Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Editorial

Advances and Challenges of Deep Learning

Author(s): Shui-Hua Wang and Yu-Dong Zhang*

Volume 17, Issue 4, 2023

Published on: 23 August, 2022

Article ID: e300522205402 Pages: 2

DOI: 10.2174/1872212116666220530125230

Abstract

This editorial presents the recent advances and challenges of deep learning. We reviewed four main challenges: heterogeneity, copious size, reproducibility crisis, and explainability. Finally, we present the prospect of deep learning in industrial applications.

Keywords: Artificial intelligence, machine learning, Deep learning

[1]
Y.R. Shrestha, S.M. Ben-Menahem, and G. von Krogh, "Organizational decision-making structures in the age of artificial intelligence", Calif. Manage. Rev., vol. 61, pp. 66-83, 2019.
[http://dx.doi.org/10.1177/0008125619862257]
[2]
W.J.D. Gomes, "Shallow and deep artificial neural networks for structural reliability analysis", ASME J. Risk Uncertainty Part B., vol. 6, no. 4, p. 041006, 2020.
[http://dx.doi.org/10.1115/1.4047636]
[3]
R. Salakhutdinov, J.B. Tenenbaum, and A. Torralba, "Learning with hierarchical-deep models", IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1958-1971, 2013.
[http://dx.doi.org/10.1109/TPAMI.2012.269] [PMID: 23787346]
[4]
B. Chanduka, S.S. Bhat, N. Rajput, and B.R. Mohan, "A TFD approach to stock price prediction", In: V. Bhateja, S. Satapathy, Y.D. Zhang, V. Aradhya, Eds., Intelligent Computing and Communication. ICICC 2019. Advances in Intelligent Systems and Computing, Springer, Singapore, vol. 1034. 2020.
[5]
N. Justesen, P. Bontrager, J. Togelius, and S. Risi, "Deep learning for video game playing", IEEE Trans. Games, vol. 12, no. 1, pp. 1-20, 2020.
[http://dx.doi.org/10.1109/TG.2019.2896986]
[6]
R. Santhoshkumar, and M.K. Geetha, "Deep learning approach: Emotion recognition from human body movements", J. Mech. Conti. Math. Sci., vol. 14, pp. 182-195, 2019.
[7]
M.M. Islam, F. Karray, R. Alhajj, and J. Zeng, "A review on deep learning techniques for the diagnosis of novel Coronavirus (COVID-19)", IEEE Access, vol. 9, pp. 30551-30572, 2021.
[http://dx.doi.org/10.1109/ACCESS.2021.3058537] [PMID: 34976571]
[8]
D. Martin, "Google uses deep learning to design faster, smaller AI chips", Available from: https://www.theregister.com/2022/03/18/google_deep_learning_chip_design/
[9]
T.A Team, "Competitive programming with AlphaCode", Available at: https://deepmind.com/blog/article/Competitive-programming-with-AlphaCode
[10]
D. Schulze-Bruninghoff, M. Wachendorf, and T. Astor, "Remote sensing data fusion as a tool for biomass prediction in extensive grasslands invaded by L. polyphyllus", Remote Sens. Ecol. Conserv., vol. 7, no. 2, pp. 198-213, 2021.
[http://dx.doi.org/10.1002/rse2.182]
[11]
D. Reinsel, J. Gantz, and J. Rydning, "Data age 2025: The digitization of the world from edge to core", Data Age 2025: The Digitization of the World From Edge to Core, 2018.
[12]
M. Baker, "1,500 scientists lift the lid on reproducibility", Nature, vol. 533, no. 7604, pp. 452-454, 2016.
[http://dx.doi.org/10.1038/533452a] [PMID: 27225100]
[13]
Y-D. Zhang, and Q. Zhou, "Grand challenges for medtech data analytics", Front. Med. Technol., vol. 1, p. 2, 2019.
[http://dx.doi.org/10.3389/fmedt.2019.00002] [PMID: 35047871]
[14]
V. Dhar, "The scope and challenges for deep learning", Big Data, vol. 3, no. 3, pp. 127-129, 2015.
[http://dx.doi.org/10.1089/big.2015.29000.vdb] [PMID: 27442955]
[15]
A. Lombardi, J.M.R.S. Tavares, and S. Tangaro, "Editorial: Explainable Artificial Intelligence (XAI) in systems neuroscience", Front. Syst. Neurosci., vol. 15, p. 766980, 2021.
[http://dx.doi.org/10.3389/fnsys.2021.766980] [PMID: 34776885]

© 2024 Bentham Science Publishers | Privacy Policy