Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

A Review of 99mTc-labeled Tumor Metabolic Imaging Agents

Author(s): Yilin Li and Junbo Zhang*

Volume 22, Issue 12, 2022

Published on: 14 January, 2022

Page: [1586 - 1596] Pages: 11

DOI: 10.2174/1389557521666210521114024

Price: $65

Abstract

In recent years, with the development of nuclear medicine imaging technology, radionuclide- labeled tumor imaging agents have shown unique advantages in the early diagnosis of tumors. Due to the relatively low cost of SPECT in the clinic with the convenient preparation and suitable properties of 99mTc, 99mTc-labeled tumor metabolic imaging agents prepared based on principles of tumor metabolism have gained considerable attention. This article briefly introduces the progress in the research of 99mTc-labeled glucose derivatives, amino acid derivatives, nucleotide derivatives, and other tumor metabolic imaging agents and proposes the prospects for the development of 99mTclabeled tumor metabolic imaging agents.

Keywords: 99mTc, SPECT, tumor metabolic imaging agent, glucose derivatives, amino acid derivatives, nucleotide derivatives.

Graphical Abstract

[1]
Warburg, O.; Wind, F.; Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol., 1927, 8(6), 519-530.
[http://dx.doi.org/10.1085/jgp.8.6.519] [PMID: 19872213]
[2]
Dapueto, R.; Aguiar, R.B.; Moreno, M.; Machado, C.M.L.; Marques, F.L.N.; Gambini, J.P.; Chammas, R.; Cabral, P.; Porcal, W. Techne-tium glucose complexes as potential cancer imaging agents. Bioorg. Med. Chem. Lett., 2015, 25(19), 4254-4259.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.098] [PMID: 26318991]
[3]
Yang, D.J.; Kim, C.G.; Schechter, N.R.; Azhdarinia, A.; Yu, D.F.; Oh, C.S.; Bryant, J.L.; Won, J.J.; Kim, E.E.; Podoloff, D.A. Imaging with 99mTc ECDG targeted at the multifunctional glucose transport system: Feasibility study with rodents. Radiology, 2003, 226(2), 465-473.
[http://dx.doi.org/10.1148/radiol.2262011811] [PMID: 12563141]
[4]
Dai, D.; Rollo, F.D.; Bryant, J.; Kim, E.E. Noninferiority of 99mTc-ethylenedicysteine-glucosamine as an alternative analogue to 18F-fluorodeoxyglucose in the detection and staging of non-small cell lung cancer. Cont Media Mol. Imaging, 2018, 2018, 8969714.
[http://dx.doi.org/10.1155/2018/8969714] [PMID: 29736155]
[5]
Chen, X.; Li, L.; Liu, F.; Liu, B. Synthesis and biological evaluation of technetium-99m-labeled deoxyglucose derivatives as imaging agents for tumor. Bioorg. Med. Chem. Lett., 2006, 16(21), 5503-5506.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.050] [PMID: 16931003]
[6]
Chen, Y.; Huang, Z.W.; He, L.; Zheng, S.L.; Li, J.L.; Qin, D.L. Synthesis and evaluation of a technetium-99m-labeled diethylenetriami-nepentaacetate-deoxyglucose complex ([99mTc]-DTPA-DG) as a potential imaging modality for tumors. Appl. Radiat. Isot., 2006, 64(3), 342-347.
[http://dx.doi.org/10.1016/j.apradiso.2005.08.004] [PMID: 16290170]
[7]
Liang, J.; Chen, Y.; Huang, Z.; Zhao, Y.; He, L. Early chemotherapy response evaluation in tumors by 99mTc-DTPA-DG. Cancer Biother. Radiopharm., 2008, 23(3), 363-370.
[http://dx.doi.org/10.1089/cbr.2007.0446] [PMID: 18593369]
[8]
Singh, S.; Singh, S.; Sharma, R.K.; Kaul, A.; Mathur, R.; Tomar, S.; Varshney, R.; Mishra, A.K. Synthesis and preliminary evaluation of a 99mTc labeled deoxyglucose complex 99mTc-DTPA-bis(DG) as a potential SPECT based probe for tumor imaging. New J. Chem., 2020, 44(7), 3062-3071.
[http://dx.doi.org/10.1039/C9NJ04705K]
[9]
Zhang, J.; Ren, J.; Lin, X.; Wang, X. Synthesis and biological evaluation of a novel (99m)Tc nitrido radiopharmaceutical with deoxyglucose dithiocarbamate, showing tumor uptake. Bioorg. Med. Chem. Lett., 2009, 19(10), 2752-2754.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.131] [PMID: 19362469]
[10]
Lin, X.; Jin, Z.; Ren, J.; Pang, Y.; Zhang, W.; Huo, J.; Wang, X.; Zhang, J.; Zhang, Y. Synthesis and biodistribution of a new 99mTc-oxo complex with deoxyglucose dithiocarbamate for tumor imaging. Chem. Biol. Drug Des., 2012, 79(3), 239-245.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01280.x] [PMID: 22136603]
[11]
Lin, X.; Chao, X.; Zhang, J.; Jin, Z.; Zhang, Y. Preparation and biodistribution of a 99mTc tricarbonyl complex with deoxyglucose dithio-carbamate as a tumor imaging agent for SPECT. Bioorg. Med. Chem. Lett., 2014, 24(16), 3964-3967.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.037] [PMID: 24985567]
[12]
Zhang, X.; Ruan, Q.; Duan, X.; Gan, Q.; Song, X.; Fang, S.; Lin, X.; Du, J.; Zhang, J. Novel 99mTc-labeled glucose derivative for single photon emission computed tomography: A promising tumor imaging agent. Mol. Pharm., 2018, 15(8), 3417-3424.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00415] [PMID: 29985620]
[13]
Zhang, X.; Ruan, Q.; Jiang, Y.; Gan, Q.; Zhang, J. Evaluation of 99mTc-CN5DG as a broad-spectrum SPECT probe for tumor imaging. Transl. Oncol., 2021, 14(1), 100966.
[http://dx.doi.org/10.1016/j.tranon.2020.100966] [PMID: 33246288]
[14]
Liu, T.; Gan, Q.; Zhang, J.; Jin, Z.; Zhang, W.; Zhang, Y. Synthesis and biodistribution of novel 99mTcN complexes of glucose dithiocar-bamate as potential probes for tumor imaging. Med. Chem. Comm., 2016, 7(7), 1381-1386.
[http://dx.doi.org/10.1039/C6MD00127K]
[15]
Liu, T.; Gan, Q.; Zhang, J. Synthesis and biological evaluation of novel 99mTc(CO)3 labeled glucose derivatives prepared by click chemis-try route. J. Radioanal. Nucl. Chem., 2016, 310(3), 1215-1221.
[http://dx.doi.org/10.1007/s10967-016-4950-y]
[16]
Liu, T.; Gan, Q.; Zhang, J. Macrocyclic triamine derived glucose analogues for 99m Tc(CO)3 labeling: Synthesis and biological evaluation as potential tumor-imaging agents. Chem. Biol. Drug Des., 2017, 89(2), 277-284.
[http://dx.doi.org/10.1111/cbdd.12784] [PMID: 28205404]
[17]
Ding, J.; Su, H.; Wang, F.; Chu, T. A pre-targeting strategy for imaging glucose metabolism using technetium-99m labelled dibenzo-cyclooctyne derivative. Bioorg. Med. Chem. Lett., 2019, 29(14), 1791-1798.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.012] [PMID: 31101473]
[18]
Fuchs, B.C.; Bode, B.P. Amino acid transporters ASCT2 and LAT1 in cancer: Partners in crime? Semin. Cancer Biol., 2005, 15(4), 254-266.
[http://dx.doi.org/10.1016/j.semcancer.2005.04.005] [PMID: 15916903]
[19]
Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino acids in cancer. Exp. Mol. Med., 2020, 52(1), 15-30.
[http://dx.doi.org/10.1038/s12276-020-0375-3] [PMID: 31980738]
[20]
van den Bergh, A.C.M.; Pruim, J.; Links, T.P.; van der Vliet, A.M.; Sluiter, W.; Wolffenbuttel, B.H.R.; Langendijk, J.A.; Hoving, E.W.; Dullaart, R.P.F. Tyrosine positron emission tomography and protein synthesis rate in pituitary adenoma: Different effects of surgery and radiation therapy. Radiother. Oncol., 2011, 98(2), 213-216.
[http://dx.doi.org/10.1016/j.radonc.2010.12.020] [PMID: 21296442]
[21]
Venneti, S.; Dunphy, M.P.; Zhang, H.; Pitter, K.L.; Zanzonico, P.; Campos, C.; Carlin, S.D.; La Rocca, G.; Lyashchenko, S.; Ploessl, K.; Rohle, D.; Omuro, A.M.; Cross, J.R.; Brennan, C.W.; Weber, W.A.; Holland, E.C.; Mellinghoff, I.K.; Kung, H.F.; Lewis, J.S.; Thompson, C.B. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci. Transl. Med., 2015, 7(274), 274ra17.
[http://dx.doi.org/10.1126/scitranslmed.aaa1009] [PMID: 25673762]
[22]
Tamemasa, O.; Takeda, A.; Goto, R. Tumor detection with some 99mTc-labeled S-containing amino acids. Gan, 1984, 75(5), 395-402.
[PMID: 6745561]
[23]
Tait, J.F.; Smith, C.; Gibson, D.F. Development of annexin V mutants suitable for labeling with Tc(i)-carbonyl complex. Bioconjug. Chem., 2002, 13(5), 1119-1123.
[http://dx.doi.org/10.1021/bc025545s] [PMID: 12236794]
[24]
Ibrahim, I.T.; Abdelhalim, S.M.; Farouk, N. Preclinical Evaluation of 99mTc-histidine as a possible tumor imaging agent. Radiochemistry, 2016, 58(5), 521-527.
[http://dx.doi.org/10.1134/S106636221605012X]
[25]
Karacalioglu, A.O.; Yang, D.J.; Azhdarinia, A.; Mendez, R.; Oh, C.; Kohanim, S.; Chanda, M.; Greenwell, A.C.; Yu, D.F.; Kim, E.E. Radio-labeled L-lysine for tumor imaging. Acad. Radiol., 2006, 13(11), 1327-1337.
[http://dx.doi.org/10.1016/j.acra.2006.03.022] [PMID: 17070450]
[26]
Sinha, D.; Shukla, G.; Tiwari, A.K.; Chaturvedi, S.; Chuttani, K.; Chandra, H.; Mishra, A.K. 99mTc-DTPA-amino acids conjugate as specific SPECT pharmaceuticals for tumor imaging. Chem. Biol. Drug Des., 2009, 74(2), 159-164.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00839.x] [PMID: 19614681]
[27]
Hazari, P.P.; Shukla, G.; Goel, V.; Chuttani, K.; Kumar, N.; Sharma, R.; Mishra, A.K. Synthesis of specific SPECT-radiopharmaceutical for tumor imaging based on methionine: 99mTc-DTPA-bis(methionine). Bioconjug. Chem., 2010, 21(2), 229-239.
[http://dx.doi.org/10.1021/bc900197n] [PMID: 20108938]
[28]
Mojarrad, P.; Zamani, S.; Seyedhamzeh, M.; Omoomi, F.D.; Karimpourfard, N.; Hadadian, S.; Ebrahimi, S.E.S.; Hamedani, M.P.; Farza-neh, J.; Ardestani, M.S. Novel radiopharmaceutical (Technetium-99m)-(DOTA-NHS-ester)-Methionine as a SPECT-CT tumor imaging agent. Eur. J. Pharm. Sci., 2020, 141, 105112.
[http://dx.doi.org/10.1016/j.ejps.2019.105112] [PMID: 31629917]
[29]
Kong, F-L.; Zhang, Y.; Ali, M.S.; Oh, C.; Mendez, R.; Kohanim, S.; Tsao, N.; Chanda, M.; Huang, W.C.; Yang, D.J. Synthesis of 99mTc-EC-AMT as an imaging probe for amino acid transporter systems in breast cancer. Nucl. Med. Commun., 2010, 31(8), 699-707.
[http://dx.doi.org/10.1097/MNM.0b013e328339ea48] [PMID: 20495499]
[30]
Mogadam, H.Y.; Erfani, M.; Nikpassand, M.; Mokhtary, M. Preparation and assessment of a new radiotracer technetium-99m-6-hydrazinonicotinic acid-tyrosine as a targeting agent in tumor detecting through single photon emission tomography. Bioorg. Chem., 2020, 104, 104181.
[http://dx.doi.org/10.1016/j.bioorg.2020.104181] [PMID: 32920354]
[31]
Liu, M.; Lin, X.; Song, X.; Cui, Y.; Li, P.; Wang, X.; Zhang, J. Synthesis and biodistribution of a novel 99mTc nitrido radiopharmaceutical with proline dithiocarbamate as a potential tumor imaging agent. J. Radioanal. Nucl. Chem., 2013, 298(3), 1659-1663.
[http://dx.doi.org/10.1007/s10967-013-2592-x]
[32]
Wang, Z.; Yip, L.Y.; Lee, J.H.J.; Wu, Z.; Chew, H.Y.; Chong, P.K.W.; Teo, C.C.; Ang, H.Y-K.; Peh, K.L.E.; Yuan, J.; Ma, S.; Choo, L.S.K.; Basri, N.; Jiang, X.; Yu, Q.; Hillmer, A.M.; Lim, W.T.; Lim, T.K.H.; Takano, A.; Tan, E.H.; Tan, D.S.W.; Ho, Y.S.; Lim, B.; Tam, W.L. Methionine is a metabolic dependency of tumor-initiating cells. Nat. Med., 2019, 25(5), 825-837.
[http://dx.doi.org/10.1038/s41591-019-0423-5] [PMID: 31061538]
[33]
Buck, A.K.; Halter, G.; Schirrmeister, H.; Kotzerke, J.; Wurziger, I.; Glatting, G.; Mattfeldt, T.; Neumaier, B.; Reske, S.N.; Hetzel, M. Ima-ging proliferation in lung tumors with PET: 18F-FLT versus18F-FDG. J. Nucl. Med., 2003, 44(9), 1426-1431.
[PMID: 12960187]
[34]
Saga, T.; Kawashima, H.; Araki, N.; Takahashi, J.A.; Nakashima, Y.; Higashi, T.; Oya, N.; Mukai, T.; Hojo, M.; Hashimoto, N.; Manabe, T.; Hiraoka, M.; Togashi, K. Evaluation of primary brain tumors with FLT-PET: Usefulness and limitations. Clin. Nucl. Med., 2006, 31(12), 774-780.
[http://dx.doi.org/10.1097/01.rlu.0000246820.14892.d2] [PMID: 17117071]
[35]
de Zwart, P.L.; van Dijken, B.R.J.; Holtman, G.A.; Stormezand, G.N.; Dierckx, R.A.J.O.; Jan van Laar, P.; van der Hoorn, A. Diagnostic accuracy of PET tracers for the differentiation of tumor progression from treatment-related changes in high-grade glioma: A systematic re-view and metaanalysis. J. Nucl. Med., 2020, 61(4), 498-504.
[http://dx.doi.org/10.2967/jnumed.119.233809] [PMID: 31541032]
[36]
Christensen, T.N.; Langer, S.W.; Persson, G.F.; Larsen, K.R.; Loft, A.; Amtoft, A.G.; Berthelsen, A.K.; Johannesen, H.H.; Keller, S.H.; Kjaer, A.; Fischer, B.M. 18F-FLT-PET/CT adds value to 18F-FDG-PET/CT for diagnosing relapse after definitive radiotherapy in patients with lung cancer. Results of a prospective clinical trial. J. Nucl. Med., 2020, 247742.
[http://dx.doi.org/10.2967/jnumed.120.247742] [PMID: 33037090]
[37]
Morin, K.W.; Atrazheva, E.D.; Knaus, E.E.; Wiebe, L.I. Synthesis and cellular uptake of 2′-substituted analogues of (E)-5-(2-125I iodo-vinyl)-2′-deoxyuridine in tumor cells transduced with the herpes simplex type-1 thymidine kinase gene. Evaluation as probes for monito-ring gene therapy. J. Med. Chem., 1997, 40(14), 2184-2190.
[http://dx.doi.org/10.1021/jm9606406] [PMID: 9216837]
[38]
Tjuvajev, J.G.; Stockhammer, G.; Desai, R.; Uehara, H.; Watanabe, K.; Gansbacher, B.; Blasberg, R.G. Imaging the expression of transfec-ted genes in vivo. Cancer Res., 1995, 55(24), 6126-6132.
[PMID: 8521403]
[39]
Watanabe, K.A.; Reichman, U.; Hirota, K.; Lopez, C.; Fox, J.J. Nucleosides. 110. Synthesis and antiherpes virus activity of some 2′-fluoro-2′-deoxyarabinofuranosylpyrimidine nucleosides. J. Med. Chem., 1979, 22(1), 21-24.
[http://dx.doi.org/10.1021/jm00187a005] [PMID: 218006]
[40]
Zhang, Y.; Dai, X.M.; Kallmes, D.F.; Pan, D.F. Synthesis of a technetium-99m-labeled thymidine analog: A potential HSV1-TK substrate for non-invasive reporter gene expression imaging. Tetrahedron Lett., 2004, 45(47), 8673-8676.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.145]
[41]
Teng, B.; Bai, Y.; Chang, Y.; Chen, S.; Li, Z. Technetium-99m-labeling and synthesis of thymidine analogs: Potential candidates for tumor imaging. Bioorg. Med. Chem. Lett., 2007, 17(12), 3440-3444.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.086] [PMID: 17449246]
[42]
Celen, S.; de Groot, T.; Balzarini, J.; Vunckx, K.; Terwinghe, C.; Vermaelen, P.; Van Berckelaer, L.; Vanbilloen, H.; Nuyts, J.; Mortelmans, L.; Verbruggen, A.; Bormans, G. Synthesis and evaluation of a 99mTc-MAMA-propyl-thymidine complex as a potential probe for in vivo visualization of tumor cell proliferation with SPECT. Nucl. Med. Biol., 2007, 34(3), 283-291.
[http://dx.doi.org/10.1016/j.nucmedbio.2007.01.003] [PMID: 17383578]
[43]
Desbouis, D.; Struthers, H.; Spiwok, V.; Küster, T.; Schibli, R. Synthesis, in vitro, and in silico evaluation of organometallic technetium and rhenium thymidine complexes with retained substrate activity toward human thymidine kinase type 1. J. Med. Chem., 2008, 51(21), 6689-6698.
[http://dx.doi.org/10.1021/jm800530p] [PMID: 18837546]
[44]
Stichelberger, M.; Desbouis, D.; Spiwok, V.; Scapozza, L.; Schubiger, P.A.; Schibli, R. Synthesis, in vitro and in silico assessment of orga-nometallic rhenium(I) and technetium(I) thymidine complexes. J. Organomet. Chem., 2007, 692(6), 1255-1264.
[http://dx.doi.org/10.1016/j.jorganchem.2006.08.101]
[45]
Desbouis, D.; Schubiger, P.A.; Schibli, R. Synthesis of tricarbonyl rhenium and technetium complexes of a 5′-carboxamide 5-ethyl-2′-deoxyuridine for selective inhibition of herpes simplex virus thymidine kinase 1. J. Organomet. Chem., 2007, 692(6), 1340-1347.
[http://dx.doi.org/10.1016/j.jorganchem.2006.10.011]
[46]
Lu, C.; Jiang, Q.; Tan, C.; Tang, J.; Zhang, J. Preparation and preliminary biological evaluation of novel (99m)Tc-labelled thymidine ana-logs as tumor imaging agents. Molecules, 2012, 17(7), 8518-8532.
[http://dx.doi.org/10.3390/molecules17078518] [PMID: 22801365]
[47]
Lu, C.X.; Wang, Z.W.; Jiang, Q.F.; Tang, J.; Tan, C.; Zhang, J.K. Synthesis and preliminary biological evaluation of a technetium-99m labeled thymidine analog. Chin. Chem. Lett., 2011, 22(11), 1309-1312.
[http://dx.doi.org/10.1016/j.cclet.2011.06.012]
[48]
Lu, C.; Jiang, Q.; Yu, H.; Wang, S.; Li, X.; Wang, Z. Preparation and preliminary biological evaluation of 99mTc-ANMdU. Nucl. Sci. Tech., 2010, 21(2), 106-109.
[49]
Duan, X.; Liu, T.; Zhang, Y.; Zhang, J. Synthesis and Synthesis and biological evaluation of novel 99mTc(CO)3-labeled thymidine analogs as potential probes for tumor proliferation imaging. Molecules, 2016, 21(4), 510.
[http://dx.doi.org/10.3390/molecules21040510] [PMID: 27104501]
[50]
Gutfilen, B.; Fonseca, L.M. Comparison of Tc-99m THY and Tc-99m MIBI scans for diagnosis of breast lesions. J. Exp. Clin. Cancer Res., 2001, 20(3), 385-391.
[PMID: 11718219]
[51]
Gutfilen, B.; Rodrigues, E.; Soraggi, R.; Barbosa Da Fonseca, L.H. Preliminary observation of 99mTc-thymine imaging in breast neoplasms. Nucl. Med. Commun., 2001, 22(10), 1133-1137.
[http://dx.doi.org/10.1097/00006231-200110000-00013] [PMID: 11567188]
[52]
Ribeiro, M.P.; Souza, S.A.; Lopes, F.P.; Rosado-de-Castro, P.H.; Fonseca, L.M.; Gutfilen, B. 99mTc-thymine scintigraphy may be a promi-sing method in the diagnosis of breast cancer. Clinics (São Paulo), 2013, 68(3), 283-289.
[http://dx.doi.org/10.6061/clinics/2013(03)OA01] [PMID: 23644845]
[53]
Young Kim, J.; Jun Oh, S.; Sook Ryu, J.; Choi, S.J.; Ha, H.J.; Hyuk Moon, D. Synthesis of 99mTc(CO)3-deoxyuridine derivatives as poten-tial HSV1-tk gene expression imaging agents. Appl. Radiat. Isot., 2008, 66(4), 489-496.
[http://dx.doi.org/10.1016/j.apradiso.2007.11.016] [PMID: 18222693]
[54]
Yang, D.J.J.; Ozaki, K.; Oh, C.S.; Azhdarinia, A.; Yang, T.; Ito, M.; Greenwell, A.; Bryant, J.; Kohanim, S.; Wong, V.K.; Kim, E.E. (99m)Tc-EC-guanine: Synthesis, biodistribution, and tumor imaging in animals. Pharm. Res., 2005, 22(9), 1471-1479.
[http://dx.doi.org/10.1007/s11095-005-6157-8] [PMID: 16132359]
[55]
Ivashchenko, O.; van der Have, F.; Villena, J.L.; Groen, H.C.; Ramakers, R.M.; Weinans, H.H.; Beekman, F.J. Quarter-millimeter-resolution molecular mouse imaging with U-SPECT⁺. Mol. Imaging, 2014, 13(1), 1-8.
[PMID: 25429783]
[56]
Piccinelli, M.; Garcia, E.V. Advances in single-photon emission computed tomography hardware and software. Cardiol. Clin., 2016, 34(1), 1-11.
[http://dx.doi.org/10.1016/j.ccl.2015.06.001] [PMID: 26590775]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy