Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Neurobiology of Amphetamine use in Stroke Recovery Combined with Rehabilitative Training and Brain Stimulation

Author(s): Mohammad Uzair, Muhammad Arshad, Turki Abualait, Zeyad T. Al-Harbi, Talal M. Al-Harbi, Reem Bunyan Fahad, Abida Arshad, Woo Kyoung Yoo and Shahid Bashir*

Volume 22, Issue 6, 2023

Published on: 22 June, 2022

Page: [857 - 874] Pages: 18

DOI: 10.2174/1871527321666220512155811

open access plus

Abstract

Stroke is a physiological disorder involving a prolonged local interruption of cerebral blood flow. It leads to massive neuronal death and causes short-term or long-lasting functional impairment. Most stroke victims regain some neural function weeks or months following a stroke, but this recovery can plateau six months or more after the injury. The goal of stroke therapy is the rehabilitation of functional capabilities, especially those affecting the patient’s autonomy and quality of life. Recent clinical and animal studies combining acute dextro-amphetamine (d-AMPH) administration with rehabilitative training (RT) have revealed that this treatment has significant remedial effects. The review aims to examine the synergistic therapeutic effects of d-amphetamine coupled with RT, administered during the early or late subacute period, on neuronal activation, anatomic plasticity, and skilled motor function in a middle-aged rodent stroke model. The treatment will also include magnetic field stimulation. This review will help increase understanding of the mechanism of d-amphetamine coupled with RT and magnetic field stimulation and their converging therapeutic effects for stroke recovery.

Keywords: Stroke, stroke therapy, amphetamine, brain stimulation, TMS, brain plasticity.

[1]
Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics-2019 update: A report from the American Heart Association. Circulation 2019; 139(10): e56-e528.
[http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID: 30700139]
[2]
Hatem SM, Saussez G, Della Faille M, et al. Rehabilitation of motor function after stroke: A multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci 2016; 10: 442-2.
[http://dx.doi.org/10.3389/fnhum.2016.00442] [PMID: 27679565]
[3]
Grefkes C, Fink GR. Recovery from stroke: Current concepts and future perspectives. Neurol Res Practice 2020; 2(1): 17.
[http://dx.doi.org/10.1186/s42466-020-00060-6] [PMID: 33324923]
[4]
Su F, Xu W. Enhancing brain plasticity to promote stroke recovery. Front Neurol 2020; 11: 554089.
[http://dx.doi.org/10.3389/fneur.2020.554089] [PMID: 33192987]
[5]
Povroznik JM, Ozga JE, Vonder Haar C, Engler-Chiurazzi EB. Executive (dys)function after stroke: special considerations for behavioral pharmacology. Behav Pharmacol 2018; 29(7): 638-53.
[http://dx.doi.org/10.1097/FBP.0000000000000432] [PMID: 30215622]
[6]
Cramer SC. Drugs to enhance motor recovery after stroke. Stroke 2015; 46(10): 2998-3005.
[http://dx.doi.org/10.1161/STROKEAHA.115.007433] [PMID: 26265126]
[7]
Maling HM, Acheson GH. Righting and other postural activity in low-decerebrate and in spinal cats after d-amphetamine. J Neurophysiol 1946; 9(5): 379-86.
[http://dx.doi.org/10.1152/jn.1946.9.5.379] [PMID: 20997620]
[8]
Meyer PM, Horel JA, Meyer DR. Effects of dl-amphetamine upon placing responses in neodecorticate cats. J Comp Physiol Psychol 1963; 56(2): 402-4.
[http://dx.doi.org/10.1037/h0049297] [PMID: 13935311]
[9]
Ramic M, Emerick AJ, Bollnow MR, O’Brien TE, Tsai S-Y, Kartje GL. Axonal plasticity is associated with motor recovery following amphetamine treatment combined with rehabilitation after brain injury in the adult rat. Brain Res 2006; 1111(1): 176-86.
[http://dx.doi.org/10.1016/j.brainres.2006.06.063] [PMID: 16920088]
[10]
Adkins DL, Jones TA. D-amphetamine enhances skilled reaching after ischemic cortical lesions in rats. Neurosci Lett 2005; 380(3): 214-8.
[http://dx.doi.org/10.1016/j.neulet.2005.01.036] [PMID: 15862888]
[11]
Dietrich WD, Busto R, Valdes I, Loor Y. Effects of normothermic versus mild hyperthermic forebrain ischemia in rats. Stroke 1990; 21(9): 1318-25.
[http://dx.doi.org/10.1161/01.STR.21.9.1318] [PMID: 2396269]
[12]
Gilmour G, Iversen SD, O’Neill MF, O’Neill MJ, Ward MA, Bannerman DM. Amphetamine promotes task-dependent recovery following focal cortical ischaemic lesions in the rat. Behavioural Brain Research 2005; 165(1): 98-109.
[http://dx.doi.org/10.1016/j.bbr.2005.06.027]
[13]
Goldstein LB, Davis JN. Post-lesion practice and amphetamine-facilitated recovery of beam-walking in the rat. Restor Neurol Neurosci 1990; 1(5): 311-4.
[http://dx.doi.org/10.3233/RNN-1990-1501] [PMID: 21551572]
[14]
Schmanke TD, Avery RA, Barth TM. The effects of amphetamine on recovery of function after cortical damage in the rat depend on the behavioral requirements of the task. J Neurotrauma 1996; 13(6): 293-307.
[http://dx.doi.org/10.1089/neu.1996.13.293] [PMID: 8835797]
[15]
Stroemer RP, Kent TA, Hulsebosch CE. Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with D-amphetamine therapy after neocortical infarction in rats. Stroke 1998; 29(11): 2381-93.
[http://dx.doi.org/10.1161/01.STR.29.11.2381] [PMID: 9804653]
[16]
Hovda DA, Fenney DM. Amphetamine with experience promotes recovery of locomotor function after unilateral frontal cortex injury in the cat. Brain Res 1984; 298(2): 358-61.
[http://dx.doi.org/10.1016/0006-8993(84)91437-9]
[17]
Sutton RL, Hovda DA, Feeney DM. Amphetamine accelerates recovery of locomotor function following bilateral frontal cortex ablation in cats. Behav Neurosci 1989; 103(4): 837-41.
[http://dx.doi.org/10.1037/0735-7044.103.4.837] [PMID: 2765187]
[18]
Barbay S, Zoubina EV, Dancause N, et al. A single injection of D-amphetamine facilitates improvements in motor training following a focal cortical infarct in squirrel monkeys. Neurorehabil Neural Repair 2006; 20(4): 455-8.
[http://dx.doi.org/10.1177/1545968306290773] [PMID: 17082500]
[19]
Khokar A, Kirmani J, Xavier A, Qureshi A. The therapeutic potential of amphetamines in poststroke recovery. Curr Med Chem Cent Nerv Syst Agents 2003; 3(1): 49-55.
[http://dx.doi.org/10.2174/1568015033357751]
[20]
Feeney DM. From laboratory to clinic: Noradrenergic enhancement of physical therapy for stroke or trauma patients. Adv Neurol 1997; 73: 383-94.
[PMID: 8959228]
[21]
Robinson RG, Bloom FE. Pharmacological treatment following experimental cerebral infarction: implications for understanding psychological symptoms of human stroke. Biol Psychiatry 1977; 12(5): 669-80.
[PMID: 588647]
[22]
Sternberg Z, Schaller B. Central noradrenergic agonists in the treatment of ischemic stroke-An overview. Transl Stroke Res 2020; 11(2): 165-84.
[http://dx.doi.org/10.1007/s12975-019-00718-7] [PMID: 31327133]
[23]
Robertson SD, Matthies HJ, Galli A. A closer look at amphetamine-induced reverse transport and trafficking of dopamine and norepinephrine transporters. Mol Neurobiol 2019; 39: 73.
[24]
Porrino LJ, Lucignani G, Dow-Edwards D, Sokoloff L. Correlation of dose-dependent effects of acute amphetamine administration on behavior and local cerebral metabolism in rats. Brain Res 2009; 307: 311-20.
[25]
Uftring SJ, Wachtel SR, Chu D, McCandless C, Levin DN, de Wit H. An fMRI study of the effect of amphetamine on brain activity. Neuropsychopharmacology 2001; 25(6): 925-35.
[http://dx.doi.org/10.1016/S0893-133X(01)00311-6] [PMID: 11750185]
[26]
Ziemann U, Tam A, Bütefisch C, Cohen LG. Dual modulating effects of amphetamine on neuronal excitability and stimulation-induced plasticity in human motor cortex. Clin Neurophysiol 2002; 113(8): 1308-15.
[http://dx.doi.org/10.1016/S1388-2457(02)00171-2] [PMID: 12140012]
[27]
Badiani A, Oates MM, Day HEW, Watson SJ, Akil H, Robinson TE. Amphetamine-induced behavior, dopamine release, and c-fos mRNA expression: Modulation by environmental novelty. J Neurosci 1998; 18(24): 10579-93.
[28]
Gill MJ, Weiss ML, Cain ME. Effects of differential rearing on amphetamine-induced c-fos expression in rats. Drug Alcohol Depend 2014; 145: 231-4.
[http://dx.doi.org/10.1016/j.drugalcdep.2014.09.779] [PMID: 25454411]
[29]
Dinse HR, Ragert P, Pleger B, Schwenkreis P, Tegenthoff M. Pharmacological modulation of perceptual learning and associated cortical reorganization. Science 2003; 301(5629): 91-4.
[http://dx.doi.org/10.1126/science.1085423]
[30]
Barbay S, Nudo RJ. The effects of amphetamine on recovery of function in animal models of cerebral injury: a critical appraisal. NeuroRehabilitation 2009; 25(1): 5-17.
[http://dx.doi.org/10.3233/NRE-2009-0495] [PMID: 19713615]
[31]
Gower A, Tiberi M. The intersection of central dopamine system and stroke: potential avenues aiming at enhancement of motor recovery. Front Synaptic Neurosci 2018; 10: 18.
[http://dx.doi.org/10.3389/fnsyn.2018.00018] [PMID: 30034335]
[32]
Gold PE, Delanoy RL, Merrin J. Modulation of long-term potentiation by peripherally administered amphetamine and epinephrine. Brain Res 1984; 305(1): 103-7.
[http://dx.doi.org/10.1016/0006-8993(84)91124-7]
[33]
McNealy KR, Ramsay ME, Barrett ST, Bevins RA. Reward-enhancing effects of d-amphetamine and its interactions with nicotine were greater in female rats and persisted across schedules of reinforcement. Behav Pharmacol 2021; 32(5): 435-47.
[http://dx.doi.org/10.1097/FBP.0000000000000637] [PMID: 34010168]
[34]
Yeh GC, Chen JC, Tsai HC, et al. Amphetamine inhibits the N-methyl-D-aspartate receptor-mediated responses by directly interacting with the receptor/channel complex. J Pharmacol Exp Ther 2002; 300(3): 1008-16.
[http://dx.doi.org/10.1124/jpet.300.3.1008] [PMID: 11861810]
[35]
Nitsche MA, Grundey J, Liebetanz D, Lang N, Tergau F, Paulus W. Catecholaminergic consolidation of motor cortical neuroplasticity in humans. Cereb Cortex 2004; 14(11): 1240-5.
[http://dx.doi.org/10.1093/cercor/bhh085] [PMID: 15142961]
[36]
Klebaur JE, Ostrander MM, Norton CS, Watson SJ, Akil H, Robinson TE. The ability of amphetamine to evoke arc (Arg 3.1) mRNA expression in the caudate, nucleus accumbens and neocortex is modulated by environmental context. Brain Research 2002; 930(1-2): 30-6.
[37]
Persico AM, Schindler CW, O’Hara BF, Brannock MT, Uhl GR. Brain transcription factor expression: effects of acute and chronic amphetamine and injection stress. Mol Brain Res 1993; 20(1-2): 91-100.
[http://dx.doi.org/10.1016/0169-328X(93)90113-4]
[38]
Wolf WA, Martin JL, Kartje GL, Farrer RG. Evidence for fibroblast growth factor-2 as a mediator of amphetamine-enhanced motor improvement following stroke. PLoS One 2014; 9(9): e108031.
[http://dx.doi.org/10.1371/journal.pone.0108031] [PMID: 25229819]
[39]
Liu H-S, Shen H, Harvey BK, et al. Post-treatment with amphetamine enhances reinnervation of the ipsilateral side cortex in stroke rats. Neuroimage 2011; 56(1): 280-9.
[http://dx.doi.org/10.1016/j.neuroimage.2011.02.049] [PMID: 21349337]
[40]
Lapish CC, Balaguer-Ballester E, Seamans JK, Phillips AG, Durstewitz D. Amphetamine exerts dose-dependent changes in prefrontal cortex attractor dynamics during working memory. J Neurosci 2015; 35(28): 10172-87.
[http://dx.doi.org/10.1523/JNEUROSCI.2421-14.2015] [PMID: 26180194]
[41]
Robinson TE, Kolb B. Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci 1999; 11(5): 1598-604.
[http://dx.doi.org/10.1046/j.1460-9568.1999.00576.x] [PMID: 10215912]
[42]
Rasmussen RS, Overgaard K, Kristiansen U. Acute but not delayed amphetamine treatment improves behavioral outcome in a rat embolic stroke model. Neurol Res 2011; 33: 774-82.
[43]
Brenneman MM, Hylin MJ, Corwin JV. The time-dependent and persistent effects of amphetamine treatment upon recovery from hemispatial neglect in rats. Behav Brain Res 2015; 293: 153-61.
[http://dx.doi.org/10.1016/j.bbr.2015.07.032] [PMID: 26209293]
[44]
Veldema J, Bösl K, Neumann G, Verheyden G, Nowak DA. Noninvasive brain stimulation in rehabilitation of hemispatial neglect after stroke. CNS Spectr 2020; 25(1): 38-49.
[http://dx.doi.org/10.1017/S1092852918001748] [PMID: 31046862]
[45]
Hillis AE, Newhart M, Heidler J, Barker PB, Herskovits EH, Degaonkar M. Anatomy of spatial attention: insights from perfusion imaging and hemispatial neglect in acute stroke. J Neurosci 2005; 25(12): 3161-7.
[http://dx.doi.org/10.1523/JNEUROSCI.4468-04.2005] [PMID: 15788773]
[46]
Sutton R, Chen M, Hovda D, Feeney D. Effects of amphetamine on cerebral metabolism following brain damage as revealed by quantitative cytochrome oxidase histochemistry. Abstr Soc Neurosci 1986; 12: 1404.
[47]
Li Y, Jiang N, Powers C, Chopp M. Neuronal damage and plasticity identified by microtubule-associated protein 2, growth-associated protein 43, and cyclin D1 immunoreactivity after focal cerebral ischemia in rats. Stroke 1998; 29(9): 1972-80.
[http://dx.doi.org/10.1161/01.STR.29.9.1972] [PMID: 9731626]
[48]
Nguyen TV, Kosofsky BE, Birnbaum R, Cohen BM, Hyman SE. Differential expression of c-fos and zif268 in rat striatum after haloperidol, clozapine, and amphetamine. Proc Natl Acad Sci USA 1992; 89(10): 4270-4.
[http://dx.doi.org/10.1073/pnas.89.10.4270] [PMID: 1374894]
[49]
Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng 2007; 9(1): 527-65.
[http://dx.doi.org/10.1146/annurev.bioeng.9.061206.133100] [PMID: 17444810]
[50]
Ahmed Z, Wieraszko A. Modulation of learning and hippocampal, neuronal plasticity by repetitive transcranial magnetic stimulation (rTMS). Bioelectromagnetics 2006; 27(4): 288-94.
[http://dx.doi.org/10.1002/bem.20211] [PMID: 16511879]
[51]
Cambiaghi M, Velikova S, Gonzalez-Rosa JJ, Cursi M, Comi G, Leocani L. Brain transcranial direct current stimulation modulates motor excitability in mice. Eur J Neurosci 2010; 31(4): 704-9.
[http://dx.doi.org/10.1111/j.1460-9568.2010.07092.x] [PMID: 20141528]
[52]
Liu Y-H, Chan SJ, Pan H-C, et al. Integrated treatment modality of cathodal-transcranial direct current stimulation with peripheral sensory stimulation affords neuroprotection in a rat stroke model. Neurophotonics 2017; 4(4): 045002.
[http://dx.doi.org/10.1117/1.NPh.4.4.045002] [PMID: 29021986]
[53]
Fujiki M, Steward O. High frequency transcranial magnetic stimulation mimics the effects of ECS in upregulating astroglial gene expression in the murine CNS. Brain Res Mol Brain Res 1997; 44(2): 301-8.
[http://dx.doi.org/10.1016/S0169-328X(96)00232-X] [PMID: 9073172]
[54]
Post A, Keck ME. Transcranial magnetic stimulation as a therapeutic tool in psychiatry: what do we know about the neurobiological mechanisms? J Psychiatr Res 2001; 35(4): 193-215.
[http://dx.doi.org/10.1016/S0022-3956(01)00023-1] [PMID: 11578638]
[55]
Hasan M, Whiteley J, Bresnahan R, et al. Somatosensory change and pain relief induced by repetitive transcranial magnetic stimulation in patients with central poststroke pain. Neuromodulation:Technology at the neural interface 2014; 17: 731-6.
[http://dx.doi.org/10.1111/ner.12198]
[56]
Ojala J, Vanhanen J, Harno H, et al. A randomized, sham-controlled trial of repetitive transcranial magnetic stimulation targeting m1 and s2 in central poststroke pain: A pilot trial. Neuromodulation 2022. Epub ahead of print
[http://dx.doi.org/10.1111/ner.13496]
[57]
Tan T, Xie J, Liu T, et al. Low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) reverses Aβ(1-42)-mediated memory deficits in rats. Exp Gerontol 2013; 48(8): 786-94.
[http://dx.doi.org/10.1016/j.exger.2013.05.001] [PMID: 23665072]
[58]
Jin SL, Sohn MK. Mechanism associated with apoptosis after repetitive transcranial magnetic stimulation in permanent stroke rat model. J Exp Stroke Transl Med 2018; 11: 1-10.
[59]
Hong Y, Liu Q, Peng M, et al. High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats. J Neuroinflammation 2020; 17(1): 150.
[http://dx.doi.org/10.1186/s12974-020-01747-y] [PMID: 32375835]
[60]
Zong X, Dong Y, Li Y, et al. Beneficial effects of theta-burst transcranial magnetic stimulation on stroke injury via improving neuronal microenvironment and mitochondrial integrity. Transl Stroke Res 2020; 11(3): 450-67.
[PMID: 31515743]
[61]
Cui J, Kim C-S, Kim Y, Sohn MK, Jee S. Effects of repetitive transcranial magnetic stimulation (rTMS) combined with aerobic exercise on the recovery of motor function in ischemic stroke rat model. Brain Sci 2020; 10(3): 186.
[http://dx.doi.org/10.3390/brainsci10030186] [PMID: 32210177]
[62]
Ikeda T, Kurosawa M, Uchikawa C, Kitayama S, Nukina N. Modulation of monoamine transporter expression and function by repetitive transcranial magnetic stimulation. Biochem Biophys Res Commun 2005; 327(1): 218-4.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.009]
[63]
Liu H, Han XH, Chen H, Zheng CX, Yang Y, Huang XL. Repetitive magnetic stimulation promotes neural stem cells proliferation by upregulating MiR-106b in vitro. J Huazhong Univ Sci Technol 2015; 35(5): 766-72.
[http://dx.doi.org/10.1007/s11596-015-1505-3] [PMID: 26489637]
[64]
Liu H, Li G, Ma C, Chen Y, Wang J, Yang Y. Repetitive magnetic stimulation promotes the proliferation of neural progenitor cells via modulating the expression of miR-106b. Int J Mol Med 2018; 42(6): 3631-9.
[http://dx.doi.org/10.3892/ijmm.2018.3922] [PMID: 30320352]
[65]
Guo F, Han X, Zhang J, et al. Repetitive transcranial magnetic stimulation promotes neural stem cell proliferation via the regulation of MiR-25 in a rat model of focal cerebral ischemia. PLoS One 2014; 9(10): e109267.
[http://dx.doi.org/10.1371/journal.pone.0109267] [PMID: 25302788]
[66]
Peng J-J, Sha R, Li M-X, et al. Repetitive transcranial magnetic stimulation promotes functional recovery and differentiation of human neural stem cells in rats after ischemic stroke. Exp Neurol 2019; 313: 1-9.
[67]
Lee JY, Kim SH, Ko A-R, et al. Therapeutic effects of repetitive transcranial magnetic stimulation in an animal model of Parkinson’s disease. Brain Res 2013; 1537: 290-302.
[http://dx.doi.org/10.1016/j.brainres.2013.08.051] [PMID: 23998987]
[68]
Yang X, Song L, Liu Z. The effect of repetitive transcranial magnetic stimulation on a model rat of Parkinson’s disease. Neuroreport 2010; 21(4): 268-72.
[http://dx.doi.org/10.1097/WNR.0b013e328335b411]
[69]
Ward NS. Mechanisms underlying recovery of motor function after stroke. Postgrad Med J 2005; 81(958): 510-4.
[70]
Yang Y-W, Pan W-X, Xie Q. Combined effect of repetitive transcranial magnetic stimulation and physical exercise on cortical plasticity. Neural Regen Res 2020; 15(11): 1986-94.
[http://dx.doi.org/10.4103/1673-5374.282239] [PMID: 32394946]
[71]
Lim JY, Kang EK, Paik N. Repetitive transcranial magnetic stimulation for hemispatial neglect in patients after stroke: An open-label pilot study. J Rehabil Med 2010; 42(5): 447.
[72]
Hummel F, Celnik P, Giraux P, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005; 128(Pt 3): 490-9.
[http://dx.doi.org/10.1093/brain/awh369] [PMID: 15634731]
[73]
Ljubisavljevic MR, Javid A, Oommen J, et al. The effects of different repetitive transcranial magnetic stimulation (rTMS) protocols on cortical gene expression in a rat model of cerebral ischemic-reperfusion injury. PLoS One 2015; 10(10): e0139892.
[http://dx.doi.org/10.1371/journal.pone.0139892] [PMID: 26431529]
[74]
Zhang N, Xing M, Wang Y, Tao H, Cheng Y. Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF-NMDAR pathways in a rat model of vascular dementia. Neuroscience 2015; 311: 284-91.
[http://dx.doi.org/10.1016/j.neuroscience.2015.10.038] [PMID: 26518460]
[75]
Zhang X-Q, Li L, Huo J-T, Cheng M, Li L-H. Effects of repetitive transcranial magnetic stimulation on cognitive function and cholinergic activity in the rat hippocampus after vascular dementia. Neural Regen Res 2018; 13(8): 1384-9.
[http://dx.doi.org/10.4103/1673-5374.235251] [PMID: 30106050]
[76]
Gao F, Wang S, Guo Y, et al. Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia: a microPET study. Eur J Nucl Med Mol Imaging 2010; 37(5): 954-61.
[http://dx.doi.org/10.1007/s00259-009-1342-3] [PMID: 20107794]
[77]
Yoon KJ, Lee Y-T, Han TR. Mechanism of functional recovery after repetitive transcranial magnetic stimulation (rTMS) in the subacute cerebral ischemic rat model: neural plasticity or anti-apoptosis? Exp Brain Res 2011; 214(4): 549-56.
[http://dx.doi.org/10.1007/s00221-011-2853-2] [PMID: 21904929]
[78]
Guo F, Lou J, Han X, Deng Y, Huang X. Repetitive transcranial magnetic stimulation ameliorates cognitive impairment by enhancing neurogenesis and suppressing apoptosis in the hippocampus in rats with ischemic stroke. Front Physiol 2017; 8: 559.
[http://dx.doi.org/10.3389/fphys.2017.00559] [PMID: 28824455]
[79]
Bolognini N, Pascual-Leone A, Fregni F. Using non-invasive brain stimulation to augment motor training-induced plasticity. J Neuroeng Rehabil 2009; 6(1): 8.
[http://dx.doi.org/10.1186/1743-0003-6-8] [PMID: 19292910]
[80]
Muellbacher W, Ziemann U, Boroojerdi B, Cohen L, Hallett M. Role of the human motor cortex in rapid motor learning. Exp Brain Res 2001; 136(4): 431-8.
[http://dx.doi.org/10.1007/s002210000614] [PMID: 11291723]
[81]
Pascual-Leone A, Dang N, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 1995; 74(3): 1037-45.
[http://dx.doi.org/10.1152/jn.1995.74.3.1037]
[82]
Bashir S, Vernet M, Najib U, et al. Enhanced motor function and its neurophysiological correlates after navigated low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in stroke. Restor Neurol Neurosci 2016; 34(4): 677-89.
[http://dx.doi.org/10.3233/RNN-140460] [PMID: 27567763]
[83]
Ameli M, Grefkes C, Kemper F, et al. Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ann Neurol 2009; 66(3): 298-309.
[http://dx.doi.org/10.1002/ana.21725] [PMID: 19798637]
[84]
Schlaug G, Renga V. Transcranial direct current stimulation: A noninvasive tool to facilitate stroke recovery. Expert Rev Med Devices 2008; 5(6): 759-68.
[http://dx.doi.org/10.1586/17434440.5.6.759]
[85]
Webster BR, Celnik PA, Cohen LG. Noninvasive brain stimulation in stroke rehabilitation. NeuroRx 2006; 3(4): 474-81.
[http://dx.doi.org/10.1016/j.nurx.2006.07.008]
[86]
Luo J, Zheng H, Zhang L, et al. High-frequency repetitive transcranial magnetic stimulation (rTMS) improves functional recovery by enhancing neurogenesis and activating BDNF/TrkB signaling in ischemic rats. Int J Mol Sci 2017; 18(2): 455.
[http://dx.doi.org/10.3390/ijms18020455] [PMID: 28230741]
[87]
Bolay H, Gürsoy-Özdemir Y, Ünal I, Dalkara T. Altered mechanisms of motor-evoked potential generation after transient focal cerebral ischemia in the rat: Implications for transcranial magnetic stimulation. Brain Res 2000; 873(1): 26-33.
[88]
Bolay H, Dalkara T. Mechanisms of motor dysfunction after transient MCA occlusion: Persistent transmission failure in cortical synapses is a major determinant. Stroke 1998; 873(1): 26-33.
[89]
Kim JY, Choi G-S, Cho Y-W, Cho H, Hwang S-J, Ahn S-H. Attenuation of spinal cord injury-induced astroglial and microglial activation by repetitive transcranial magnetic stimulation in rats. J Korean Med Sci 2013; 28(2): 295-9.
[http://dx.doi.org/10.3346/jkms.2013.28.2.295] [PMID: 23399872]
[90]
Rotenberg A, Muller PA, Vahabzadeh-Hagh AM, et al. Lateralization of forelimb motor evoked potentials by transcranial magnetic stimulation in rats. Clin Neurophysiol 2010; 121(1): 104-8.
[http://dx.doi.org/10.1016/j.clinph.2009.09.008]
[91]
Nielsen JB, Perez MA, Oudega M, Enriquez-Denton M, Aimonetti JM. Evaluation of transcranial magnetic stimulation for investigating transmission in descending motor tracts in the rat. Eur J Neurosci 2007; 25(3): 805-14.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05326.x] [PMID: 17328776]
[92]
Alaverdashvili M, Lim DH, Whishaw IQ. No improvement by amphetamine on learned non-use, attempts, success or movement in skilled reaching by the rat after motor cortex stroke. Eur J Neurosci 2007; 25(11): 3442-52.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05594.x] [PMID: 17553013]
[93]
Auriat AM, Colbourne F. Influence of amphetamine on recovery after intracerebral hemorrhage in rats. Behav Brain Res 2008; 186(2): 222-9.
[http://dx.doi.org/10.1016/j.bbr.2007.08.010] [PMID: 17904232]
[94]
Rasmussen RS, Overgaard K, Hildebrandt-Eriksen ES, Boysen G. D-amphetamine improves cognitive deficits and physical therapy promotes fine motor rehabilitation in a rat embolic stroke model. Acta Neurol Scand 2006; 113(3): 189-98.
[http://dx.doi.org/10.1111/j.1600-0404.2005.00547.x] [PMID: 16441250]
[95]
Brown AW, Bjelke B, Fuxe K. Motor response to amphetamine treatment, task-specific training, and limited motor experience in a postacute animal stroke model. Exp Neurol 2004; 190(1): 102-8.
[http://dx.doi.org/10.1016/j.expneurol.2004.07.005] [PMID: 15473984]
[96]
Alsharidah M, Al-Hussain F, Iqbal M, Hamza A, Yoo WK, Bashir S. The effect of transcranial direct current stimulation combined with functional task training on motor recovery in stroke patients. Eur Rev Med Pharmacol Sci 2018; 22(21): 7385-92.
[PMID: 30468485]
[97]
Crisostomo EA, Duncan PW, Propst M, Dawson DV, Davis JN. Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients. Ann Neurol 1988; 23(1): 94-7.
[http://dx.doi.org/10.1002/ana.410230117] [PMID: 3345072]
[98]
Schuster C, Maunz G, Lutz K, Kischka U, Sturzenegger R, Ettlin T. Dexamphetamine improves upper extremity outcome during rehabilitation after stroke: A pilot randomized controlled trial. Neurorehabil Neural Repair 2011; 25(8): 749-55.
[http://dx.doi.org/10.1177/1545968311405674] [PMID: 21712481]
[99]
Walker-Batson D, Smith P, Curtis S, Unwin H, Greenlee R. Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. Stroke 1995; 26(12): 2254-9.
[http://dx.doi.org/10.1161/01.STR.26.12.2254] [PMID: 7491646]
[100]
Wongjirat C, Vachalathiti R, Chaisevikul R, Poungvarin N. The pilot study of the effect of physical therapy with amphetamine in sensorimotor recovery of acute stroke patients 1996; Available from:. https://pesquisa.bvsalud.org/portal/resource/pt/sea-137788
[101]
Keser Z, Dehgan MW, Shadravan S, Yozbatiran N, Maher LM, Francisco GE. Combined dextroamphetamine and transcranial direct current stimulation in poststroke aphasia. Am J Phys Med Rehabil 2017; 96(10) (Suppl. 1): S141-5.
[http://dx.doi.org/10.1097/PHM.0000000000000780] [PMID: 28632508]
[102]
Walker-Batson D, Curtis S, Natarajan R, et al. A double-blind, placebo-controlled study of the use of amphetamine in the treatment of aphasia. Stroke 2001; 32(9): 2093-8.
[http://dx.doi.org/10.1161/hs0901.095720] [PMID: 11546902]
[103]
Whiting E, Chenery HJ, Chalk J, Copland DA. Dexamphetamine boosts naming treatment effects in chronic aphasia. J Int Neuropsychol Soc 2007; 13(6): 972-9.
[http://dx.doi.org/10.1017/S1355617707071317] [PMID: 17942015]
[104]
Gladstone DJ, Danells CJ, Armesto A, et al. Physiotherapy coupled with dextroamphetamine for rehabilitation after hemiparetic stroke: A randomized, double-blind, placebo-controlled trial. Stroke 2006; 37(1): 179-85.
[http://dx.doi.org/10.1161/01.STR.0000195169.42447.78]
[105]
Goldstein LB, Lennihan L, Rabadi MJ, et al. Effect of Dextroamphetamine on Poststroke Motor Recovery: A Randomized Clinical Trial. JAMA Neurol 2018; 75(12): 1494-501.
[http://dx.doi.org/10.1001/jamaneurol.2018.2338] [PMID: 30167675]
[106]
Mazagri R, Shuaib A, McPherson M, Deighton M. Amphetamine failed to improve motor function in acute stroke. Can J Neurol Sci 1995; 23(5-6): 271-80.
[107]
McNeil MR, Doyle PJ, Spencer KA, Goda AJ, Flores D, Small SL. A double-blind, placebo-controlled study of pharmacological and behavioural treatment of lexical-semantic deficits in aphasia. Aphasiology 1997; 11(4-5): 385-400.
[http://dx.doi.org/10.1080/02687039708248479]
[108]
Platz T, Kim IH, Engel U, Pinkowski C, Eickhof C, Kutzner M. Amphetamine fails to facilitate motor performance and to enhance motor recovery among stroke patients with mild arm paresis: interim analysis and termination of a double blind, randomised, placebo-controlled trial. Restor Neurol Neurosci 2005; 23(5-6): 271-80.
[PMID: 16477089]
[109]
Reding M. Effect of dextroamphetamine on motor recovery after stroke. Neurology 1995; 45: A222-.
[110]
Sonde L, Lökk J. Effects of amphetamine and/or L-dopa and physiotherapy after stroke - a blinded randomized study. Acta Neurol Scand 2007; 115(1): 55-9.
[http://dx.doi.org/10.1111/j.1600-0404.2006.00728.x] [PMID: 17156266]
[111]
Sonde L, Nordström M, Nilsson CG, Lökk J, Viitanen M. A double-blind placebo-controlled study of the effects of amphetamine and physiotherapy after stroke. Cerebrovasc Dis 2001; 12(3): 253-7.
[http://dx.doi.org/10.1159/000047712] [PMID: 11641592]
[112]
Treig T, Werner C, Sachse M, Hesse S. No benefit from D-amphetamine when added to physiotherapy after stroke: A randomized, placebo-controlled study. Clin Rehabil 2003; 17(6): 590-9.
[http://dx.doi.org/10.1191/0269215503cr653oa] [PMID: 12971703]
[113]
Vachalathiti R, Asavavallobh C, Nilanont Y, Poungvarin N. Comparison of physical therapy and physical therapy with amphetamines in sensorimotor recovery of acute stroke patients: Randomised control. J Neurol Sci 2001; 187: S253-3.
[114]
Martinsson L, Wahlgren NG. Safety of dexamphetamine in acute ischemic stroke: a randomized, double-blind, controlled dose-escalation trial. Stroke 2003; 34(2): 475-81.
[http://dx.doi.org/10.1161/01.STR.0000050161.38263.AE] [PMID: 12574563]
[115]
Bütefisch CM, Davis BC, Sawaki L, et al. Modulation of use-dependent plasticity by d-amphetamine. Ann Neurol 2002; 51(1): 59-68.
[http://dx.doi.org/10.1002/ana.10056] [PMID: 11782985]
[116]
Bashir S, Imdad K, Túnez I. Amphetamine use in stroke recovery: rehabilitative training combined with brain stimulation. Med Sci Monit 2017; 4: 29-33.
[117]
Chang WH, Kim YH, Bang OY, Kim ST, Park YH, Lee PK. Long-term effects of rTMS on motor recovery in patients after subacute stroke. J Rehabil Med 2010; 42(8): 758-64.
[http://dx.doi.org/10.2340/16501977-0590] [PMID: 20809058]
[118]
Kwon T, Kim Y-H, Chang WH. Effective method of combining rTMS and motor training in stroke patients. Restor Neurol Neurosci 2014; 32(2): 223-32.
[PMID: 24169365]
[119]
Hirakawa Y, Takeda K, Tanabe S, et al. Effect of intensive motor training with repetitive transcranial magnetic stimulation on upper limb motor function in chronic post-stroke patients with severe upper limb motor impairment. Top Stroke Rehabil 2018; 25(5): 321-5.
[http://dx.doi.org/10.1080/10749357.2018.1466971] [PMID: 29718776]
[120]
Barros Galvão SC, Borba Costa dos Santos R, Borba dos Santos P, Cabral ME, Monte-Silva K. Efficacy of coupling repetitive transcranial magnetic stimulation and physical therapy to reduce upper-limb spasticity in patients with stroke: a randomized controlled trial. Arch Phys Med Rehabil 2014; 95(2): 222-9.
[http://dx.doi.org/10.1016/j.apmr.2013.10.023] [PMID: 24239881]
[121]
Kakuda W, Abo M, Shimizu M, et al. A multi-center study on low-frequency rTMS combined with intensive occupational therapy for upper limb hemiparesis in post-stroke patients. J Neuroeng Rehabil 2012; 9(1): 4.
[http://dx.doi.org/10.1186/1743-0003-9-4] [PMID: 22264239]
[122]
Kakuda W, Abo M, Kobayashi K, et al. Combination treatment of low-frequency rTMS and occupational therapy with levodopa administration: an intensive neurorehabilitative approach for upper limb hemiparesis after stroke. Int J Neurosci 2011; 121(7): 373-8.
[http://dx.doi.org/10.3109/00207454.2011.560314] [PMID: 21426243]
[123]
Wanni Arachchige PR, Ryo U, Karunarathna S, Senoo A. Evaluation of fMRI activation in hemiparetic stroke patients after rehabilitation with low-frequency repetitive transcranial magnetic stimulation and intensive occupational therapy. Int J Neurosci 2021. [Online ahead of print
[http://dx.doi.org/10.1080/00207454.2021.1968858] [PMID: 34402371]
[124]
Urushidani N, Kinoshita S, Okamoto T, Tamashiro H, Abo M. Low-frequency rTMS and intensive occupational therapy improved upper limb motor function and cortical reorganization assessed by functional near-infrared spectroscopy in a subacute stroke patient. Case Rep Neurol 2018; 10(2): 223-31.
[http://dx.doi.org/10.1159/000492381] [PMID: 30283320]
[125]
Wang RY, Tseng HY, Liao KK, Wang CJ, Lai KL, Yang YR. rTMS combined with task-oriented training to improve symmetry of interhemispheric corticomotor excitability and gait performance after stroke: A randomized trial. Neurorehabil Neural Repair 2012; 26(3): 222-30.
[http://dx.doi.org/10.1177/1545968311423265] [PMID: 21974983]
[126]
Pan W, Wang P, Song X, Sun X, Xie Q. The effects of combined low frequency repetitive transcranial magnetic stimulation and motor imagery on upper extremity motor recovery following stroke. Front Neurol 2019; 10: 96-6.
[http://dx.doi.org/10.3389/fneur.2019.00096] [PMID: 30873100]
[127]
Moslemi Haghighi F, Kordi Yoosefinejad A, Razeghi M, Shariat A, Bagheri Z, Rezaei K. The effect of high-frequency repetitive transcranial magnetic stimulation on functional indices of affected upper limb in patients with subacute stroke. J Biomed Phys Eng 2021; 11(2): 175-84.
[PMID: 33937125]
[128]
Attal N, Ayache SS, Ciampi De Andrade D, et al. Repetitive transcranial magnetic stimulation and transcranial direct-current stimulation in neuropathic pain due to radiculopathy: a randomized sham-controlled comparative study. Pain 2016; 157(6): 1224-31.
[http://dx.doi.org/10.1097/j.pain.0000000000000510] [PMID: 26845524]
[129]
Cha HG, Kim MK. Effects of strengthening exercise integrated repetitive transcranial magnetic stimulation on motor function recovery in subacute stroke patients: A randomized controlled trial. Technol Health Care 2017; 25(3): 521-9.
[http://dx.doi.org/10.3233/THC-171294] [PMID: 28106573]
[130]
Fan H, Song Y, Cen X, Yu P, Bíró I, Gu Y. The effect of repetitive transcranial magnetic stimulation on lower-limb motor ability in stroke patients: A systematic review. Front Hum Neurosci 2021; 15: 620573.
[http://dx.doi.org/10.3389/fnhum.2021.620573] [PMID: 34539362]
[131]
Wang B, Xiao S, Yu C, Zhou J, Fu W. Effects of transcranial direct current stimulation combined with physical training on the excitability of the motor cortex, physical performance, and motor learning: A systematic review. Front Neurosci 2021; 15: 648354.
[http://dx.doi.org/10.3389/fnins.2021.648354] [PMID: 33897361]
[132]
van Lieshout ECC, van der Worp HB, Visser-Meily JMA, Dijkhuizen RM. Timing of repetitive transcranial magnetic stimulation onset for upper limb function after stroke: A systematic review and meta-analysis. Front Neurol 2019; 10: 1269.
[http://dx.doi.org/10.3389/fneur.2019.01269] [PMID: 31849827]
[133]
Graef P, Dadalt MLR, Rodrigués DAMDS, Stein C, Pagnussat AS. Transcranial magnetic stimulation combined with upper-limb training for improving function after stroke: A systematic review and meta-analysis. J Neurol Sci 2016; 369: 149-58.
[http://dx.doi.org/10.1016/j.jns.2016.08.016] [PMID: 27653882]
[134]
Kim W-S, Kwon BS, Seo HG, Park J, Paik N-J. Low-frequency repetitive transcranial magnetic stimulation over contralesional motor cortex for motor recovery in subacute ischemic stroke: A randomized sham-controlled trial. Neurorehabil Neural Repair 2020; 34: 856-67.
[135]
Kirton A, Andersen J, Herrero M, et al. Brain stimulation and constraint for perinatal stroke hemiparesis: The PLASTIC CHAMPS Trial. Neurology 2016; 86(18): 1659-67.
[http://dx.doi.org/10.1212/WNL.0000000000002646] [PMID: 27029628]
[136]
Kuthiala N, Bhasin A, Sharma R, Padma Srivastava M, Senthil Kumran S, Sharma S. rTMS and CIMT for neurofunctional recovery in chronic stroke. Int J Neurorehabil 2020; 10: 37421.
[137]
Rich TL, Menk J, Krach LE, Feyma T, Gillick BT. Repetitive transcranial magnetic stimulation/behavioral intervention clinical trial: Long-term follow-up of outcomes in congenital hemiparesis. J Child Adolesc Psychopharmacol 2016; 26(7): 598-605.
[http://dx.doi.org/10.1089/cap.2015.0157] [PMID: 26905272]
[138]
Giacobbe V, Krebs HI, Volpe BT, et al. Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: The dimension of timing. NeuroRehabilitation 2013; 33(1): 49-56.
[http://dx.doi.org/10.3233/NRE-130927] [PMID: 23949028]
[139]
Ochi M, Saeki S, Oda T, Matsushima Y, Hachisuka K. Effects of anodal and cathodal transcranial direct current stimulation combined with robotic therapy on severely affected arms in chronic stroke patients. J Rehabil Med 2013; 45(2): 137-40.
[http://dx.doi.org/10.2340/16501977-1099] [PMID: 23306448]
[140]
Straudi S, Fregni F, Martinuzzi C, Pavarelli C, Salvioli S, Basaglia N. tDCS and robotics for upper limb stroke rehabilitation: Effect modification by stroke duration and type of stroke. BioMed Res Int 2016; 2016: 5068127.
[http://dx.doi.org/10.1155/2016/5068127] [PMID: 27123448]
[141]
Hesse S, Waldner A, Mehrholz J, Tomelleri C, Pohl M, Werner C. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: an exploratory, randomized multicenter trial. Neurorehabil Neural Repair 2011; 25(9): 838-46.
[http://dx.doi.org/10.1177/1545968311413906] [PMID: 21825004]
[142]
Powell ES, Carrico C, Westgate PM, et al. Time configuration of combined neuromodulation and motor training after stroke: A proof-of-concept study. NeuroRehabilitation 2016; 39(3): 439-49.
[http://dx.doi.org/10.3233/NRE-161375] [PMID: 27589514]
[143]
Yao X, Cui L, Wang J, Feng W, Bao Y, Xie Q. Effects of transcranial direct current stimulation with virtual reality on upper limb function in patients with ischemic stroke: a randomized controlled trial. J Neuroeng Rehabil 2020; 17(1): 73.
[http://dx.doi.org/10.1186/s12984-020-00699-x] [PMID: 32539812]
[144]
Andrade SM, Batista LM, Nogueira LLRF, et al. Constraint-induced movement therapy combined with transcranial direct current stimulation over premotor cortex improves motor function in severe stroke: a pilot randomized controlled trial. Rehabil Res Pract 2017; 2017: 6842549-9.
[http://dx.doi.org/10.1155/2017/6842549] [PMID: 28250992]
[145]
Rocha S, Silva E, Foerster Á, et al. The impact of transcranial direct current stimulation (tDCS) combined with modified constraint-induced movement therapy (mCIMT) on upper limb function in chronic stroke: A double-blind randomized controlled trial. Disabil Rehabil 2016; 38(7): 653-60.
[http://dx.doi.org/10.3109/09638288.2015.1055382] [PMID: 26061222]
[146]
Kim SH. Effects of dual transcranial direct current stimulation and modified constraint-induced movement therapy to improve upper-limb function after stroke: A double-blinded, pilot randomized controlled trial. J Stroke Cerebrovasc Dis 2021; 30(9): 105928.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2021.105928] [PMID: 34256199]
[147]
Takebayashi T, Takahashi K, Moriwaki M, Sakamoto T, Domen K. Improvement of upper extremity deficit after constraint-induced movement therapy combined with and without preconditioning stimulation using dual-hemisphere transcranial direct current stimulation and peripheral neuromuscular stimulation in chronic stroke patients: A pilot randomized controlled trial. Front Neurol 2017; 8: 568.
[http://dx.doi.org/10.3389/fneur.2017.00568] [PMID: 29163334]
[148]
Mazzoleni S, Dario P, Posteraro F, Iardella L. Effects of combined transcranial direct current stimulation and wrist robot-assisted therapy in subacute stroke patients: preliminary results. IEEE Int Conf Rehabil Robot 2015; 2015: 217-22.
[http://dx.doi.org/10.1109/ICORR.2015.7281202]
[149]
Mazzoleni S, Tran VD, Dario P, Posteraro F. Effects of transcranial direct current stimulation (tdcs) combined with wrist robot-assisted rehabilitation on motor recovery in subacute stroke patients: A randomized controlled trial. IEEE Trans Neural Syst Rehabil Eng 2019; 27(7): 1458-66.
[http://dx.doi.org/10.1109/TNSRE.2019.2920576 ] [PMID: 31170077]
[150]
Mazzoleni S, Tran VD, Iardella L, Dario P, Posteraro F. Randomized, sham-controlled trial based on transcranial direct current stimulation and wrist robot-assisted integrated treatment of subacute stroke patients: Intermediate results. IEEE Int Conf Rehabil Robot 2017; 2017: 555-60.
[151]
Celnik P, Paik NJ, Vandermeeren Y, Dimyan M, Cohen LG. Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence task after chronic stroke. Stroke 2009; 40(5): 1764-71.
[http://dx.doi.org/10.1161/STROKEAHA.108.540500] [PMID: 19286579]
[152]
Kim G-W, Ko M-H. Facilitation of corticospinal tract excitability by transcranial direct current stimulation combined with voluntary grip exercise. Neurosci Lett 2013; 548: 181-4.
[http://dx.doi.org/10.1016/j.neulet.2013.05.037] [PMID: 23726882]
[153]
Sattler V, Acket B, Raposo N, et al. Anodal tDCS combined with radial nerve stimulation promotes hand motor recovery in the acute phase after ischemic stroke. Neurorehabil Neural Repair 2015; 29(8): 743-54.
[http://dx.doi.org/10.1177/1545968314565465] [PMID: 25567120]
[154]
Silva LVDC, Porto F, Fregni F, Gurgel JL. Transcranial direct current stimulation in combination with exercise: A systematic review. Rev Bras Med Esporte 2019; 25(6): 520-6.
[http://dx.doi.org/10.1590/1517-869220192506215836]
[155]
Kwon TG, Park E, Kang C, Chang WH, Kim Y-H. The effects of combined repetitive transcranial magnetic stimulation and transcranial direct current stimulation on motor function in patients with stroke. Restor Neurol Neurosci 2016; 34(6): 915-23.
[http://dx.doi.org/10.3233/RNN-160654] [PMID: 27689549]
[156]
Gong Y, Long XM, Xu Y, Cai XY, Ye M. Effects of repetitive transcranial magnetic stimulation combined with transcranial direct current stimulation on motor function and cortex excitability in subacute stroke patients: A randomized controlled trial. Clin Rehabil 2021; 35(5): 718-27.
[http://dx.doi.org/10.1177/0269215520972940] [PMID: 33222502]
[157]
Bashir S, Al-Hussain F, Al-Sultan F, Hamza A, Asim N, Yoo W-K. Effects of navigated transcranial magnetic stimulation priming with transcranial direct current (dc) stimulation coupled with constraint-induced movement therapy on motor function of stroke patients. Med Sci Monit 2018; 5: 6-12.
[158]
Bretlau LG, Lunde M, Lindberg L, Undén M, Dissing S, Bech P. Repetitive transcranial magnetic stimulation (rTMS) in combination with escitalopram in patients with treatment-resistant major depression: a double-blind, randomised, sham-controlled trial. Pharmacopsychiatry 2008; 41(2): 41-7.
[http://dx.doi.org/10.1055/s-2007-993210] [PMID: 18311683]
[159]
Rossini D, Magri L, Lucca A, Giordani S, Smeraldi E, Zanardi R. Does rTMS hasten the response to escitalopram, sertraline, or venlafaxine in patients with major depressive disorder? A double-blind, randomized, sham-controlled trial. J Clin Psychiatry 2005; 66(12): 1569-75.
[http://dx.doi.org/10.4088/JCP.v66n1212] [PMID: 16401159]
[160]
Rumi DO, Gattaz WF, Rigonatti SP, et al. Transcranial magnetic stimulation accelerates the antidepressant effect of amitriptyline in severe depression: a double-blind placebo-controlled study. Biol Psychiatry 2005; 57(2): 162-6.
[http://dx.doi.org/10.1016/j.biopsych.2004.10.029] [PMID: 15652875]
[161]
Wang QM, Cui H, Han SJ, et al. Combination of transcranial direct current stimulation and methylphenidate in subacute stroke. Neurosci Lett 2014; 569: 6-11.
[http://dx.doi.org/10.1016/j.neulet.2014.03.011] [PMID: 24631567]

© 2024 Bentham Science Publishers | Privacy Policy