Generic placeholder image

Venoms and Toxins

Editor-in-Chief

ISSN (Print): 2666-1217
ISSN (Online): 2666-1225

Mini-Review Article

Snake Envenomation and Innate Immune System: An Overview

Author(s): Mouzarllem Barros Reis*, Anna Caroline Vendrame Cazeloto, Julia Breda Roque, Juliana Cogo Ferreira, Marianna Minaré Vigo and Karina Furlani Zoccal

Volume 2, Issue 2, 2022

Published on: 19 August, 2022

Article ID: e230522205123 Pages: 8

DOI: 10.2174/2666121702666220523140901

Price: $65

Abstract

Snake envenomations are one of the most common venomous accidents caused by snakes in the world. The symptoms induced after bite vary accordingly to the species. Most of the snake venoms elicit direct or indirect activation of the innate immune responses that ranges from local to systemic effects and contributes to the clinical manifestations after envenoming. The venom interacts with the immune system by inducing the release of damage-associated molecular patterns, which contributes to create a proinflamatory status, release of cytokines and lipid mediators, and has properties to modulate other components of the innate immune system like the complement system. In this review, we highlight some studies that point out over the years the mechanisms by which snake venoms interact with the innate immune system, as well as the pharmacological potential of this class of compounds with great applicability to the medical field.

Keywords: snake venom, inflammation, neutrophils, cytokines, toll-like receptors, complement system

[1]
Nicholson LB. The immune system. Essays Biochem 2016; 60(3): 275-301.
[http://dx.doi.org/10.1042/EBC20160017] [PMID: 27784777]
[2]
Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 2007; 449(7164): 819-26.
[http://dx.doi.org/10.1038/nature06246] [PMID: 17943118]
[3]
Chaplin DD. Overview of the immune response. J Allergy Clin Immunol 2010; 125(2) (Suppl. 2): S3-S23.
[http://dx.doi.org/10.1016/j.jaci.2009.12.980] [PMID: 20176265]
[4]
Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol 2011; 30(1): 16-34.
[http://dx.doi.org/10.3109/08830185.2010.529976] [PMID: 21235323]
[5]
Zoccal KF, Sorgi CA, Hori JI, et al. Opposing roles of LTB4 and PGE2 in regulating the inflammasome-dependent scorpion venominduced mortality TL - 7. Nat Commun 2016; 7VN-re: 10760.
[6]
Reis MB, Zoccal KF, Gardinassi LG, Faccioli LH. Scorpion envenomation and inflammation: Beyond neurotoxic effects. Toxicon 2019; 167: 174-9.
[http://dx.doi.org/10.1016/j.toxicon.2019.06.219] [PMID: 31228480]
[7]
Reis MB, Rodrigues FL, Lautherbach N, et al. Interleukin-1 receptor-induced PGE2 production controls acetylcholine-mediated cardiac dysfunction and mortality during scorpion envenomation. Nat Commun 2020; 11(1): 5433.
[http://dx.doi.org/10.1038/s41467-020-19232-8] [PMID: 33116136]
[8]
Palm NW, Medzhitov R. Role of the inflammasome in defense against venoms. Proc Natl Acad Sci USA 2013; 110(5): 1809-14.
[http://dx.doi.org/10.1073/pnas.1221476110] [PMID: 23297192]
[9]
Ferreira MJ, Lima C, Lopes-Ferreira M. Anti-inflammatory effect of Natterins, the major toxins from the Thalassophryne nattereri fish venom is dependent on TLR4/MyD88/PI3K signaling pathway. Toxicon 2014; 87: 54-67.
[http://dx.doi.org/10.1016/j.toxicon.2014.05.014] [PMID: 24882373]
[10]
Patel KD, Modur V, Zimmerman GA, Prescott SM, McIntyre TM. The necrotic venom of the brown recluse spider induces dysregulated endothelial cell-dependent neutrophil activation. Differential induction of GM-CSF, IL-8, and E-selectin expression. J Clin Invest 1994; 94(2): 631-42.
[http://dx.doi.org/10.1172/JCI117379] [PMID: 7518841]
[11]
León G, Sánchez L, Hernández A, et al. Immune response towards snake venoms. Inflamm Allergy Drug Targets 2011; 10(5): 381-98.
[http://dx.doi.org/10.2174/187152811797200605] [PMID: 21824081]
[12]
Bernardes CP, Menaldo DL, Mamede CCN, et al. Evaluation of the local inflammatory events induced by BpirMP, a metalloproteinase from Bothrops pirajai venom. Mol Immunol 2015; 68 (2 Pt B): 456-64.
[http://dx.doi.org/10.1016/j.molimm.2015.09.023] [PMID: 26468034]
[13]
Metz M, Piliponsky AM, Chan CC, et al. Mast cells can enhance resistance to snake and honeybee venoms. Science (80- ) 2006; 313: 526-30.
[14]
Costa TR, Menaldo DL, Zoccal KF, et al. CR-LAAO, an L-amino acid oxidase from Calloselasma rhodostoma venom, as a potential tool for developing novel immunotherapeutic strategies against cancer. Sci Rep 2017; 7(1): 42673.
[http://dx.doi.org/10.1038/srep42673] [PMID: 28205610]
[15]
Calvete JJ, Juárez P, Sanz L. Snake venomics. Strategy and applications. J Mass Spectrom 2007; 42(11): 1405-14.
[http://dx.doi.org/10.1002/jms.1242] [PMID: 17621391]
[16]
Moreira V, Teixeira C, Borges da Silva H, D’Império Lima MR, Dos-Santos MC. The role of TLR2 in the acute inflammatory response induced by Bothrops atrox snake venom. Toxicon 2016; 118: 121-8.
[http://dx.doi.org/10.1016/j.toxicon.2016.04.042] [PMID: 27109323]
[17]
Gutiérrez JM, Ownby CL, Odell GV. Pathogenesis of myonecrosis induced by crude venom and a myotoxin of Bothrops asper. Exp Mol Pathol 1984; 40(3): 367-79.
[http://dx.doi.org/10.1016/0014-4800(84)90054-6] [PMID: 6539250]
[18]
Hsu CC, Chuang WJ, Chung CH, Chang CH, Peng HC, Huang TF. Snake venom disintegrin inhibits the activation of toll-like receptors and alleviates sepsis through integrin alphavbeta3 blockade. Sci Rep 2016; 6(1): 23387.
[http://dx.doi.org/10.1038/srep23387] [PMID: 26987407]
[19]
Zoccal KF, Bitencourt CS, Paula-Silva FWG, et al. TLR2, TLR4 and CD14 recognize venom-associated molecular patterns from Tityus serrulatus to induce macrophage-derived inflammatory mediators. PLoS One 2014; 9(2): e88174.
[http://dx.doi.org/10.1371/journal.pone.0088174] [PMID: 24516606]
[20]
Teixeira C, Fernandes CM, Leiguez E, Chudzinski-Tavassi AM. Inflammation induced by platelet-activating viperid snake venoms: Perspectives on thromboinflammation. Front Immunol 2019; 10: 2082.
[http://dx.doi.org/10.3389/fimmu.2019.02082] [PMID: 31572356]
[21]
Paiva-Oliveira EL, da Silva RF, Bellio M, Quirico-Santos T, Lagrota-Candido J. Pattern of cardiotoxin-induced muscle remodeling in distinct TLR-4 deficient mouse strains. Histochem Cell Biol 2017; 148(1): 49-60.
[http://dx.doi.org/10.1007/s00418-017-1556-6] [PMID: 28293722]
[22]
Moreira V, Teixeira C, Borges da Silva H, D’Império Lima MR, Dos-Santos MC. The crucial role of the MyD88 adaptor protein in the inflammatory response induced by Bothrops atrox venom. Toxicon 2013; 67: 37-46.
[http://dx.doi.org/10.1016/j.toxicon.2013.02.010] [PMID: 23474268]
[23]
Cezarette GN, Sartim MA, Sampaio SV. Inflammation and coagulation crosstalk induced by BJcuL, a galactose-binding lectin isolated from Bothrops jararacussu snake venom. Int J Biol Macromol 2020; 144: 296-304.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.015] [PMID: 31812742]
[24]
Tadokoro T, Modahl MC, Maenaka K, Aoki-Shioi N. Cysteine-rich secretory proteins (CRISPs) from venomous snakes: An overview of the functional diversity in a large and underappreciated superfamily. Toxins (Basel) 2020; 12: 175.
[http://dx.doi.org/10.3390/toxins12030175]
[25]
Deka A, Sharma M, Mukhopadhyay R, Devi A, Doley R. Naja kaouthia venom protein, Nk-CRISP, upregulates inflammatory gene expression in human macrophages. Int J Biol Macromol 2020; 160: 602-11.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.169] [PMID: 32470580]
[26]
Kuo YJ, Chung CH, Huang TF. From discovery of snake venom disintegrins to a safer therapeutic antithrombotic agent. Toxins (Basel) 2019; 11(7): 11.
[http://dx.doi.org/10.3390/toxins12010011] [PMID: 31247995]
[27]
Leiguez E, Giannotti KC, Moreira V, et al. Critical role of TLR2 and MyD88 for functional response of macrophages to a group IIA-secreted phospholipase A2 from snake venom. PLoS One 2014; 9(4): e93741.
[http://dx.doi.org/10.1371/journal.pone.0093741] [PMID: 24718259]
[28]
Rucavado A, Nicolau CA, Escalante T, et al. Viperid envenomation wound exudate contributes to increased vascular permeability via a DAMPs/TLR-4 mediated pathway. Toxins (Basel) 2016; 8(12): 349.
[http://dx.doi.org/10.3390/toxins8120349] [PMID: 27886127]
[29]
Luna KPO, da Silva MB, Pereira VRA. Clinical and immunological aspects of envenomations by Bothrops snakes. J Venom Anim Toxins Incl Trop Dis 2011; 17(2): 130-41.
[http://dx.doi.org/10.1590/S1678-91992011000200003]
[30]
Gonçalves AS, Appelberg R. Modulation of neutrophil influx with cell adhesion molecule specific antibodies during nonspecific and immune mediated inflammatory reactions. Scand J Immunol 2000; 51(5): 485-90.
[http://dx.doi.org/10.1046/j.1365-3083.2000.00720.x] [PMID: 10792840]
[31]
Middleton J, Patterson AM, Gardner L, Schmutz C, Ashton BA. Leukocyte extravasation: Chemokine transport and presentation by the endothelium. Blood 2002; 100(12): 3853-60.
[http://dx.doi.org/10.1182/blood.V100.12.3853] [PMID: 12433694]
[32]
Kamiuchi K, Hasegawa G, Obayashi H, et al. Leukocyte-endothelial cell adhesion molecule 1 (LECAM-1) polymorphism is associated with diabetic nephropathy in type 2 diabetes mellitus. J Diabetes Complications 2002; 16(5): 333-7.
[http://dx.doi.org/10.1016/S1056-8727(01)00226-4] [PMID: 12200076]
[33]
Ryan GB, Majno G. Acute inflammation. A review. Am J Pathol 1977; 86(1): 183-276.
[PMID: 64118]
[34]
Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 2000; 80(5): 617-53.
[http://dx.doi.org/10.1038/labinvest.3780067] [PMID: 10830774]
[35]
Zamuner SR, Zuliani JP, Fernandes CM, Gutiérrez JM, de Fátima Pereira Teixeira C. Inflammation induced by Bothrops asper venom: release of proinflammatory cytokines and eicosanoids, and role of adhesion molecules in leukocyte infiltration. Toxicon 2005; 46(7): 806-13.
[http://dx.doi.org/10.1016/j.toxicon.2005.08.011] [PMID: 16198389]
[36]
Steeber DA, Tang MLK, Green NE, Zhang XQ, Sloane JE, Tedder TF. Leukocyte entry into sites of inflammation requires overlapping interactions between the L-selectin and ICAM-1 pathways. J Immunol 1999; 163(4): 2176-86.
[PMID: 10438959]
[37]
Fernandes CM, Zamuner SR, Zuliani JP, Rucavado A, Gutiérrez JM, Teixeira CF. Inflammatory effects of BaP1 a metalloproteinase isolated from Bothrops asper snake venom: leukocyte recruitment and release of cytokines. Toxicon 2006; 47(5): 549-59.
[http://dx.doi.org/10.1016/j.toxicon.2006.01.009] [PMID: 16529786]
[38]
Walcheck B, Alexander SR, St Hill CA, Matala E. ADAM-17-independent shedding of L-selectin. J Leukoc Biol 2003; 74(3): 389-94.
[http://dx.doi.org/10.1189/jlb.0403141] [PMID: 12949242]
[39]
Wang YL, Kuo JH, Lee SC, et al. Cobra CRISP functions as an inflammatory modulator via a novel Zn2+- and heparan sulfate-dependent transcriptional regulation of endothelial cell adhesion molecules. J Biol Chem 2010; 285(48): 37872-83.
[http://dx.doi.org/10.1074/jbc.M110.146290] [PMID: 20889969]
[40]
Flores CA, Zappellini A, Prado-Franceschi J. Lipoxygenase-derived mediators may be involved in in vivo neutrophil migration induced by Bothrops erythromelas and Bothrops alternatus venoms. Toxicon 1993; 31(12): 1551-9.
[http://dx.doi.org/10.1016/0041-0101(93)90339-K] [PMID: 8146868]
[41]
Sartim MA, Riul TB, Del Cistia-Andrade C, et al. Galatrox is a C-type lectin in Bothrops atrox snake venom that selectively binds LacNAc-terminated glycans and can induce acute inflammation. Glycobiology 2014; 24(11): 1010-21.
[http://dx.doi.org/10.1093/glycob/cwu061] [PMID: 24973254]
[42]
Arend WP, Gabay C. Cytokines in the rheumatic diseases. Rheum Dis Clin North Am 2004; 30(1): 41-67. [v-vi.]
[http://dx.doi.org/10.1016/S0889-857X(03)00115-7] [PMID: 15061568]
[43]
Akira S, Hirano T, Taga T, Kishimoto T. Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB J 1990; 4(11): 2860-7.
[http://dx.doi.org/10.1096/fasebj.4.11.2199284] [PMID: 2199284]
[44]
Medeiros AI, Silva CL, Malheiro A, Maffei CML, Faccioli LH. Leukotrienes are involved in leukocyte recruitment induced by live Histoplasma capsulatum or by the β-glucan present in their cell wall. Br J Pharmacol 1999; 128(7): 1529-37.
[http://dx.doi.org/10.1038/sj.bjp.0702912] [PMID: 10602333]
[45]
Flamand N, Mancuso P, Serezani CHC, Brock TG. Leukotrienes: mediators that have been typecast as villains. Cell Mol Life Sci 2007; 64(19-20): 2657-70.
[http://dx.doi.org/10.1007/s00018-007-7228-2] [PMID: 17639273]
[46]
Setúbal SDS, Pontes AS, Nery NM, et al. Human neutrophils functionality under effect of an Asp49 phospholipase A2 isolated from Bothrops atrox venom. Toxicon X 2020; 6: 100032.
[http://dx.doi.org/10.1016/j.toxcx.2020.100032] [PMID: 32550587]
[47]
Ruipérez V, Astudillo AM, Balboa MA, Balsinde J. Coordinate regulation of TLR-mediated arachidonic acid mobilization in macrophages by group IVA and group V phospholipase A2s. J Immunol 2009; 182(6): 3877-83.
[http://dx.doi.org/10.4049/jimmunol.0804003] [PMID: 19265167]
[48]
Zambelli VO, Sampaio SC, Sudo-Hayashi LS, et al. Crotoxin alters lymphocyte distribution in rats: Involvement of adhesion molecules and lipoxygenase-derived mediators. Toxicon 2008; 51(8): 1357-67.
[http://dx.doi.org/10.1016/j.toxicon.2008.03.004] [PMID: 18452962]
[49]
Sampaio SC, Rangel-Santos AC, Peres CM, Curi R, Cury Y. Inhibitory effect of phospholipase A2 isolated from Crotalus durissus terrificus venom on macrophage function. Toxicon 2005; 45(5): 671-6.
[http://dx.doi.org/10.1016/j.toxicon.2005.01.009] [PMID: 15777963]
[50]
Wiedle G, Dunon D, Imhof BA. Current concepts in lymphocyte homing and recirculation. Crit Rev Clin Lab Sci 2001; 38(1): 1-31.
[http://dx.doi.org/10.1080/20014091084164] [PMID: 11256516]
[51]
Funk CD. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science (80- ) 2001; 294: 1871-5.
[52]
Kini RM. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 2003; 42(8): 827-40.
[http://dx.doi.org/10.1016/j.toxicon.2003.11.002] [PMID: 15019485]
[53]
Viana MN, Leiguez E, Gutiérrez JM, et al. A representative metalloprotease induces PGE2 synthesis in fibroblast-like synoviocytes via the NF-κB/COX-2 pathway with amplification by IL-1β and the EP4 receptor. Sci Rep 2020; 10(1): 1-15.
[http://dx.doi.org/10.1038/s41598-020-59095-z]
[54]
Teixeira CF, Fernandes CM, Zuliani JP, Zamuner SF. Inflammatory effects of snake venom metalloproteinases. Mem Inst Oswaldo Cruz 2005; 100 (Suppl. 1): 181-4.
[http://dx.doi.org/10.1590/S0074-02762005000900031] [PMID: 15962120]
[55]
Stone SF, Isbister GK, Shahmy S, et al. Immune response to snake envenoming and treatment with antivenom; complement activation, cytokine production and mast cell degranulation. PLoS Negl Trop Dis 2013; 7(7): e2326.
[http://dx.doi.org/10.1371/journal.pntd.0002326] [PMID: 23936562]
[56]
Katkar GD, Sundaram MS, Hemshekhar M, et al. Melatonin alleviates Echis carinatus venom-induced toxicities by modulating inflammatory mediators and oxidative stress. J Pineal Res 2014; 56(3): 295-312.
[http://dx.doi.org/10.1111/jpi.12123] [PMID: 24499241]
[57]
De Carvalho AEZ, Giannotti K, Junior EL, et al. Crotalus durissus ruruima snake venom and a phospholipase A2 isolated from this venom elicit macrophages to form lipid droplets and synthesize inflammatory lipid mediators. J Immunol Res 2019; 2019
[58]
Mitrmoonpitak C, Chulasugandha P, Khow O, Noiprom J, Chaiyabutr N, Sitprija V. Effects of phospholipase A2 and metalloprotease fractions of Russell’s viper venom on cytokines and renal hemodynamics in dogs. Toxicon 2013; 61: 47-53.
[http://dx.doi.org/10.1016/j.toxicon.2012.10.017] [PMID: 23142505]
[59]
Carroll MC. The complement system in regulation of adaptive immunity. Nat Immunol 2004; 5(10): 981-6.
[http://dx.doi.org/10.1038/ni1113] [PMID: 15454921]
[60]
Pidde-Queiroz G, Furtado M de F, Filgueiras CF, et al. Human complement activation and anaphylatoxins generation induced by snake venom toxins from Bothrops genus. Mol Immunol 2010; 47(16): 2537-44.
[http://dx.doi.org/10.1016/j.molimm.2010.07.003] [PMID: 20674029]
[61]
Walport MJ. Complement. First of two parts. N Engl J Med 2001; 344(14): 1058-66.
[http://dx.doi.org/10.1056/NEJM200104053441406] [PMID: 11287977]
[62]
Turner MW. Mannose-binding lectin: The pluripotent molecule of the innate immune system. Immunol Today 1996; 17(11): 532-40.
[http://dx.doi.org/10.1016/S0167-5699(96)80908-X] [PMID: 8961631]
[63]
Farsky SHP, Gonçalves LRC, Gutiérrez JM, et al. Bothrops asper snake venom and its metalloproteinase BaP-1 activate the complement system. Role in leucocyte recruitment. Mediators Inflamm 2000; 9(5): 213-21.
[http://dx.doi.org/10.1080/09629350020025728] [PMID: 11200361]
[64]
Menaldo DL, Bernardes CP, Pereira JC, et al. Effects of two serine proteases from Bothrops pirajai snake venom on the complement system and the inflammatory response. Int Immunopharmacol 2013; 15(4): 764-71.
[http://dx.doi.org/10.1016/j.intimp.2013.02.023] [PMID: 23499645]
[65]
Vogel CW, Fritzinger DC. Cobra venom factor: Structure, function, and humanization for therapeutic complement depletion. Toxicon 2010; 56(7): 1198-222.
[http://dx.doi.org/10.1016/j.toxicon.2010.04.007] [PMID: 20417224]
[66]
Pidde-Queiroz G, Magnoli FC, Portaro FCV, et al. P-I snake venom metalloproteinase is able to activate the complement system by direct cleavage of central components of the cascade. PLoS Negl Trop Dis 2013; 7(10): e2519.
[http://dx.doi.org/10.1371/journal.pntd.0002519] [PMID: 24205428]
[67]
Tanaka GD, Pidde-Queiroz G, de Fátima D, Furtado M, van den Berg C, Tambourgi DV. Micrurus snake venoms activate human complement system and generate anaphylatoxins. BMC Immunol 2012; 13(1): 4.
[http://dx.doi.org/10.1186/1471-2172-13-4] [PMID: 22248157]
[68]
Götze O, Müller-Eberhard HJ. The c3-activator system: An alternate pathway of complement activation. J Exp Med 1971; 134(3): 90-108.
[http://dx.doi.org/10.1084/jem.134.3.90] [PMID: 19867385]
[69]
Vogel CW, Müller-Eberhard HJ. The cobra venom factordependent C3 convertase of human complement. A kinetic and thermodynamic analysis of a protease acting on its natural high molecular weight substrate - PubMed Available from: https://pubmed.ncbi.nlm.nih.gov/6919543/ (accessed on Apr 29, 2021).
[70]
Ayres LR, Récio A dos R, Burin SM, et al. Bothrops snake venoms and their isolated toxins, an L-amino acid oxidase and a serine protease, modulate human complement system pathways. J Venom Anim Toxins Incl Trop Dis 2015; 21(1): 29.
[http://dx.doi.org/10.1186/s40409-015-0026-7] [PMID: 26273289]
[71]
Menaldo DL, Jacob-Ferreira AL, Bernardes CP, Cintra ACO, Sampaio SV. Purification procedure for the isolation of a P-I metalloprotease and an acidic phospholipase A2 from Bothrops atrox snake venom. J Venom Anim Toxins Incl Trop Dis 2015; 21: 0-0.
[http://dx.doi.org/10.1186/s40409-015-0027-6]
[72]
Menaldo DL, Bernardes CP, Jacob-Ferreira AL, et al. Effects of Bothrops atrox venom and two isolated toxins on the human complement system: Modulation of pathways and generation of anaphylatoxins. Mol Immunol 2016; 80: 91-100.
[http://dx.doi.org/10.1016/j.molimm.2016.10.015] [PMID: 27846429]
[73]
Olaoba OT, Karina Dos Santos P, Selistre-de-Araujo HS, Ferreira de Souza DH. Snake venom metalloproteinases (SVMPs): A structure-function update. Toxicon X 2020; 7: 100052.
[http://dx.doi.org/10.1016/j.toxcx.2020.100052] [PMID: 32776002]
[74]
Sampaio SC, Hyslop S, Fontes MRM, et al. Crotoxin: Novel activities for a classic β-neurotoxin. Toxicon 2010; 55(6): 1045-60.
[http://dx.doi.org/10.1016/j.toxicon.2010.01.011] [PMID: 20109480]
[75]
Queiroz GP, Pessoa LA, Portaro FCV, Furtado M de FD, Tambourgi DV. Interspecific variation in venom composition and toxicity of Brazilian snakes from Bothrops genus. Toxicon 2008; 52(8): 842-51.
[http://dx.doi.org/10.1016/j.toxicon.2008.10.002] [PMID: 18983867]
[76]
Delafontaine M, Villas-Boas IM, Pidde G, et al. Venom from bothrops lanceolatus, a snake species native to Martinique, potently activates the complement system. J Immunol Res 2018; 2018
[77]
Szold O, Ben-Abraham R, Weinbroum AA, et al. Antagonization of TNF attenuates systemic hemodynamic manifestations of envenomation in a rat model of Vipera aspis snakebite. Intensive Care Med 2001; 27(5): 884-8.
[http://dx.doi.org/10.1007/s001340100875] [PMID: 11430545]
[78]
Szold O, Ben-Abraham R, Frolkis I, Sorkine M, Sorkine P. Tumor necrosis factor as a mediator of cardiac toxicity following snake envenomation. Crit Care Med 2003; 31(5): 1449-53.
[http://dx.doi.org/10.1097/01.CCM.0000050440.87890.92] [PMID: 12771617]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy