-3-319-45514-3]
[216]
Olsson T, Viitanen M, Asplund K, Eriksson S, Hägg E. Prognosis after stroke in diabetic patients. A controlled prospective study. Diabetologia 1990; 33(4): 244-9.
[http://dx.doi.org/10.1007/BF00404803] [PMID: 2347437]
[217]
Orriols M, Gomez-Puerto MC, Ten Dijke P. BMP type II receptor as a therapeutic target in pulmonary arterial hypertension. Cell. Mol. Life Sci. 2017; 74(16): 2979-95.
[http://dx.doi.org/10.1007/s00018-017-2510-4] [PMID: 28447104]
[218]
Qian Y, Chopp M, Chen J. Emerging role of microRNAs in ischemic stroke with comorbidities. Exp. Neurol. 2020; 331: 113382.
[http://dx.doi.org/10.1016/j.expneurol.2020.113382] [PMID: 32561412]

© 2024 Bentham Science Publishers | Privacy Policy