Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Wettability of Graphene Coated on Aluminum Substrate with Microstructure Modification

Author(s): Yu-Hao Dou, Qingshun Bai*, Wanmin Guo, Yongbo Guo and Yunlong Du

Volume 19, Issue 2, 2023

Published on: 01 August, 2022

Page: [270 - 278] Pages: 9

DOI: 10.2174/1573413718666220428114115

Price: $65

Abstract

Background: As a new type of coating material, graphene has an important application prospect in creating hydrophobicity on the material surface. It can be seen that research on the wettability of graphene has a very actual significance in its application. Graphene membrane can change the wettability of the aluminum surface effectively. It can be combined with the traditional method to tune the wettability of the metal surface. Adding the microstructure is a very common method for changing the wettability. Therefore, the results have guided significance for the practical application of graphene in controlling the wettability of aluminum substrate with microstructure.

Methods: This paper uses molecular dynamics to simulate graphene’s adsorption and wetting behavior on the aluminum substrate with microstructure and to calculate energy changes in the two processes.

Results: The adsorption state of graphene is related to the aspect ratio of the microstructure. When the aspect ratios of the microstructure become larger, the graphene can be completely absorbed by the substrate, causing larger binding free energy and higher adhesion spontaneity of graphene. The wetting contact angles of the substrate with graphene are significantly higher than those of the aluminum substrate without graphene.

Conclusion: The aspect ratio can influence the free energy and the binding energy, causing different states in graphene. The large aspect ratio will increase the absolute value of the free energy and release more binding energy, causing a more stable state. The graphene may prevent the deformation of the hydrogen bond and cause worse wettability. The results have been of great significance for the practical application of graphene in controlling the wettability of aluminum substrate with microstructure.

Keywords: Graphene, molecular dynamics, wettability, adsorption mechanism, aluminum substrate, microstructure.

Graphical Abstract

[1]
Chi, Y.; Chong, J.; Wang, B.; Li, K. Pristine graphene membranes supported on ceramic hollow fibre prepared via a sacrificial layer assisted CVD approach. J. Membr. Sci., 2020, 595, 117479.
[http://dx.doi.org/10.1016/j.memsci.2019.117479]
[2]
Ramos-Alvarado, B.; Kumar, S.; Peterson, G.P. Wettability of graphitic-carbon and silicon surfaces: MD modeling and theoretical analysis. J. Chem. Phys., 2015, 143(4), 044703.
[http://dx.doi.org/10.1063/1.4927083 ] [PMID: 26233153]
[3]
Hung, S.W.; Hsiao, P.Y.; Chen, C.P.; Chieng, C.C. Wettability of graphene-coated surface: Free energy investigations using molecular dynamics simulation. J. Phys. Chem. C, 2015, 119(15), 8103-8111.
[http://dx.doi.org/10.1021/jp511036e]
[4]
Shih, C.J.; Wang, Q.H.; Lin, S.; Park, K.C.; Jin, Z.; Strano, M.S.; Blankschtein, D. Breakdown in the wetting transparency of graphene. Phys. Rev. Lett., 2012, 109(17), 176101.
[http://dx.doi.org/10.1103/PhysRevLett.109.176101 ] [PMID: 23215205]
[5]
Taherian, F.; Marcon, V.; van der Vegt, N.F.; Leroy, F. What is the contact angle of water on graphene? Langmuir, 2013, 29(5), 1457-1465.
[http://dx.doi.org/10.1021/la304645w ] [PMID: 23320893]
[6]
Raj, R.; Maroo, S.C.; Wang, E.N. Wettability of graphene. Nano Lett., 2013, 13(4), 1509-1515.
[http://dx.doi.org/10.1021/nl304647t ] [PMID: 23458704]
[7]
Li, X.L.; Wang, G.Y.; Moita, A.S.; Zhang, C.C.; Wang, S.H.; Liu, Y. Fabrication of bio-inspired non-fluorinated superhydrophobic surfaces with anti-icing property and its wettability transformation analysis. Appl. Surf. Sci., 2020, 505, 144386.
[http://dx.doi.org/10.1016/j.apsusc.2019.144386]
[8]
Kriegel, A.T.; Ducker, W.A. Removal of bacteria from solids by bubbles: Effect of solid wettability, interaction geometry, and liquid-vapor interface velocity. Langmuir, 2019, 35(39), 12817-12830.
[http://dx.doi.org/10.1021/acs.langmuir.9b01941 ] [PMID: 31448615]
[9]
Riveiro, A.; Abaldea, T.; Pou, P.; Soto, R.; del Val, J.; Comesaña, R.; Badaoui, A.; Boutinguiza, M.; Pou, J. Influence of laser texturing on the wettability of PTFE. Appl. Surf. Sci., 2020, 515, 145984.
[http://dx.doi.org/10.1016/j.apsusc.2020.145984]
[10]
Chen, X.M.; Wu, J.; Ma, R.Y.; Hua, M.; Koratkar, N.; Yao, S.H.; Wang, Z.K. Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv. Funct. Mater., 2015, 21(24), 4617-4623.
[http://dx.doi.org/10.1002/adfm.201101302]
[11]
Chen, Z.; Dong, L.; Yang, D.; Lu, H. Superhydrophobic graphene-based materials: Surface construction and functional applications. Adv. Mater., 2013, 25(37), 5352-5359.
[http://dx.doi.org/10.1002/adma.201302804 ] [PMID: 24089354]
[12]
Yaghoubi, H.; Foroutan, M. Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation. Phys. Chem. Chem. Phys., 2018, 20(34), 22308-22319.
[http://dx.doi.org/10.1039/C8CP03762K ] [PMID: 30124704]
[13]
Bagheri, M.H.; Loibl, R.T.; Boscoboinik, J.A.; Schiffres, S.N. Adsorption transparency of supported graphene. Carbon, 2019, 155, 580-586.
[http://dx.doi.org/10.1016/j.carbon.2019.08.083]
[14]
Huang, C.P.; Xu, F.; Sun, Y. Effects of morphology, tension and vibration on wettability of graphene: A molecular dynamics study. Comput. Mater. Sci., 2017, 139, 216-224.
[http://dx.doi.org/10.1016/j.commatsci.2017.07.017]
[15]
Chialvo, A.A.; Vlcek, L.; Cummings, P.T. Surface strain effects on the water-graphene interfacial and confinement behavior. J. Phys. Chem. C, 2013, 118(34), 19701-19711.
[http://dx.doi.org/10.1021/jp501776m]
[16]
Lin, C.H.; Tsai, M.S.; Chen, W.T.; Hong, Y.Z.; Chien, P.Y.; Huang, C.H.; Woon, W.Y.; Lin, C.T. A low-damage plasma surface modification method of stacked graphene bilayers for configurable wettability and electrical properties. Nanotechnology, 2019, 30(24), 245709.
[http://dx.doi.org/10.1088/1361-6528/ab0511 ] [PMID: 30731440]
[17]
Kim, G.T.; Gim, S.J.; Cho, S.M.; Koratkar, N.; Oh, I.K. Wetting-transparent graphene films for hydrophobic water-harvesting surfaces. Adv. Mater., 2014, 26(30), 5166-5172.
[http://dx.doi.org/10.1002/adma.201401149 ] [PMID: 24799329]
[18]
Liu, Q.C.; Xu, B.X. Wettability of water droplet on misoriented graphene bilayer structure: A molecular dynamics study. AIP Adv., 2015, 5(6), 067150.
[http://dx.doi.org/10.1063/1.4923193]
[19]
Zhang, L.; Yu, J.; Yang, M.; Xie, Q.; Peng, H.; Liu, Z. Janus graphene from asymmetric two-dimensional chemistry. Nat. Commun., 2013, 4(1), 1443.
[http://dx.doi.org/10.1038/ncomms2464 ] [PMID: 23385588]
[20]
Eun, C.; Berkowitz, M.L. Molecular dynamics simulation study of interaction between model rough hydrophobic surfaces. J. Phys. Chem. A, 2011, 115(23), 6059-6067.
[http://dx.doi.org/10.1021/jp110608p ] [PMID: 21495665]
[21]
Jiang, Q.G.; Ao, Z.M.; Jiang, Q. First principles study on the hydrophilic and conductive graphene doped with Al atoms. Phys. Chem. Chem. Phys., 2013, 15(26), 10859-10865.
[http://dx.doi.org/10.1039/c3cp00128h ] [PMID: 23698288]
[22]
Ostrowski, J.H.; Eaves, J.D. The tunable hydrophobic effect on electrically doped graphene. J. Phys. Chem. B, 2014, 118(2), 530-536.
[http://dx.doi.org/10.1021/jp409342n ] [PMID: 24328210]
[23]
Shin, Y.J.; Wang, Y.; Huang, H.; Kalon, G.; Wee, A.T.S.; Shen, Z.; Bhatia, C.S.; Yang, H. Surface-energy engineering of graphene. Langmuir, 2010, 26(6), 3798-3802.
[http://dx.doi.org/10.1021/la100231u ] [PMID: 20158275]
[24]
Xu, K.; Zhang, J.; Hao, X.; Zhang, C.; Wei, N.; Zhang, C. Wetting properties of defective graphene oxide: A molecular simulation study. Molecules, 2018, 23(6), 1439.
[http://dx.doi.org/10.3390/molecules23061439 ] [PMID: 29899306]
[25]
Zhou, Y.; Xu, F.M.; Jiang, G.H.; Wang, X.H.; Hu, R.B.; Wang, R.J.; Xi, X.J.; Wang, S.; Wang, T.; Chen, W.X. Superhydrophobic and high adhesive performance of functionalized graphene films. Powder Technol., 2012, 230, 247-251.
[http://dx.doi.org/10.1016/j.powtec.2012.07.032]
[26]
Hong, G.; Han, Y.; Schutzius, T.M.; Wang, Y.; Pan, Y.; Hu, M.; Jie, J.; Sharma, C.S.; Müller, U.; Poulikakos, D. On the mechanism of hydrophilicity of graphene. Nano Lett., 2016, 16(7), 4447-4453.
[http://dx.doi.org/10.1021/acs.nanolett.6b01594 ] [PMID: 27248183]
[27]
Wei, N.; Lv, C.; Xu, Z. Wetting of graphene oxide: A molecular dynamics study. Langmuir, 2014, 30(12), 3572-3578.
[http://dx.doi.org/10.1021/la500513x ] [PMID: 24611723]
[28]
Li, Z.; Wang, Y.; Kozbial, A.; Shenoy, G.; Zhou, F.; McGinley, R.; Ireland, P.; Morganstein, B.; Kunkel, A.; Surwade, S.P.; Li, L.; Liu, H. Effect of airborne contaminants on the wettability of supported graphene and graphite. Nat. Mater., 2013, 12(10), 925-931.
[http://dx.doi.org/10.1038/nmat3709 ] [PMID: 23872731]
[29]
Peter, A.A.; Sunday, A.A.; Sunday, F.O.; Oluranti, A.; Samuel, E.S. Unveiling corrosion behavior of pipeline steels in CO2-containing oilfield produced water: Towards combating the corrosion curse. Crit. Rev. Solid State Mater. Sci., 2020, 45(3), 239-260.
[http://dx.doi.org/10.1080/10408436.2019.1588706]
[30]
Rafiee, J.; Rafiee, M.A.; Yu, Z.Z.; Koratkar, N. Superhydrophobic to superhydrophilic wetting control in graphene films. Adv. Mater., 2010, 22(19), 2151-2154.
[http://dx.doi.org/10.1002/adma.200903696 ] [PMID: 20564251]
[31]
Yilbas, B.S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T. Effect of graphene film on laser textured alumina surface characteristics. Ceram. Int., 2017, 43(2), 2021-2021.
[http://dx.doi.org/10.1016/j.ceramint.2016.10.169]
[32]
Chen, L.; Wang, S.Y.; Xiang, X.; Tao, W.Q. Mechanism of surface nanostructure changing wettability: A molecular dynamics simulation. Comput. Mater. Sci., 2020, 171, 109223.
[http://dx.doi.org/10.1016/j.commatsci.2019.109223]
[33]
Oriol, R.A.; Nuria, L.I. Growth of a superhydrophobic coating on an aluminum substrate with strong adhesive properties and showing efficient oil/water separation. Thin Solid Films, 2020, 710, 138259.
[http://dx.doi.org/10.1016/j.tsf.2020.138259]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy