[1]
FLP-Catalyzed Transfer Hydrogenation of Silyl Enol Ethers. I. Khan, B. Reed-Berendt, R.L. Melen,* L.C. Morrill,*. Angew. Chem. Int. Ed., 2018.
[http://dx.doi.org/10.1002/anie.201808800R1]
[http://dx.doi.org/10.1002/anie.201808800R1]
[2]
Frustrated Lewis Pair (FLP)-Catalyzed Hydrogenation of Aza-Morita-Baylis-Hillman Adducts and Sequential Organo-FLP Catalysis. I. Khan, M. Manzotti, G.J. Tizzard, S.J. Coles, R.L. Melen,* L.C. Morrill,*. ACS Catal., 2017, 7, 7748-7752.
[3]
Enantioselective Synthesis of Spiroindenes by Enol-Directed Rh(III)-Catalyzed C–H Functionalization and Spiroannulation. S.R. Chidipudi, D.J. Burn, I. Khan; H.W. Lam,* Angew. Chem. Int. Ed., 2015, 54, 13975-13979. Angew. Chem. 2015, 127, 14181‒14185. [ChemInform abstract: 2016, 47 (12)] (Highlighted in Synfacts, 2016, 12, 161).
[4]
Synthesis of Spiroindanes by Palladium-Catalyzed Oxidative Annulations of Non- or Weakly Activated 1,3-Dienes Involving C–H Functionalization. I. Khan, S.R. Chidipudi, H.W. Lam,*. Chem. Commun. (Camb.), 2015, 51, 2613-2616.
[5]
Synthesis of Benzopyrans by Pd(II) Or Ru (II)–Catalyzed Enolate–Directed C–H Alkenylation. S.R. Chidipudi, M.D. Wieczysty, I. Khan, H.W. Lam,*. Org. Lett., 2013, 15(3), 570-573. [ChemInform abstract: 2013, 44 (26)]
[6]
Functionalization of Csp3–H and Csp2–H Bonds: Synthesis of Spiroindenes by Enolate-Directed Ruthenium-Catalyzed Oxidative Annulation of Alkynes with 2-Aryl-1,3-dicarbonyl Compounds. S.R. Chidipudi, I. Khan, H.W. Lam,* Angew. Chem. Int. Ed. 2012, 51, 12115–12119. Angew. Chem., 2012, 124, 12281-12285. [ChemInform abstract: 2013, 44 (19)
[7]
Quinolinic carboxylic acid derivatives as potential multi-target compounds for neurodegeneration: monoamine oxidase and cholinesterase inhibition. N.A. Khan,† I. Khan,† S.M.A. Abid, S. Zaib, A. Ibrar, H. Andleeb, S. Hameed,* J. Iqbal,*. Med. Chem., 2018, 14, 74-85. [†equal contribution
[8]
A new entry into the portfolio of α-glucosidase inhibitors as potent therapeutics for type 2 diabetes: design, bioevaluation and one-pot multi-component synthesis of diamine-bridged coumarinyl oxadiazole conjugates. M. Kazmi, S. Zaib, A. Ibrar, S.T. Amjad, Z. Shafique, S. Mehsud, A. Saeed, J. Iqbal, I. Khan,*. Bioorg. Chem., 2018, 77, 190-202.
[9]
Combined in Vitro and in Silico Studies for the Anticholinesterase Activity and Pharmacokinetics of Coumarinyl Thiazoles and Oxadiazoles. A. Ibrar, A. Khan, M. Ali, R. Sarwar, S. Mehsud, U. Farooq, S.M.A. Halimi, I. Khan*, A. Al-Harrasi,*. Front Chem., 2018, 6(61), 1-12.
[10]
2-Nitrobenzohydrazide as a Potent Urease Inhibitor: Synthesis, Characterization and Single Crystal X-ray Diffraction Analysis. N. Abbas, I. Khan, S. Batool, U. Farooq, A. Khan, Shahid Hameed,* J.M. White, A. Ibrar,*. J. Pak. Chem. Soc, 2018, 40, 165-170.
[11]
A comparative experimental and theoretical investigation of hydrogen, halogen and π•••π interactions in the solid-state supramolecular assembly of 2- and 4-formylphenyl arylsulfonates. H. Andleeb, I. Khan, A. Bauzá, M.N. Tahir, J. Simpson, S. Hameed,* A. Frontera,*. Acta Crystallogr., 2018, C74, 816-829. [Cover article]
[12]
Developing hybrid molecule therapeutics for diverse enzyme inhibitory action: Active role of coumarin-based structural leads in drug discovery. A. Ibrar, S.A. Shehzadi, F. Saeed, I. Khan,*. Bioorg. Med. Chem., 2018. accepted [Cover article]
[13]
Symmetrical aryl linked bis-iminothiazolidinones as new chemical entities for the inhibition of monoamine oxidases: synthesis, in-vitro biological evaluation and molecular modelling analysis. N. Abbas, S. Zaib, S.M. Bakht, A. Ibrar, I. Khan,* S. Batool, A. Saeed, J. Iqbal. Bioorg. Chem., 2017, 70, 17-26.