Abstract
This editorial presents the recent advances and challenges of deep learning. We reviewed four main challenges: heterogeneity, copious size, reproducibility crisis, and explainability. Finally, we present the prospect of deep learning in industrial applications.
Keywords: Artificial intelligence, machine learning, Deep learning
[http://dx.doi.org/10.1177/0008125619862257]
[http://dx.doi.org/10.1115/1.4047636]
[http://dx.doi.org/10.1109/TPAMI.2012.269] [PMID: 23787346]
[http://dx.doi.org/10.1109/TG.2019.2896986]
[http://dx.doi.org/10.1109/ACCESS.2021.3058537] [PMID: 34976571]
[http://dx.doi.org/10.1002/rse2.182]
[http://dx.doi.org/10.1038/533452a] [PMID: 27225100]
[http://dx.doi.org/10.3389/fmedt.2019.00002] [PMID: 35047871]
[http://dx.doi.org/10.1089/big.2015.29000.vdb] [PMID: 27442955]
[http://dx.doi.org/10.3389/fnsys.2021.766980] [PMID: 34776885]