Review Article

The Role, Significance, and Association of MicroRNA-10a/b in Physiology of Cancer

Author(s): Khaled M. Elgeshy* and Abdel Hady A. Abdel Wahab

Volume 11, Issue 2, 2022

Published on: 26 August, 2022

Page: [118 - 138] Pages: 21

DOI: 10.2174/2211536611666220523104408

Price: $65

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate the translation of mRNA and protein, mainly at the posttranscriptional level. Global expression profiling of miRNAs has demonstrated a broad spectrum of aberrations that correlated with several diseases, and miRNA- 10a and miRNA-10b were the first examined miRNAs to be involved in abnormal activities upon dysregulation, including many types of cancers and progressive diseases. It is expected that the same miRNAs behave inconsistently within different types of cancer. This review aims to provide a set of information about our updated understanding of miRNA-10a and miRNA-10b and their clinical significance, molecular targets, current research gaps, and possible future applications of such potent regulators.

Keywords: MicroRNAs, cancer, treatment, diagnosis, chemoresistance, EMT, metastasis.

Graphical Abstract

[1]
Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet., 2008, 9(2), 102-114.
[http://dx.doi.org/10.1038/nrg2290] [PMID: 18197166]
[2]
Ørom, U.A.; Nielsen, F.C.; Lund, A.H. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell, 2008, 30(4), 460-471.
[http://dx.doi.org/10.1016/j.molcel.2008.05.001] [PMID: 18498749]
[3]
Vasudevan, S.; Tong, Y.; Steitz, J.A. Switching from repression to activation: MicroRNAs can up-regulate translation. Science, 2007, 318(5858), 1931-1934.
[http://dx.doi.org/10.1126/science.1149460] [PMID: 18048652]
[4]
Hwang, H.W.; Mendell, J.T. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br. J. Cancer, 2006, 94(6), 776-780.
[http://dx.doi.org/10.1038/sj.bjc.6603023] [PMID: 16495913]
[5]
Ullmann, P.; Nurmik, M.; Schmitz, M. Tumor suppressor miR-215 counteracts hypoxia-induced colon cancer stem cell activity. Cancer Lett., 2019, 450, 32-41.
[http://dx.doi.org/10.1016/j.canlet.2019.02.030] [PMID: 30790680]
[6]
Grimson, A.; Farh, K.K.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol. Cell, 2007, 27(1), 91-105.
[http://dx.doi.org/10.1016/j.molcel.2007.06.017] [PMID: 17612493]
[7]
Mendes, N.D.; Freitas, A.T.; Sagot, M.F. Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res., 2009, 37(8), 2419-2433.
[http://dx.doi.org/10.1093/nar/gkp145] [PMID: 19295136]
[8]
Lund, A.H. MiR-10 in development and cancer. Cell Death Differ., 2010, 17(2), 209-214.
[http://dx.doi.org/10.1038/cdd.2009.58] [PMID: 19461655]
[9]
Quinonez, S.C.; Innis, J.W. Human HOX gene disorders. Mol. Genet. Metab., 2014, 111(1), 4-15.
[http://dx.doi.org/10.1016/j.ymgme.2013.10.012] [PMID: 24239177]
[10]
Tehler, D.; Høyland-Kroghsbo, N.M.; Lund, A.H. The miR-10 microRNA precursor family. RNA Biol., 2011, 8(5), 728-734.
[http://dx.doi.org/10.4161/rna.8.5.16324] [PMID: 21881411]
[11]
Griffiths-Jones, S.; Hui, J.H.; Marco, A.; Ronshaugen, M. MicroRNA evolution by arm switching. EMBO Rep., 2011, 12(2), 172-177.
[http://dx.doi.org/10.1038/embor.2010.191] [PMID: 21212805]
[12]
Chen, J.; Jiang, Y.; Zhou, J. Genetic variants in the promoter region of miR-10b and the risk of breast cancer. BioMed Res. Int., 2017, 2017, 2352874.
[http://dx.doi.org/10.1155/2017/2352874] [PMID: 28691018]
[13]
Meerson, A.; Eliraz, Y.; Yehuda, H. Obesity impacts the regulation of miR-10b and its targets in primary breast tumors. BMC Cancer, 2019, 19(1), 86.
[http://dx.doi.org/10.1186/s12885-019-5300-6] [PMID: 30658617]
[14]
Iyevleva, A.G.; Kuligina, E.Sh.; Mitiushkina, N.V.; Togo, A.V.; Miki, Y.; Imyanitov, E.N. High level of miR-21, miR-10b, and miR-31 expression in bilateral vs. unilateral breast carcinomas. Breast Cancer Res. Treat., 2012, 131(3), 1049-1059.
[http://dx.doi.org/10.1007/s10549-011-1845-z] [PMID: 22057972]
[15]
Heneghan, H.M.; Miller, N.; Lowery, A.J.; Sweeney, K.J.; Newell, J.; Kerin, M.J. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann. Surg., 2010, 251(3), 499-505.
[http://dx.doi.org/10.1097/SLA.0b013e3181cc939f] [PMID: 20134314]
[16]
Khan, S.; Wall, D.; Curran, C.; Newell, J.; Kerin, M.J.; Dwyer, R.M. MicroRNA-10a is reduced in breast cancer and regulated in part through retinoic acid. BMC Cancer, 2015, 15, 345.
[http://dx.doi.org/10.1186/s12885-015-1374-y] [PMID: 25934412]
[17]
Ahmad, A.; Ginnebaugh, K.R.; Yin, S.; Bollig-Fischer, A.; Reddy, K.B.; Sarkar, F.H. Functional role of miR-10b in tamoxifen resistance of ER-positive breast cancer cells through down-regulation of HDAC4. BMC Cancer, 2015, 15, 540.
[http://dx.doi.org/10.1186/s12885-015-1561-x] [PMID: 26206152]
[18]
Chang, C.H.; Fan, T.C.; Yu, J.C. The prognostic significance of RUNX2 and miR-10a/10b and their inter-relationship in breast cancer. J. Transl. Med., 2014, 12, 257.
[http://dx.doi.org/10.1186/s12967-014-0257-3] [PMID: 25266482]
[19]
Hoppe, R.; Achinger-Kawecka, J.; Winter, S. Increased expression of miR-126 and miR-10a predict prolonged relapse-free time of primary oestrogen receptor-positive breast cancer following tamoxifen treatment. Eur. J. Cancer, 2013, 49(17), 3598-3608.
[http://dx.doi.org/10.1016/j.ejca.2013.07.145] [PMID: 23968733]
[20]
Zhao, F.L.; Hu, G.D.; Wang, X.F.; Zhang, X.H.; Zhang, Y.K.; Yu, Z.S. Serum overexpression of microRNA-10b in patients with bone metastatic primary breast cancer. J. Int. Med. Res., 2012, 40(3), 859-866.
[http://dx.doi.org/10.1177/147323001204000304] [PMID: 22906258]
[21]
Ma, L.; Teruya-Feldstein, J.; Weinberg, R.A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 2007, 449(7163), 682-688.
[http://dx.doi.org/10.1038/nature06174] [PMID: 17898713]
[22]
Gee, H.E.; Camps, C.; Buffa, F.M. MicroRNA-10b and breast cancer metastasis. Nature, 2008, 455(7216), E8-E9.
[http://dx.doi.org/10.1038/nature07362] [PMID: 18948893]
[23]
Liu, Y.; Zhao, J.; Zhang, P.Y. MicroRNA-10b targets E-cadherin and modulates breast cancer metastasis. Med. Sci. Monit., 2012, 18(8), BR299-BR308.
[http://dx.doi.org/10.12659/MSM.883262] [PMID: 22847191]
[24]
Knirsh, R.; Ben-Dror, I.; Modai, S.; Shomron, N.; Vardimon, L. MicroRNA 10b promotes abnormal expression of the proto-oncogene c-Jun in metastatic breast cancer cells. Oncotarget, 2016, 7(37), 59932-59944.
[http://dx.doi.org/10.18632/oncotarget.11000] [PMID: 27494896]
[25]
Ibrahim, S.A.; Yip, G.W.; Stock, C. Targeting of syndecan-1 by microRNA miR-10b promotes breast cancer cell motility and invasiveness via a Rho-GTPase- and E-cadherin-dependent mechanism. Int. J. Cancer, 2012, 131(6), E884-E896.
[http://dx.doi.org/10.1002/ijc.27629] [PMID: 22573479]
[26]
Bourguignon, L.Y.; Wong, G.; Earle, C.; Krueger, K.; Spevak, C.C. Hyaluronan-CD44 interaction promotes c-Src-mediated twist signaling, microRNA-10b expression, and RhoA/RhoC up-regulation, leading to Rho-kinase-associated cytoskeleton activation and breast tumor cell invasion. J. Biol. Chem., 2010, 285(47), 36721-36735.
[http://dx.doi.org/10.1074/jbc.M110.162305] [PMID: 20843787]
[27]
Yigit, M.V.; Ghosh, S.K.; Kumar, M. Context-dependent differences in miR-10b breast oncogenesis can be targeted for the prevention and arrest of lymph node metastasis. Oncogene, 2013, 32(12), 1530-1538.
[http://dx.doi.org/10.1038/onc.2012.173] [PMID: 22580603]
[28]
Gabriely, G.; Teplyuk, N.M.; Krichevsky, A.M. Context effect: MicroRNA-10b in cancer cell proliferation, spread and death. Autophagy, 2011, 7(11), 1384-1386.
[http://dx.doi.org/10.4161/auto.7.11.17371] [PMID: 21795860]
[29]
Yoo, B.; Greninger, P.; Stein, G.T. Potent and selective effect of the mir-10b inhibitor MN-anti-mir10b in human cancer cells of diverse primary disease origin. PLoS One, 2018, 13(7), e0201046.
[http://dx.doi.org/10.1371/journal.pone.0201046] [PMID: 30028875]
[30]
Ma, L.; Reinhardt, F.; Pan, E. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat. Biotechnol., 2010, 28(4), 341-347.
[http://dx.doi.org/10.1038/nbt.1618] [PMID: 20351690]
[31]
Monroig-Bosque, P.D.C.; Shah, M.Y.; Fu, X. OncomiR-10b hijacks the small molecule inhibitor linifanib in human cancers. Sci. Rep., 2018, 8(1), 13106.
[http://dx.doi.org/10.1038/s41598-018-30989-3] [PMID: 30166612]
[32]
Singh, R.; Pochampally, R.; Watabe, K.; Lu, Z.; Mo, Y.Y. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Mol. Cancer, 2014, 13, 256.
[http://dx.doi.org/10.1186/1476-4598-13-256] [PMID: 25428807]
[33]
Sasayama, T.; Nishihara, M.; Kondoh, T.; Hosoda, K.; Kohmura, E. MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int. J. Cancer, 2009, 125(6), 1407-1413.
[http://dx.doi.org/10.1002/ijc.24522] [PMID: 19536818]
[34]
Teplyuk, N.M.; Mollenhauer, B.; Gabriely, G. MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro-oncol., 2012, 14(6), 689-700.
[http://dx.doi.org/10.1093/neuonc/nos074] [PMID: 22492962]
[35]
Ji, Y.; Wei, Y.; Wang, J.; Gong, K.; Zhang, Y.; Zuo, H. Correlation of microRNA-10b upregulation and poor prognosis in human gliomas. Tumour Biol., 2015, 36(8), 6249-6254.
[http://dx.doi.org/10.1007/s13277-015-3310-9] [PMID: 25773393]
[36]
Yan, Y.; Yan, H.; Wang, Q.; Zhang, L.; Liu, Y.; Yu, H. MicroRNA 10a induces glioma tumorigenesis by targeting myotubularin-related protein 3 and regulating the Wnt/β-catenin signaling pathway. FEBS J., 2019, 286(13), 2577-2592.
[http://dx.doi.org/10.1111/febs.14824] [PMID: 30927504]
[37]
Pal, D.; Mukhopadhyay, D.; Ramaiah, M.J.; Sarma, P.; Bhadra, U.; Bhadra, M.P. Regulation of cell proliferation and migration by miR-203 via GAS41/miR-10b axis in human glioblastoma cells. PLoS One, 2016, 11(7), e0159092.
[http://dx.doi.org/10.1371/journal.pone.0159092] [PMID: 27467502]
[38]
Teplyuk, N.M.; Uhlmann, E.J.; Wong, A.H. MicroRNA-10b inhibition reduces E2F1-mediated transcription and miR-15/16 activity in glioblastoma. Oncotarget, 2015, 6(6), 3770-3783.
[http://dx.doi.org/10.18632/oncotarget.3009] [PMID: 25738367]
[39]
Ru, Q.; Li, W.L.; Xiong, Q.; Chen, L.; Tian, X.; Li, C.Y. Voltage-gated potassium channel blocker 4-aminopyridine induces glioma cell apoptosis by reducing expression of microRNA-10b-5p. Mol. Biol. Cell, 2018, 29(9), 1125-1136.
[http://dx.doi.org/10.1091/mbc.E17-02-0120] [PMID: 29514931]
[40]
Foley, N.H.; Bray, I.; Watters, K.M. MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ., 2011, 18(7), 1089-1098.
[http://dx.doi.org/10.1038/cdd.2010.172] [PMID: 21212796]
[41]
Pal, R.; Greene, S. MicroRNA-10b is overexpressed and critical for cell survival and proliferation in medulloblastoma. PLoS One, 2015, 10(9), e0137845.
[http://dx.doi.org/10.1371/journal.pone.0137845] [PMID: 26394044]
[42]
Sun, L.; Yan, W.; Wang, Y. MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Res., 2011, 1389, 9-18.
[http://dx.doi.org/10.1016/j.brainres.2011.03.013] [PMID: 21419107]
[43]
Ma, C.; Wei, F.; Xia, H. MicroRNA-10b mediates TGF-β1-regulated glioblastoma proliferation, migration and epithelial-mesenchymal transition. Int. J. Oncol., 2017, 50(5), 1739-1748.
[http://dx.doi.org/10.3892/ijo.2017.3947] [PMID: 28393237]
[44]
Yan, Y.; Wang, Q.; Yan, X.L. MiR-10a controls glioma migration and invasion through regulating epithelial-mesenchymal transition via EphA8. FEBS Lett., 2015, 589(6), 756-765.
[http://dx.doi.org/10.1016/j.febslet.2015.02.005] [PMID: 25683004]
[45]
Sun, W.; Ma, Y.; Chen, P.; Wang, D. MicroRNA-10a silencing reverses cisplatin resistance in the A549/cisplatin human lung cancer cell line via the transforming growth factor-β/Smad2/STAT3/STAT5 pathway. Mol. Med. Rep., 2015, 11(5), 3854-3859.
[http://dx.doi.org/10.3892/mmr.2015.3181] [PMID: 25586740]
[46]
Shang, C.; Tang, W.; Pan, C.; Hu, X.; Hong, Y. Long non-coding RNA TUSC7 inhibits temozolomide resistance by targeting miR-10a in glioblastoma. Cancer Chemother. Pharmacol., 2018, 81(4), 671-678.
[http://dx.doi.org/10.1007/s00280-018-3522-y] [PMID: 29397407]
[47]
Liang, H.X.; Sun, L.B.; Liu, N.J. Neferine inhibits proliferation, migration and invasion of U251 glioma cells by down-regulation of miR-10b. Biomed. Pharmacother., 2019, 109, 1032-1040.
[http://dx.doi.org/10.1016/j.biopha.2018.10.122] [PMID: 30551353]
[48]
Son, J.C.; Jeong, H.O.; Park, D. MiR-10a and miR-204 as a potential prognostic indicator in low-grade gliomas. Cancer Inform., 2017, 16, 1176935117702878.
[http://dx.doi.org/10.1177/1176935117702878] [PMID: 28469392]
[49]
El Fatimy, R.; Subramanian, S.; Uhlmann, E.J.; Krichevsky, A.M. Genome editing reveals glioblastoma addiction to microRNA-10b. Mol. Ther., 2017, 25(2), 368-378.
[http://dx.doi.org/10.1016/j.ymthe.2016.11.004] [PMID: 28153089]
[50]
Varnholt, H.; Drebber, U.; Schulze, F. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology, 2008, 47(4), 1223-1232.
[http://dx.doi.org/10.1002/hep.22158] [PMID: 18307259]
[51]
Zhen, Y.; Xinghui, Z.; Chao, W. Several microRNAs could predict survival in patients with hepatitis B-related liver cancer. Sci. Rep., 2017, 7, 45195.
[http://dx.doi.org/10.1038/srep45195] [PMID: 28322348]
[52]
Jiang, L.; Cheng, Q.; Zhang, B.H.; Zhang, M.Z. Circulating microRNAs as biomarkers in hepatocellular carcinoma screening: A validation set from China. Medicine (Baltimore), 2015, 94(10), e603.
[http://dx.doi.org/10.1097/MD.0000000000000603] [PMID: 25761179]
[53]
He, S.; Zhang, D.C.; Wei, C. MicroRNAs as biomarkers for hepatocellular carcinoma diagnosis and prognosis. Clin. Res. Hepatol. Gastroenterol., 2015, 39(4), 426-434.
[http://dx.doi.org/10.1016/j.clinre.2015.01.006] [PMID: 25746139]
[54]
Shen, J.; Wang, S.; Zhang, Y.J. Genome-wide aberrant DNA methylation of microRNA host genes in hepatocellular carcinoma. Epigenetics, 2012, 7(11), 1230-1237.
[http://dx.doi.org/10.4161/epi.22140] [PMID: 22976466]
[55]
Tian, X.P.; Wang, C.Y.; Jin, X.H. Acidic microenvironment up-regulates exosomal miR-21 and miR-10b in early-stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis. Theranostics, 2019, 9(7), 1965-1979.
[http://dx.doi.org/10.7150/thno.30958] [PMID: 31037150]
[56]
Ye, P.; Wang, T.; Liu, W.H.; Li, X.C.; Tang, L.J.; Tian, F.Z. Enhancing HOTAIR/MiR-10b drives normal liver stem cells toward a tendency to malignant transformation through inducing epithelial- to-mesenchymal transition. Rejuvenation Res., 2015, 18(4), 332-340.
[http://dx.doi.org/10.1089/rej.2014.1642] [PMID: 25708830]
[57]
Liao, C.G.; Kong, L.M.; Zhou, P. MiR-10b is overexpressed in hepatocellular carcinoma and promotes cell proliferation, migration and invasion through RhoC, uPAR and MMPs. J. Transl. Med., 2014, 12, 234.
[http://dx.doi.org/10.1186/s12967-014-0234-x] [PMID: 25236186]
[58]
Li, D.; Zhang, Y.; Zhang, H. CADM2, as a new target of miR-10b, promotes tumor metastasis through FAK/AKT pathway in hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2018, 37(1), 46.
[http://dx.doi.org/10.1186/s13046-018-0699-1] [PMID: 29506532]
[59]
Yan, Y.; Luo, Y.C.; Wan, H.Y. MicroRNA-10a is involved in the metastatic process by regulating Eph tyrosine kinase receptor A4-mediated epithelial-mesenchymal transition and adhesion in hepatoma cells. Hepatology, 2013, 57(2), 667-677.
[http://dx.doi.org/10.1002/hep.26071] [PMID: 22996586]
[60]
Hujie, G.; Zhou, S.H.; Zhang, H. MicroRNA-10b regulates epithelial-mesenchymal transition by modulating KLF4/KLF11/Smads in hepatocellular carcinoma. Cancer Cell Int., 2018, 18, 10.
[http://dx.doi.org/10.1186/s12935-018-0508-0] [PMID: 29375271]
[61]
Wu, Y.; Zhou, Y.; Huan, L. LncRNA MIR22HG inhibits growth, migration and invasion through regulating the miR-10a-5p/NCOR2 axis in hepatocellular carcinoma cells. Cancer Sci., 2019, 110(3), 973-984.
[http://dx.doi.org/10.1111/cas.13950] [PMID: 30680848]
[62]
Gao, L.; Yang, X.; Zhang, H.; Yu, M.; Long, J.; Yang, T. Inhibition of miR-10a-5p suppresses cholangiocarcinoma cell growth through downregulation of Akt pathway. OncoTargets Ther., 2018, 11, 6981-6994.
[http://dx.doi.org/10.2147/OTT.S182225] [PMID: 30410355]
[63]
Obermannova, R.; Redova-Lojova, M.; Vychytilova-Faltejskova, P. Tumor expression of miR-10b, miR-21, miR-143 and miR-145 is related to clinicopathological features of gastric cancer in a central European population. Anticancer Res., 2018, 38(6), 3719-3724.
[http://dx.doi.org/10.21873/anticanres.12651] [PMID: 29848733]
[64]
Wang, Y.Y.; Ye, Z.Y.; Zhao, Z.S. Clinicopathologic significance of miR-10b expression in gastric carcinoma. Hum. Pathol., 2013, 44(7), 1278-1285.
[http://dx.doi.org/10.1016/j.humpath.2012.10.014] [PMID: 23351547]
[65]
Gao, Y.; Xu, Z.; Yuan, F.; Li, M. Correlation of expression levels of micro ribonucleic acid-10b (miR-10b) and micro ribonucleic acid-181b (miR-181b) with gastric cancer and its diagnostic significance. Med. Sci. Monit., 2018, 24, 7988-7995.
[http://dx.doi.org/10.12659/MSM.910809] [PMID: 30403658]
[66]
Li, X.; Zhang, Y.; Zhang, Y.; Ding, J.; Wu, K.; Fan, D. Survival prediction of gastric cancer by a seven-microRNA signature. Gut, 2010, 59(5), 579-585.
[http://dx.doi.org/10.1136/gut.2008.175497] [PMID: 19951901]
[67]
Chen, W.; Tang, Z.; Sun, Y. MiRNA expression profile in primary gastric cancers and paired lymph node metastases indicates that miR-10a plays a role in metastasis from primary gastric cancer to lymph nodes. Exp. Ther. Med., 2012, 3(2), 351-356.
[http://dx.doi.org/10.3892/etm.2011.411] [PMID: 22969895]
[68]
Bakhshi, M.; Asadi, J.; Ebrahimi, M.; Moradi, A.V.; Hajimoradi, M. Increased expression of miR-146a, miR-10b, and miR-21 in cancer stem-like gastro-spheres. J. Cell. Biochem., 2019, 120(10), 16589-16599.
[http://dx.doi.org/10.1002/jcb.28918] [PMID: 31095782]
[69]
Wang, Y.; Gu, X.; Li, Z.; Xiang, J.; Jiang, J.; Chen, Z. MicroRNA expression profiling in multidrug resistance of the 5 Fu induced SGC 7901 human gastric cancer cell line. Mol. Med. Rep., 2013, 7(5), 1506-1510.
[http://dx.doi.org/10.3892/mmr.2013.1384] [PMID: 23525256]
[70]
Liu, Z.; Zhu, J.; Cao, H.; Ren, H.; Fang, X. MiR-10b promotes cell invasion through RhoC-AKT signaling pathway by targeting HOXD10 in gastric cancer. Int. J. Oncol., 2012, 40(5), 1553-1560.
[http://dx.doi.org/10.3892/ijo.2012.1342] [PMID: 22293682]
[71]
Lu, Y.; Wei, G.; Liu, L. Direct targeting of MAPK8IP1 by miR-10a-5p is a major mechanism for gastric cancer metastasis. Oncol. Lett., 2017, 13(3), 1131-1136.
[http://dx.doi.org/10.3892/ol.2016.5544] [PMID: 28454224]
[72]
Li, Z.; Lei, H.; Luo, M. DNA methylation downregulated mir-10b acts as a tumor suppressor in gastric cancer. Gastric Cancer, 2015, 18(1), 43-54.
[http://dx.doi.org/10.1007/s10120-014-0340-8] [PMID: 24481854]
[73]
Jia, H.; Zhang, Z.; Zou, D. MicroRNA-10a is down-regulated by DNA methylation and functions as a tumor suppressor in gastric cancer cells. PLoS One, 2014, 9(1), e88057.
[http://dx.doi.org/10.1371/journal.pone.0088057] [PMID: 24498243]
[74]
Li, X.; Xu, F.; Chang, C. Transcriptional regulation of miR-10a/b by TWIST-1 in myelodysplastic syndromes. Haematologica, 2013, 98(3), 414-419.
[http://dx.doi.org/10.3324/haematol.2012.071753] [PMID: 22983574]
[75]
Bi, L.; Sun, L.; Jin, Z.; Zhang, S.; Shen, Z. MicroRNA-10a/b are regulators of myeloid differentiation and acute myeloid leukemia. Oncol. Lett., 2018, 15(4), 5611-5619.
[http://dx.doi.org/10.3892/ol.2018.8050] [PMID: 29552198]
[76]
Wang, C.J.; Zou, H.; Feng, G.F. MiR-10b regulates the proliferation and apoptosis of pediatric acute myeloid leukemia through targeting HOXD10. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(21), 7371-7378.
[http://dx.doi.org/10.26355/eurrev_201811_16275] [PMID: 30468483]
[77]
Zhi, F.; Cao, X.; Xie, X. Identification of circulating microRNAs as potential biomarkers for detecting acute myeloid leukemia. PLoS One, 2013, 8(2), e56718.
[http://dx.doi.org/10.1371/journal.pone.0056718] [PMID: 23437222]
[78]
Agirre, X.; Jiménez-Velasco, A.; San José-Enériz, E. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol. Cancer Res., 2008, 6(12), 1830-1840.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0167] [PMID: 19074828]
[79]
Dixon-McIver, A.; East, P.; Mein, C.A. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One, 2008, 3(5), e2141.
[http://dx.doi.org/10.1371/journal.pone.0002141] [PMID: 18478077]
[80]
Zhang, Z.; Ran, Y.; Shaw, T.S.; Peng, Y. MicroRNAs 10a and 10b regulate the expression of human platelet glycoprotein Ibα for normal megakaryopoiesis. Int. J. Mol. Sci., 2016, 17(11), E1873.
[http://dx.doi.org/10.3390/ijms17111873] [PMID: 27834869]
[81]
Hussein, K.; Dralle, W.; Theophile, K.; Kreipe, H.; Bock, O. Megakaryocytic expression of miRNA 10a, 17-5p, 20a and 126 in Philadelphia chromosome-negative myeloproliferative neoplasm. Ann. Hematol., 2009, 88(4), 325-332.
[http://dx.doi.org/10.1007/s00277-008-0602-9] [PMID: 18773208]
[82]
Dumas, P.Y.; Mansier, O.; Prouzet-Mauleon, V. MiR-10a and HOXB4 are overexpressed in atypical myeloproliferative neoplasms. BMC Cancer, 2018, 18(1), 1098.
[http://dx.doi.org/10.1186/s12885-018-4993-2] [PMID: 30419846]
[83]
Wu, W.; He, C.; Liu, C. MiR-10a inhibits dendritic cell activation and Th1/Th17 cell immune responses in IBD. Gut, 2015, 64(11), 1755-1764.
[http://dx.doi.org/10.1136/gutjnl-2014-307980] [PMID: 25281418]
[84]
Van der Goten, J.; Vanhove, W.; Lemaire, K. Integrated miRNA and mRNA expression profiling in inflamed colon of patients with ulcerative colitis. PLoS One, 2014, 9(12), e116117.
[http://dx.doi.org/10.1371/journal.pone.0116117] [PMID: 25546151]
[85]
Lee, K.; Ferguson, L.R. MicroRNA biomarkers predicting risk, initiation and progression of colorectal cancer. World J. Gastroenterol., 2016, 22(33), 7389-7401.
[http://dx.doi.org/10.3748/wjg.v22.i33.7389] [PMID: 27672263]
[86]
Giráldez, M.D.; Lozano, J.J.; Ramírez, G. Circulating microRNAs as biomarkers of colorectal cancer: Results from a genome-wide profiling and validation study. Clin. Gastroenterol. Hepatol., 2013, 11(6), 681-8.e3.
[http://dx.doi.org/10.1016/j.cgh.2012.12.009] [PMID: 23267864]
[87]
Adams, S.V.; Newcomb, P.A.; Burnett-Hartman, A.N. Rare circulating microRNAs as biomarkers of colorectal neoplasia. PLoS One, 2014, 9(10), e108668.
[http://dx.doi.org/10.1371/journal.pone.0108668] [PMID: 25286412]
[88]
Slattery, M.L.; Wolff, E.; Hoffman, M.D.; Pellatt, D.F.; Milash, B.; Wolff, R.K. MicroRNAs and colon and rectal cancer: Differential expression by tumor location and subtype. Genes Chromosomes Cancer, 2011, 50(3), 196-206.
[http://dx.doi.org/10.1002/gcc.20844] [PMID: 21213373]
[89]
Schee, K.; Lorenz, S.; Worren, M.M. Deep sequencing the microRNA transcriptome in colorectal cancer. PLoS One, 2013, 8(6), e66165.
[http://dx.doi.org/10.1371/journal.pone.0066165] [PMID: 23824282]
[90]
Monzo, M.; Navarro, A.; Bandres, E. Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. Cell Res., 2008, 18(8), 823-833.
[http://dx.doi.org/10.1038/cr.2008.81] [PMID: 18607389]
[91]
Nishida, N.; Yamashita, S.; Mimori, K. MicroRNA-10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells. Ann. Surg. Oncol., 2012, 19(9), 3065-3071.
[http://dx.doi.org/10.1245/s10434-012-2246-1] [PMID: 22322955]
[92]
Jiang, H.; Liu, J.; Chen, Y.; Ma, C.; Li, B.; Hao, T. Up-regulation of mir-10b predicate advanced clinicopathological features and liver metastasis in colorectal cancer. Cancer Med., 2016, 5(10), 2932-2941.
[http://dx.doi.org/10.1002/cam4.789] [PMID: 27592860]
[93]
Wang, Y.F.; Li, Z.; Zhao, X.H. MicroRNA-10b is upregulated and has an invasive role in colorectal cancer through enhanced Rhoc expression. Oncol. Rep., 2015, 33(3), 1275-1283.
[http://dx.doi.org/10.3892/or.2015.3737] [PMID: 25606801]
[94]
Dai, G.; Yao, X.; Zhang, Y. Colorectal cancer cell-derived exosomes containing miR-10b regulate fibroblast cells via the PI3K/Akt pathway. Bull. Cancer, 2018, 105(4), 336-349.
[http://dx.doi.org/10.1016/j.bulcan.2017.12.009] [PMID: 29496262]
[95]
Khella, H.W.Z.; Daniel, N.; Youssef, L. MiR-10b is a prognostic marker in clear cell renal cell carcinoma. J. Clin. Pathol., 2017, 70(10), 854-859.
[http://dx.doi.org/10.1136/jclinpath-2017-204341] [PMID: 28360191]
[96]
Slaby, O.; Redova, M.; Poprach, A. Identification of MicroRNAs associated with early relapse after nephrectomy in renal cell carcinoma patients. Genes Chromosomes Cancer, 2012, 51(7), 707-716.
[http://dx.doi.org/10.1002/gcc.21957] [PMID: 22492545]
[97]
Fritz, H.K.M.; Lindgren, D.; Ljungberg, B.; Axelson, H.; Dahlbäck, B. The miR(21/10b) ratio as a prognostic marker in clear cell renal cell carcinoma. Eur. J. Cancer, 2014, 50(10), 1758-1765.
[http://dx.doi.org/10.1016/j.ejca.2014.03.281] [PMID: 24793999]
[98]
Youssef, Y.M.; White, N.M.; Grigull, J. Accurate molecular classification of kidney cancer subtypes using microRNA signature. Eur. Urol., 2011, 59(5), 721-730.
[http://dx.doi.org/10.1016/j.eururo.2011.01.004] [PMID: 21272993]
[99]
Christinat, Y.; Krek, W. Integrated genomic analysis identifies subclasses and prognosis signatures of kidney cancer. Oncotarget, 2015, 6(12), 10521-10531.
[http://dx.doi.org/10.18632/oncotarget.3294] [PMID: 25826081]
[100]
Carlsson, J.; Christiansen, J.; Davidsson, S.; Giunchi, F.; Fiorentino, M.; Sundqvist, P. The potential role of miR-126, miR-21 and miR-10b as prognostic biomarkers in renal cell carcinoma. Oncol. Lett., 2019, 17(5), 4566-4574.
[http://dx.doi.org/10.3892/ol.2019.10142] [PMID: 30988818]
[101]
Li, Y.; Chen, D.; Li, Y. Oncogenic cAMP responsive element binding protein 1 is overexpressed upon loss of tumor suppressive miR-10b-5p and miR-363-3p in renal cancer. Oncol. Rep., 2016, 35(4), 1967-1978.
[http://dx.doi.org/10.3892/or.2016.4579] [PMID: 26796749]
[102]
Qin, J.; Zhou, J.; Teng, L.; Han, Y. MicroRNA-10b promotes apoptosis via JNK pathway in clear cell renal cell carcinoma. Nephron, 2018, 139(2), 172-180.
[http://dx.doi.org/10.1159/000486017] [PMID: 29672315]
[103]
He, C.; Chen, Z.Y.; Li, Y. miR-10b suppresses cell invasion and metastasis through targeting HOXA3 regulated by FAK/YAP signaling pathway in clear-cell renal cell carcinoma. BMC Nephrol., 2019, 20(1), 127.
[http://dx.doi.org/10.1186/s12882-019-1322-1] [PMID: 30975094]
[104]
Chen, T. The role of microRNA in chemical carcinogenesis. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2010, 28(2), 89-124.
[http://dx.doi.org/10.1080/10590501.2010.481477] [PMID: 20552498]
[105]
Shen, Y.L.; Jiang, Y.G.; Greenlee, A.R.; Zhou, L.L.; Liu, L.H. MicroRNA expression profiles and miR-10a target in anti-benzo[a] pyrene-7, 8-diol-9, 10-epoxide-transformed human 16HBE cells. Biomed. Environ. Sci., 2009, 22(1), 14-21.
[http://dx.doi.org/10.1016/S0895-3988(09)60016-7] [PMID: 19462682]
[106]
Liu, Q.; Yu, Z.; Yuan, S. Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget, 2017, 8(8), 13048-13058.
[http://dx.doi.org/10.18632/oncotarget.14369] [PMID: 28055956]
[107]
Liu, Y.; Li, M.; Zhang, G.; Pang, Z. MicroRNA-10b overexpression promotes non-small cell lung cancer cell proliferation and invasion. Eur. J. Med. Res., 2013, 18, 41.
[http://dx.doi.org/10.1186/2047-783X-18-41] [PMID: 24216130]
[108]
Li, Y.; Li, Y.; Liu, J. Expression levels of microRNA-145 and microRNA-10b are associated with metastasis in non-small cell lung cancer. Cancer Biol. Ther., 2016, 17(3), 272-279.
[http://dx.doi.org/10.1080/15384047.2016.1139242] [PMID: 26909466]
[109]
Zhang, J.; Xu, L.; Yang, Z. MicroRNA-10b indicates a poor prognosis of non-small cell lung cancer and targets E-cadherin. Clin. Transl. Oncol., 2015, 17(3), 209-214.
[http://dx.doi.org/10.1007/s12094-014-1213-7] [PMID: 25214146]
[110]
Bao, M.; Pan, S.; Yang, W.; Chen, S.; Shan, Y.; Shi, H. Serum miR-10a-5p and miR-196a-5p as non-invasive biomarkers in non-small cell lung cancer. Int. J. Clin. Exp. Pathol., 2018, 11(2), 773-780.
[PMID: 31938164]
[111]
Shen, Y.; Tang, D.; Yao, R. MicroRNA expression profiles associated with survival, disease progression, and response to gefitinib in completely resected non-small-cell lung cancer with EGFR mutation. Med. Oncol., 2013, 30(4), 750.
[http://dx.doi.org/10.1007/s12032-013-0750-1] [PMID: 24198203]
[112]
Yang, Y.L.; Xu, L.P.; Zhuo, F.L.; Wang, T.Y. Prognostic value of microRNA-10b overexpression in peripheral blood mononuclear cells of nonsmall-cell lung cancer patients. Tumour Biol., 2015, 36(9), 7069-7075.
[http://dx.doi.org/10.1007/s13277-015-3366-6] [PMID: 25869877]
[113]
Zhang, H.; Lu, Y.; Chen, E. XRN2 promotes EMT and metastasis through regulating maturation of miR-10a. Oncogene, 2017, 36(27), 3925-3933.
[http://dx.doi.org/10.1038/onc.2017.39] [PMID: 28319071]
[114]
Lajer, C.B.; Garnæs, E.; Friis-Hansen, L. The role of miRNAs in human papilloma virus (HPV)-associated cancers: bridging between HPV-related head and neck cancer and cervical cancer. Br. J. Cancer, 2012, 106(9), 1526-1534.
[http://dx.doi.org/10.1038/bjc.2012.109] [PMID: 22472886]
[115]
Yu, M.; Xu, Y.; Pan, L. miR-10b downregulated by DNA methylation acts as a tumor suppressor in HPV-positive cervical cancer via targeting Tiam1. Cell. Physiol. Biochem., 2018, 51(4), 1763-1777.
[http://dx.doi.org/10.1159/000495680] [PMID: 30504727]
[116]
Pereira, P.M.; Marques, J.P.; Soares, A.R.; Carreto, L.; Santos, M.A. MicroRNA expression variability in human cervical tissues. PLoS One, 2010, 5(7), e11780.
[http://dx.doi.org/10.1371/journal.pone.0011780] [PMID: 20668671]
[117]
Long, M.J.; Wu, F.X.; Li, P.; Liu, M.; Li, X.; Tang, H. MicroRNA-10a targets CHL1 and promotes cell growth, migration and invasion in human cervical cancer cells. Cancer Lett., 2012, 324(2), 186-196.
[http://dx.doi.org/10.1016/j.canlet.2012.05.022] [PMID: 22634495]
[118]
Zeng, T.; Li, G. MicroRNA 10a enhances the metastatic potential of cervical cancer cells by targeting phosphatase and tensin homologue. Mol. Med. Rep., 2014, 10(3), 1377-1382.
[http://dx.doi.org/10.3892/mmr.2014.2370] [PMID: 25018014]
[119]
Tsukerman, P.; Yamin, R.; Seidel, E. MiR-520d-5p directly targets TWIST1 and downregulates the metastamiR miR-10b. Oncotarget, 2014, 5(23), 12141-12150.
[http://dx.doi.org/10.18632/oncotarget.2559] [PMID: 25426550]
[120]
Zou, D.; Zhou, Q.; Wang, D.; Guan, L.; Yuan, L.; Li, S. The downregulation of microRNA-10b and its role in cervical cancer. Oncol. Res., 2016, 24(2), 99-108.
[http://dx.doi.org/10.3727/096504016X14611963142173] [PMID: 27296950]
[121]
Zhai, L.; Li, Y.; Lan, X.; Ai, L. MicroRNA-10a-5p suppresses cancer proliferation and division in human cervical cancer by targeting BDNF. Exp. Ther. Med., 2017, 14(6), 6147-6151.
[http://dx.doi.org/10.3892/etm.2017.5312] [PMID: 29285171]
[122]
Hou, R.; Wang, D.; Lu, J. MicroRNA-10b inhibits proliferation, migration and invasion in cervical cancer cells via direct targeting of insulin-like growth factor-1 receptor. Oncol. Lett., 2017, 13(6), 5009-5015.
[http://dx.doi.org/10.3892/ol.2017.6033] [PMID: 28599502]
[123]
Saldanha, G.; Elshaw, S.; Sachs, P. MicroRNA-10b is a prognostic biomarker for melanoma. Mod. Pathol., 2016, 29(2), 112-121.
[http://dx.doi.org/10.1038/modpathol.2015.149] [PMID: 26743475]
[124]
Bai, M.; Zhang, H.; Si, L.; Yu, N.; Zeng, A.; Zhao, R. Upregulation of Serum miR-10b is associated with poor prognosis in patients with melanoma. J. Cancer, 2017, 8(13), 2487-2491.
[http://dx.doi.org/10.7150/jca.18824] [PMID: 28900486]
[125]
Jukic, D.M.; Rao, U.N.; Kelly, L. MicroRNA profiling analysis of differences between the melanoma of young adults and older adults. J. Transl. Med., 2010, 8, 27.
[http://dx.doi.org/10.1186/1479-5876-8-27] [PMID: 20302635]
[126]
Rambow, F.; Job, B.; Petit, V. New functional signatures for understanding melanoma biology from tumor cell lineage-specific analysis. Cell Rep., 2015, 13(4), 840-853.
[http://dx.doi.org/10.1016/j.celrep.2015.09.037] [PMID: 26489459]
[127]
Mueller, D.W.; Rehli, M.; Bosserhoff, A.K. MiRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J. Invest. Dermatol., 2009, 129(7), 1740-1751.
[http://dx.doi.org/10.1038/jid.2008.452] [PMID: 19212343]
[128]
Wang, S.; Wu, Y.; Xu, Y.; Tang, X. miR-10b promoted melanoma progression through Wnt/β-catenin pathway by repressing ITCH expression. Gene, 2019, 710, 39-47.
[http://dx.doi.org/10.1016/j.gene.2019.05.043] [PMID: 31129246]
[129]
Fomeshi, M.R.; Ebrahimi, M.; Mowla, S.J.; Khosravani, P.; Firouzi, J.; Khayatzadeh, H. Evaluation of the expressions pattern of miR-10b, 21, 200c, 373 and 520c to find the correlation between epithelial-to-mesenchymal transition and melanoma stem cell potential in isolated cancer stem cells. Cell. Mol. Biol. Lett., 2015, 20(3), 448-465.
[http://dx.doi.org/10.1515/cmble-2015-0025] [PMID: 26208390]
[130]
Datar, I.; Kalpana, G.; Choi, J. Critical role of miR-10b in B-RafV600E dependent anchorage independent growth and invasion of melanoma cells. PLoS One, 2019, 14(4), e0204387.
[http://dx.doi.org/10.1371/journal.pone.0204387] [PMID: 30995246]
[131]
Cote, G.A.; Gore, A.J.; McElyea, S.D. A pilot study to develop a diagnostic test for pancreatic ductal adenocarcinoma based on differential expression of select miRNA in plasma and bile. Am. J. Gastroenterol., 2014, 109(12), 1942-1952.
[http://dx.doi.org/10.1038/ajg.2014.331] [PMID: 25350767]
[132]
Preis, M.; Gardner, T.B.; Gordon, S.R. MicroRNA-10b expression correlates with response to neoadjuvant therapy and survival in pancreatic ductal adenocarcinoma. Clin. Cancer Res., 2011, 17(17), 5812-5821.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0695] [PMID: 21652542]
[133]
Humeau, M.; Torrisani, J.; Cordelier, P. miRNA in clinical practice: pancreatic cancer. Clin. Biochem., 2013, 46(10-11), 933-936.
[http://dx.doi.org/10.1016/j.clinbiochem.2013.03.019] [PMID: 23570860]
[134]
Setoyama, T.; Zhang, X.; Natsugoe, S.; Calin, G.A. MicroRNA-10b: A new marker or the marker of pancreatic ductal adenocarcinoma? Clin. Cancer Res., 2011, 17(17), 5527-5529.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1477] [PMID: 21816909]
[135]
Zhang, Y.; Li, M.; Wang, H. Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J. Surg., 2009, 33(4), 698-709.
[http://dx.doi.org/10.1007/s00268-008-9833-0] [PMID: 19030927]
[136]
Xue, Y.; Abou Tayoun, A.N.; Abo, K.M. MicroRNAs as diagnostic markers for pancreatic ductal adenocarcinoma and its precursor, pancreatic intraepithelial neoplasm. Cancer Genet., 2013, 206(6), 217-221.
[http://dx.doi.org/10.1016/j.cancergen.2013.05.020] [PMID: 23933230]
[137]
Frampton, A.E.; Krell, J.; Jamieson, N.B. MicroRNAs with prognostic significance in pancreatic ductal adenocarcinoma: A meta-analysis. Eur. J. Cancer, 2015, 51(11), 1389-1404.
[http://dx.doi.org/10.1016/j.ejca.2015.04.006] [PMID: 26002251]
[138]
Ouyang, H.; Gore, J.; Deitz, S.; Korc, M. MicroRNA-10b enhances pancreatic cancer cell invasion by suppressing TIP30 expression and promoting EGF and TGF-β actions. Oncogene, 2014, 33(38), 4664-4674.
[http://dx.doi.org/10.1038/onc.2013.405] [PMID: 24096486]
[139]
Xiong, G.; Huang, H.; Feng, M. MiR-10a-5p targets TFAP2C to promote gemcitabine resistance in pancreatic ductal adenocarcinoma. J. Exp. Clin. Cancer Res., 2018, 37(1), 76.
[http://dx.doi.org/10.1186/s13046-018-0739-x] [PMID: 29615098]
[140]
Frampton, A.E.; Krell, J.; Jacob, J.; Stebbing, J.; Jiao, L.R.; Castellano, L. MicroRNAs as markers of survival and chemoresistance in pancreatic ductal adenocarcinoma. Expert Rev. Anticancer Ther., 2011, 11(12), 1837-1842.
[http://dx.doi.org/10.1586/era.11.184] [PMID: 22117151]
[141]
Kong, F.; Li, L.; Wang, G.; Deng, X.; Li, Z.; Kong, X. VDR signaling inhibits cancer-associated-fibroblasts’ release of exosomal miR-10a-5p and limits their supportive effects on pancreatic cancer cells. Gut, 2019, 68(5), 950-951.
[http://dx.doi.org/10.1136/gutjnl-2018-316627] [PMID: 29695492]
[142]
Passadouro, M.; Pedroso de Lima, M.C.; Faneca, H. MicroRNA modulation combined with sunitinib as a novel therapeutic strategy for pancreatic cancer. Int. J. Nanomedicine, 2014, 9, 3203-3217.
[http://dx.doi.org/10.2147/IJN.S64456] [PMID: 25061297]
[143]
Allaya, N.; Khabir, A.; Sallemi-Boudawara, T. Over-expression of miR-10b in NPC patients: Correlation with LMP1 and Twist1. Tumour Biol., 2015, 36(5), 3807-3814.
[http://dx.doi.org/10.1007/s13277-014-3022-6] [PMID: 25597482]
[144]
Li, G.; Wu, Z.; Peng, Y. MicroRNA-10b induced by Epstein-Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. Cancer Lett., 2010, 299(1), 29-36.
[http://dx.doi.org/10.1016/j.canlet.2010.07.021] [PMID: 20732742]
[145]
Sun, X.J.; Liu, H.; Zhang, P.; Zhang, X.D.; Jiang, Z.W.; Jiang, C.C. MiR-10b promotes migration and invasion in nasopharyngeal carcinoma cells. Asian Pac. J. Cancer Prev., 2013, 14(9), 5533-5537.
[http://dx.doi.org/10.7314/APJCP.2013.14.9.5533] [PMID: 24175854]
[146]
Zhang, P.; Liu, H.; Xia, F. Epithelial-mesenchymal transition is necessary for acquired resistance to cisplatin and increases the metastatic potential of nasopharyngeal carcinoma cells. Int. J. Mol. Med., 2014, 33(1), 151-159.
[http://dx.doi.org/10.3892/ijmm.2013.1538] [PMID: 24173500]
[147]
Zhang, P.; Hong, H.; Sun, X. MicroRNA-10b regulates epithelial-mesenchymal transition by modulating KLF4/Notch1/E-cadherin in cisplatin-resistant nasopharyngeal carcinoma cells. Am. J. Cancer Res., 2016, 6(2), 141-156.
[PMID: 27186392]
[148]
Li, J.; Zhang, Y.; Zhao, Q.; Wang, J.; He, X. MicroRNA-10a Influences osteoblast differentiation and angiogenesis by regulating β-catenin expression. Cell. Physiol. Biochem., 2015, 37(6), 2194-2208.
[http://dx.doi.org/10.1159/000438576] [PMID: 26610149]
[149]
Yang, J.; Wang, S.; Wang, F. Downregulation of miR-10b promotes osteoblast differentiation through targeting Bcl6. Int. J. Mol. Med., 2017, 39(6), 1605-1612.
[http://dx.doi.org/10.3892/ijmm.2017.2955] [PMID: 28440396]
[150]
An, Y.; Zhao, H.; Zhang, J.; Lu, T.; Jia, J.; Zhao, B. Up-regulation of miR-10a and down-regulation of miR-148b serve as potential prognostic biomarkers for osteosarcoma. Int. J. Clin. Exp. Pathol., 2016, 9(1), 186-190.
[151]
Wang, J.; Wang, B.; Chen, L.Q. miR-10b promotes invasion by targeting KLF4 in osteosarcoma cells. Biomed. Pharmacother., 2016, 84, 947-953.
[http://dx.doi.org/10.1016/j.biopha.2016.09.108] [PMID: 27764757]
[152]
Roberto, G.M.; Engel, E.E.; Scrideli, C.A.; Tone, L.G.; Brassesco, M.S. Downregulation of miR-10B* is correlated with altered expression of mitotic kinases in osteosarcoma. Pathol. Res. Pract., 2018, 214(2), 213-216.
[http://dx.doi.org/10.1016/j.prp.2017.11.020] [PMID: 29254787]
[153]
Eissa, S.; Matboli, M.; Hegazy, M.G.; Kotb, Y.M.; Essawy, N.O. Evaluation of urinary microRNA panel in bladder cancer diagnosis: Relation to bilharziasis. Transl. Res., 2015, 165(6), 731-739.
[http://dx.doi.org/10.1016/j.trsl.2014.12.008] [PMID: 25620614]
[154]
Zaravinos, A.; Radojicic, J.; Lambrou, G.I. Expression of miRNAs involved in angiogenesis, tumor cell proliferation, tumor suppressor inhibition, epithelial-mesenchymal transition and activation of metastasis in bladder cancer. J. Urol., 2012, 188(2), 615-623.
[http://dx.doi.org/10.1016/j.juro.2012.03.122] [PMID: 22704449]
[155]
Xiao, H.; Li, H.; Yu, G. MicroRNA-10b promotes migration and invasion through KLF4 and HOXD10 in human bladder cancer. Oncol. Rep., 2014, 31(4), 1832-1838.
[http://dx.doi.org/10.3892/or.2014.3048] [PMID: 24573354]
[156]
Veerla, S.; Lindgren, D.; Kvist, A. MiRNA expression in urothelial carcinomas: Important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int. J. Cancer, 2009, 124(9), 2236-2242.
[http://dx.doi.org/10.1002/ijc.24183] [PMID: 19127597]
[157]
Segersten, U.; Spector, Y.; Goren, Y.; Tabak, S.; Malmström, P.U. The role of microRNA profiling in prognosticating progression in Ta and T1 urinary bladder cancer. Urol. Oncol., 2014, 32(5), 613-618.
[http://dx.doi.org/10.1016/j.urolonc.2013.11.001] [PMID: 24439061]
[158]
Dahiya, N.; Sherman-Baust, C.A.; Wang, T.L. MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS One, 2008, 3(6), e2436.
[http://dx.doi.org/10.1371/journal.pone.0002436] [PMID: 18560586]
[159]
Nam, E.J.; Yoon, H.; Kim, S.W. MicroRNA expression profiles in serous ovarian carcinoma. Clin. Cancer Res., 2008, 14(9), 2690-2695.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1731] [PMID: 18451233]
[160]
Tu, J.; Cheung, H.H.; Lu, G.; Chen, Z.; Chan, W.Y. MicroRNA-10a promotes granulosa cells tumor development via PTEN-AKT/Wnt regulatory axis. Cell Death Dis., 2018, 9(11), 1076.
[http://dx.doi.org/10.1038/s41419-018-1117-5] [PMID: 30348959]
[161]
Benson, E.A.; Skaar, T.C.; Liu, Y.; Nephew, K.P.; Matei, D. Carboplatin with decitabine therapy, in recurrent platinum resistant ovarian cancer, alters circulating miRNAs concentrations: A pilot study. PLoS One, 2015, 10(10), e0141279.
[http://dx.doi.org/10.1371/journal.pone.0141279] [PMID: 26485143]
[162]
Xiao, G.Y.; Cheng, C.C.; Chiang, Y.S.; Cheng, W.T.; Liu, I.H.; Wu, S.C. Exosomal miR-10a derived from amniotic fluid stem cells preserves ovarian follicles after chemotherapy. Sci. Rep., 2016, 6, 23120.
[http://dx.doi.org/10.1038/srep23120] [PMID: 26979400]
[163]
Zhang, C.; Wang, C.; Chen, X. Expression profile of microRNAs in serum: A fingerprint for esophageal squamous cell carcinoma. Clin. Chem., 2010, 56(12), 1871-1879.
[http://dx.doi.org/10.1373/clinchem.2010.147553] [PMID: 20943850]
[164]
Xu, H.; Yao, Y.; Meng, F. Predictive value of serum miR-10b, miR-29c, and miR-205 as promising biomarkers in esophageal squamous cell carcinoma screening. Medicine (Baltimore), 2015, 94(44), e1558.
[http://dx.doi.org/10.1097/MD.0000000000001558] [PMID: 26554762]
[165]
Xie, Z.; Chen, G.; Zhang, X. Salivary microRNAs as promising biomarkers for detection of esophageal cancer. PLoS One, 2013, 8(4), e57502.
[http://dx.doi.org/10.1371/journal.pone.0057502] [PMID: 23560033]
[166]
Liu, S.G.; Qin, X.G.; Zhao, B.S. Differential expression of miRNAs in esophageal cancer tissue. Oncol. Lett., 2013, 5(5), 1639-1642.
[http://dx.doi.org/10.3892/ol.2013.1251] [PMID: 23761828]
[167]
Tian, Y.; Luo, A.; Cai, Y. MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J. Biol. Chem., 2010, 285(11), 7986-7994.
[http://dx.doi.org/10.1074/jbc.M109.062877] [PMID: 20075075]
[168]
Liu, Y.; Wang, X.; Jiang, X. Tumor-suppressive microRNA-10a inhibits cell proliferation and metastasis by targeting Tiam1 in esophageal squamous cell carcinoma. J. Cell. Biochem., 2018.
[http://dx.doi.org/10.1002/jcb.28059] [PMID: 30426564]
[169]
Gasch, C.; Plummer, P.N.; Jovanovic, L. Heterogeneity of miR-10b expression in circulating tumor cells. Sci. Rep., 2015, 5, 15980.
[http://dx.doi.org/10.1038/srep15980] [PMID: 26522916]
[170]
Dragomir, M.; Mafra, A.C.P.; Dias, S.M.G.; Vasilescu, C.; Calin, G.A. Using microRNA networks to understand cancer. Int. J. Mol. Sci., 2018, 19(7), 1871.
[http://dx.doi.org/10.3390/ijms19071871] [PMID: 29949872]
[171]
Gregory, P.A.; Bert, A.G.; Paterson, E.L. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol., 2008, 10(5), 593-601.
[http://dx.doi.org/10.1038/ncb1722] [PMID: 18376396]
[172]
Korpal, M.; Ell, B.J.; Buffa, F.M. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat. Med., 2011, 17(9), 1101-1108.
[http://dx.doi.org/10.1038/nm.2401] [PMID: 21822286]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy