Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Influence of Zinc Oxide Nanostructure Morphology on its Photocatalytic Properties

Author(s): Ahmad Fallatah, Mohammed Kuku, Mohammed Almomtan, Alison Whale and Sonal Padalkar*

Volume 19, Issue 2, 2023

Published on: 22 July, 2022

Page: [279 - 284] Pages: 6

DOI: 10.2174/1573413718666220525154412

Price: $65

Abstract

Background: Zinc oxide (ZnO) is a transparent oxide material with a theoretical bandgap of 3.4 eV, which finds potential applications, including transistors, varistors, solar cells, and other solar applications. The properties of ZnO can be manipulated by controlling its morphology.

Methods: The orientation and well-defined nanostructures can be obtained by controlling the growth rates of various ZnO facets by utilizing appropriate capping agents. Here, we report the electrodeposition of ZnO nanostructured thin films in the presence of various capping agents to obtain different ZnO morphologies. The electrodeposition of ZnO nanostructures was carried out on an indium doped tin oxide (ITO) with a glass substrate by using a zinc nitrate (Zn (NO3)2) bath at 70 °C and an applied potential of -1.0 V. To this zinc nitrate bath, capping agents like ammonium fluoride (NH4F) or ethylenediamine (EDA) were added to obtain different ZnO morphologies. These various ZnO morphologies were characterized by scanning electron microscopy.

Results: The composition of the nanostructures was analyzed by X-ray diffraction. The photoelectrochemical (PEC) properties of these ZnO nanostructures were measured using a PEC cell.

Conclusion: The PEC properties were influenced by different ZnO morphologies.

Keywords: Electrodeposition, ZnO, PEC, nanostructure, photocatalytic, hydrogen gas.

Graphical Abstract

[1]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358), 37-38.
[2]
Ni, M.; Leung, M.K.H.; Leung, D.Y.C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev., 2007, 11(3), 401-425.
[http://dx.doi.org/10.1016/j.rser.2005.01.009]
[3]
Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visiblelight photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528), 269-271.
[4]
Khaselev, O.; Turner, J.A. A monolithic photovoltaicphotoelectrochemical device for hydrogen production via water splitting. Science, 1998, 280(5362), 425-427.
[http://dx.doi.org/10.1126/science.280.5362.425 ] [PMID: 9545218]
[5]
Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414(6864), 625-627.
[6]
Khan, S.U.; Al-Shahry, M.; Ingler, W.B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297(5590), 2243-2245.
[7]
Herrmann, J.M. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today, 1999, 53(1), 115-129.
[http://dx.doi.org/10.1016/S0920-5861(99)00107-8]
[8]
Fox, M.A.; Dulay, M.T. Heterogeneous photocatalysis. Chem. Rev., 1993, 93(1), 341-357.
[http://dx.doi.org/10.1021/cr00017a016]
[9]
Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95(1), 69-96.
[http://dx.doi.org/10.1021/cr00033a004]
[10]
Mills, A.; Le Hunte, S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. Chem., 1997, 108(1), 1-35.
[http://dx.doi.org/10.1016/S1010-6030(97)00118-4]
[11]
Tanielian, C. Decatungstate photocatalysis. Coord. Chem. Rev., 1998, 178-180, 1165-1181.
[http://dx.doi.org/10.1016/S0010-8545(98)00160-X]
[12]
Ashokkumar, M. An overview on semiconductor particulate systems for photoproduction of hydrogen. Int. J. Hydrogen Energy, 1998, 23(6), 427-438.
[http://dx.doi.org/10.1016/S0360-3199(97)00103-1]
[13]
Han, N.; Wang, S.; Yao, Z.; Zhang, W.; Zhang, X.; Zeng, L.; Chen, R. Superior three‐dimensional perovskite catalyst for catalytic oxidation. EcoMat, 2020, 2(3), e12044.
[http://dx.doi.org/10.1002/eom2.12044]
[14]
Han, N.; Race, M.; Zhang, W.; Marotta, R.; Zhang, C.; Bokhari, A.; Klemeš, J.J. Perovskite and related oxide based electrodes for water splitting. J. Clean. Prod., 2021, 318, 128544.
[http://dx.doi.org/10.1016/j.jclepro.2021.128544]
[15]
Han, N.; Guo, X.; Cheng, J.; Liu, P.; Zhang, S.; Huang, S.; Rowles, M.R.; Fransaer, J.; Liu, S. Inhibiting in situ phase transition in Ruddlesden-Popper perovskite via tailoring bond hybridization and its application in oxygen permeation. Matter, 2021, 4(5), 1720-1734.
[http://dx.doi.org/10.1016/j.matt.2021.02.019]
[16]
Han, N.; Shen, Z.; Zhao, X.; Chen, R.; Thakur, V.K. Perovskite oxides for oxygen transport: Chemistry and material horizons. Sci. Total Environ., 2022, 806(Pt 3), 151213.
[http://dx.doi.org/10.1016/j.scitotenv.2021.151213 ] [PMID: 34715221]
[17]
Han, N.; Liu, P.; Jiang, J.; Ai, L.; Shao, Z.; Liu, S. Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(41), 19912-19933.
[http://dx.doi.org/10.1039/C8TA06529B]
[18]
Chestnut, L.G.; Mills, D.M. A fresh look at the benefits and costs of the US acid rain program. J. Environ. Manage., 2005, 77(3), 252-266.
[http://dx.doi.org/10.1016/j.jenvman.2005.05.014 ] [PMID: 16171931]
[19]
Lu, Y.; Wang, X.; Fan, D.; Yang, H.; Xu, H.; Min, H.; Yang, X. Biomass derived Janus solar evaporator for synergic water evaporation and purification. Sustain. Mater. Technol., 2020, 25, e00180.
[http://dx.doi.org/10.1016/j.susmat.2020.e00180]
[20]
Zhang, M.; Han, N.; Fei, Y.; Liu, J.; Xing, L.; Núñez-Delgado, A.; Jiang, M.; Liu, S. TiO2/g-C3N4 photocatalyst for the purification of potassium butyl xanthate in mineral processing wastewater. J. Environ. Manage., 2021, 297, 113311.
[http://dx.doi.org/10.1016/j.jenvman.2021.113311 ] [PMID: 34280862]
[21]
Keis, K.; Vayssieres, L.; Lindquist, S.E.; Hagfeldt, A. Nanostructured ZnO electrodes for photovoltaic applications. Nanostruct. Mater., 1999, 12(1-4), 487-490.
[http://dx.doi.org/10.1016/S0965-9773(99)00165-8]
[22]
López-Luke, T.; Wolcott, A.; Xu, L.; Chen, S.; Wen, Z.; Li, J.; De La Rosa, E.; Zhang, J.Z. Nitrogen-doped and CdSe quantum-dotsensitized nanocrystalline TiO2 films for solar energy conversion applications. J. Phys. Chem. C, 2008, 112(4), 1282-1292.
[http://dx.doi.org/10.1021/jp077345p]
[23]
O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. In: Renewable Energy; Routledge 2018, pp. 208-213.
[24]
Sobana, N.; Swaminathan, M. Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of Direct Blue 53. Sol. Energy Mater. Sol. Cells, 2007, 91(8), 727-734.
[http://dx.doi.org/10.1016/j.solmat.2006.12.013]
[25]
Wang, H.; Lindgren, T.; He, J.; Hagfeldt, A.; Lindquist, S.E. Photolelectrochemistry of nanostructured WO3 thin film electrodes for water oxidation: Mechanism of electron transport. J. Phys. Chem. B, 2000, 104(24), 5686-5696.
[http://dx.doi.org/10.1021/jp0002751]
[26]
Huynh, W.U.; Dittmer, J.J.; Alivisatos, A.P. Hybrid nanorodpolymer solar cells. Science, 2002, 295(5564), 2425-2427.
[27]
Park, J.H.; Bard, A.J. Unassisted water splitting from bipolar Pt⁄Dye-Sensitized TiO2 photoelectrode arrays. Electrochem. Solid-State Lett., 2005, 8(12), G371.
[http://dx.doi.org/10.1149/1.2077090]
[28]
Wolcott, A.; Smith, W.A.; Kuykendall, T.R.; Zhao, Y.; Zhang, J.Z. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small, 2009, 5(1), 104-111.
[http://dx.doi.org/10.1002/smll.200800902 ] [PMID: 19040214]
[29]
Mor, G.K.; Varghese, O.K.; Wilke, R.H.T.; Sharma, S.; Shankar, K.; Latempa, T.J.; Choi, K.S.; Grimes, C.A. P-type Cu--Ti--O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett., 2008, 8(7), 1906-1911.
[http://dx.doi.org/10.1021/nl080572y ] [PMID: 18540655]
[30]
Prakasam, H.E.; Shankar, K.; Paulose, M.; Varghese, O.K.; Grimes, C.A. A new benchmark for TiO2 nanotube array growth by anodization. J. Phys. Chem. C, 2007, 111(20), 7235-7241.
[http://dx.doi.org/10.1021/jp070273h]
[31]
Shankar, K.; Tep, K.C.; Mor, G.K.; Grimes, C.A. An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: Modification of bandgap and photoelectrochemical properties. J. Phys. D Appl. Phys., 2006, 39(11), 2361-2366.
[http://dx.doi.org/10.1088/0022-3727/39/11/008]
[32]
Shankar, K.; Mor, G.K.; Prakasam, H.E.; Yoriya, S.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology, 2007, 18(6), 065707.
[http://dx.doi.org/10.1088/0957-4484/18/6/065707]
[33]
Law, M.; Greene, L.E.; Johnson, J.C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater., 2005, 4(6), 455-459.
[http://dx.doi.org/10.1038/nmat1387 ] [PMID: 15895100]
[34]
O’Regan, B.; Lenzmann, F.; Muis, R.; Wienke, J. A solid-state dye-sensitized solar cell fabricated with pressure-treated P25− TiO2 and CuSCN: Analysis of pore filling and IV characteristics. Chem. Mater., 2002, 14(12), 5023-5029.
[http://dx.doi.org/10.1021/cm020572d]
[35]
Wolcott, A.; Kuykendall, T.R.; Chen, W.; Chen, S.; Zhang, J.Z. Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain poly(ethylene glycol). J. Phys. Chem. B, 2006, 110(50), 25288-25296.
[http://dx.doi.org/10.1021/jp064777b ] [PMID: 17165974]
[36]
Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater., 2003, 15(5), 464-466.
[http://dx.doi.org/10.1002/adma.200390108]
[37]
Wu, J.J.; Wong, D.K.P. Fabrication and impedance analysis of n- ZnO Nanorod/p-Si heterojunctions to investigate carrier concentrations in Zn/O source- ratio-tuned ZnO nanorod arrays. Adv. Mater., 2007, 19(15), 2015-2019.
[http://dx.doi.org/10.1002/adma.200602052]
[38]
Tian, Z.R.; Voigt, J.A.; Liu, J.; Mckenzie, B.; Mcdermott, M.J. Biomimetic arrays of oriented helical ZnO nanorods and columns. J. Am. Chem. Soc., 2002, 124(44), 12954-12955.
[http://dx.doi.org/10.1021/ja0279545 ] [PMID: 12405815]
[39]
Vayssieres, L.; Keis, K.; Lindquist, S.E.; Hagfeldt, A. Purposebuilt anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J. Phys. Chem. B, 2001, 105(17), 3350-3352.
[http://dx.doi.org/10.1021/jp010026s]
[40]
Greene, L.E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J.C.; Zhang, Y.; Saykally, R.J.; Yang, P. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed., 2003, 42(26), 3031-3034.
[http://dx.doi.org/10.1002/anie.200351461 ] [PMID: 12851963]
[41]
Dharmadasa, I.M.; Haigh, J. Strengths and advantages of electrodeposition as a semiconductor growth technique for applications in macroelectronic devices. J. Electrochem. Soc., 2006, 153(1), G47.
[http://dx.doi.org/10.1149/1.2128120]
[42]
Izaki, M.; Omi, T. Transparent zinc oxide films prepared by electrochemical reaction. Appl. Phys. Lett., 1996, 68(17), 2439-2440.
[http://dx.doi.org/10.1063/1.116160]
[43]
Peulon, S.; Lincot, D. Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions. J. Electrochem. Soc., 1998, 145(3), 864-874.
[http://dx.doi.org/10.1149/1.1838359]
[44]
Liu, R.; Vertegel, A.A.; Bohannan, E.W.; Sorenson, T.A.; Switzer, J.A. Epitaxial electrodeposition of zinc oxide nanopillars on singlecrystal gold. Chem. Mater., 2001, 13(2), 508-512.
[http://dx.doi.org/10.1021/cm000763l]
[45]
Vanheusden, K.; Warren, W.L.; Seager, C.H.; Tallant, D.R.; Voigt, J.A.; Gnade, B.E. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys., 1996, 79(10), 7983-7990.
[http://dx.doi.org/10.1063/1.362349]
[46]
Yoshida, T.; Tochimoto, M.; Schlettwein, D.; Wöhrle, D.; Sugiura, T.; Minoura, H. Self-assembly of zinc oxide thin films modified with tetrasulfonated metallophthalocyanines by one-step electrodeposition. Chem. Mater., 1999, 11(10), 2657-2667.
[http://dx.doi.org/10.1021/cm980619o]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy