Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Advancements in Organotin(IV) Complexes as Potent Cytotoxic Agents

Author(s): Jai Devi*, Ankit Boora, Manju Rani and Tanisha Arora

Volume 23, Issue 2, 2023

Published on: 20 August, 2022

Page: [164 - 191] Pages: 28

DOI: 10.2174/1871520622666220520095549

Price: $65

Abstract

Background: Cancer cases have escalated by approximately 12% since 1900 and the incidence rate has increased faster for females than males. The discovery of cisplatin in 1965 paved the way for metal-based compounds as cancer therapeutics. Unfortunately, cisplatin and other platinum-based medicines cause severe side effects. Therefore, non-platinum metal complexes have been developed as alternate cancer drugs. Among non-platinum metal complexes, organotins are the most effective candidates in oncology due to their wide range of anticancer activities with relatively minimal toxicities towards healthy cells, better excretion from the body, and fewer side effects than platinum drugs.

Methods: Using DOI searching, advances made by organotin(IV) complexes coordinated with Sn–O, Sn–N and Sn–S as chemotherapeutic agents since 2018 are summarized in this article. Their chemical structure and in vitro antiproliferative activity in terms of IC50/EC50/LD50 are cumulated.

Results: As reflected in this perspective, organotin(IV) complexes are found to induce high cell death via apoptosis, and also several complexes demonstrated anticancer activity even higher than standard drugs.

Conclusion: Undoubtedly, the organotin(IV) complexes could bring hope to morbidity and mortality of human beings caused by fast-spreading cancer worldwide and can play an important role in drug discovery.

Keywords: Organotin complexes, Toxicity, Potent, Therapeutic, IC50 value, Apoptosis, Tumor.

Graphical Abstract

[1]
Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M. Global Cancer Observatory: Cancer Today; Inter-national Agency for Research on Cancer: Lyon. J. Can. Therp., 2020, 12(1) [https://gco.iarc.fr/today
[2]
Deswal, Y.; Asija, S.; Kumar, D.; Jindal, D.K.; Chandan, G.; Panwar, V.; Kumar, N. Transition metal complexes of tria-zole-based bioactive ligands: Synthesis, spectral characteriza-tion, antimicrobial, anticancer and molecular docking studies. Res. Chem. Intermed., 2021, 48, 1-27.
[3]
Johnstone, T.C.; Park, G.Y.; Lippard, S.J. Understanding and improving platinum anticancer drugs--phenanthriplatin. Anticancer Res., 2014, 34(1), 471-476.
[PMID: 24403503]
[4]
Löscher, W.; Potschka, H.; Sisodiya, S.M.; Vezzani, A. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol. Rev., 2020, 72(3), 606-638.
[http://dx.doi.org/10.1124/pr.120.019539] [PMID: 32540959]
[5]
Ott, I.; Gust, R. Non platinum metal complexes as anti-cancer drugs. Arch. Pharm. (Weinheim), 2007, 340(3), 117-126.
[http://dx.doi.org/10.1002/ardp.200600151] [PMID: 17315259]
[6]
Devi, J.; Kumar, S.; Kumar, D.; Jindal, D.K.; Poornachandra, Y. Synthesis, characterization, in vitro antimicrobial and cyto-toxic evaluation of Co (II), Ni (II), Cu (II) and Zn (II) com-plexes derived from bidentate hydrazones. Res. Chem. Intermed., 2022, 48, 423-455.
[7]
Kasemodel, K.; Roberts, K. Metal-based chemotherapy drugs. Proc. Okla. Acad. Sci., 2019, 99, 106-113.
[8]
Sirajuddin, M.; Tariq, M.; Ali, S. Organotin(IV) carboxylates as an effective catalyst for the conversion of corn oil into bi-odiesel. J. Organomet. Chem., 2015, 779, 30-38.
[http://dx.doi.org/10.1016/j.jorganchem.2014.12.019]
[9]
Roner, M.R.; Carraher, C.E., Jr; Shahi, K.; Barot, G. Antiviral activity of metal-containing polymers-Organotin and cisplatin-like polymers. Materials (Basel), 2011, 4(6), 991-1012.
[http://dx.doi.org/10.3390/ma4060991] [PMID: 28879963]
[10]
Carraher, C.E., Jr; Sabir, T.S.; Roner, M.R.; Shahi, K.; Bleicher, R.E.; Roehr, J.L.; Bassett, K.D. Synthesis of organ-otin polyamine ethers containing acyclovir and their prelimi-nary anticancer and antiviral activity. J. Inorg. Organomet. Polym. Mater., 2006, 16(3), 249-257.
[http://dx.doi.org/10.1007/s10904-006-9050-y] [PMID: 32214932]
[11]
Dyląg, M.; Pruchnik, H.; Pruchnik, F.; Majkowska-Skrobek, G.; Ułaszewski, S. Antifungal activity of organotin com-pounds with functionalized carboxylates evaluated by the mi-crodilution bioassay in vitro. Med. Mycol., 2010, 48(2), 373-383.
[http://dx.doi.org/10.3109/13693780903188680] [PMID: 19688632]
[12]
Joshi, R.; Kumari, A.; Singh, K.; Mishra, H.; Pokharia, S. New diorganotin(IV) complexes of Schiff base derived from 4‐amino‐3‐hydrazino‐5‐mercapto‐4H‐1, 2, 4‐triazole: Synthesis, structural characterization, density functional theo-ry studies, atoms‐in‐molecules analysis and antifungal ac-tivity. Appl. Organomet. Chem., 2019, 33(5), 1-22.
[http://dx.doi.org/10.1002/aoc.4894]
[13]
Rathelot, P.; Azas, N.; El-Kashef, H.; Delmas, F.; Di Giorgio, C.; Timon-David, P.; Maldonado, J.; Vanelle, P. 1,3-Diphenylpyrazoles: Synthesis and antiparasitic activities of azomethine derivatives. Eur. J. Med. Chem., 2002, 37(8), 671-679.
[http://dx.doi.org/10.1016/S0223-5234(02)01388-0] [PMID: 12161064]
[14]
Nath, M.; Saini, P.K.; Kumar, A. New di- and triorganotin(IV) complexes of tripodal Schiff base ligand containing three im-idazole arms: Synthesis, structural characterization, anti-inflammatory activity and thermal studies. J. Organomet. Chem., 2010, 695(9), 1353-1362.
[http://dx.doi.org/10.1016/j.jorganchem.2010.02.009]
[15]
Hadjikakou, S.K.; Hadjiliadis, N. Antiproliferative and anti-tumor activity of organotin compounds. Coord. Chem. Rev., 2009, 253(1-2), 235-249.
[http://dx.doi.org/10.1016/j.ccr.2007.12.026]
[16]
Nath, M.; Saini, P.K. Chemistry and applications of organ-otin(IV) complexes of Schiff bases. Dalton Trans., 2011, 40(27), 7077-7121.
[http://dx.doi.org/10.1039/c0dt01426e] [PMID: 21494719]
[17]
Nath, M.; Saini, K.P.; Kumar, A. Synthesis, structural charac-terization, biological activity and thermal study of tri- and di-organotin(IV) complexes of Schiff base derived from 2- ami-nomethylbenzimidazole. Appl. Organomet. Chem., 2009, 23(11), 434-445.
[http://dx.doi.org/10.1002/aoc.1537]
[18]
Jain, M.; Maanju, S.; Singh, R.V. Synthesis, structural studies and some biological aspects, including nematicidal and insec-ticidal properties, of organotin(IV) complexes formed with biologically active sulfonamide imine ligand. Appl. Organomet. Chem., 2004, 18(9), 471-479.
[http://dx.doi.org/10.1002/aoc.711]
[19]
Eng, G.; Song, X.; Duong, Q.; Strickman, D.; Glass, J.; May, L. Synthesis, structure characterization and insecticidal activi-ty of some triorganotindithiocarbamates. Appl. Organomet. Chem., 2003, 17(4), 218-225.
[http://dx.doi.org/10.1002/aoc.423]
[20]
Singh, K.; Dharampal, D.S.S. Spectral studies and antimicro-bial activities of organosilicon(IV) and organotin(IV) com-plexes of nitrogen and sulfur donor Schiff bases derived from 4-amino5-mercapto-3-methyl-s-triazole. Main Group Chem., 2009, 8(1), 47-59.
[http://dx.doi.org/10.1080/10241220902962945]
[21]
Tyurin, V.Y.; Yaohuan, W.; Prishchenko, A.A.; Shpakovsky, D.B.; Gracheva, Y.A.; Antonenko, T.A.; Milaeva, E.R. Com-plexes of organotin compounds with bis-and trisphosphonate derivatives of 2,6-di-tert-butylphenol having antioxidant ac-tivity. Russ. Chem. Bull., 2015, 64(6), 1419-1429.
[http://dx.doi.org/10.1007/s11172-015-1026-z]
[22]
Corona-Bustamante, A.; Viveros-Paredes, J.M.; Flores-Parra, A.; Peraza-Campos, A.L.; Martínez-Martínez, F.J.; Sumaya-Martínez, M.T.; Ramos-Organillo, A. Antioxidant activity of butyl- and phenylstannoxanes derived from 2-, 3- and 4-pyridinecarboxylic acids. Molecules, 2010, 15(8), 5445-5459.
[http://dx.doi.org/10.3390/molecules15085445] [PMID: 20714307]
[23]
Muhammad, N.; Ali, S.; Meetsma, A.; Shaheen, F. Organ-otin(IV) 4-methoxyphenylethanoates: Synthesis, spectroscop-ic characterization, X-ray structures and in vitro anticancer ac-tivity against human prostate cell lines (PC-3). Inorg. Chim. Acta, 2009, 362(8), 2842-2848.
[http://dx.doi.org/10.1016/j.ica.2009.01.003]
[24]
Zhang, Y.Y.; Zhang, R.F.; Zhang, S.L.; Cheng, S.; Li, Q.L.; Ma, C.L. Syntheses, structures and anti-tumor activity of four new organotin(iv) carboxylates based on 2-thienylselenoacetic acid. Dalton Trans., 2016, 45(20), 8412-8421.
[http://dx.doi.org/10.1039/C6DT00532B] [PMID: 27109561]
[25]
Alama, A.; Tasso, B.; Novelli, F.; Sparatore, F. Organometallic compounds in oncology: Implications of novel organotins as antitumor agents. Drug discov, 2009, 14(9-10), 500-508.
[26]
Sarma, M.S. Cytotoxic activity of organotin (IV) complexes-a short review. Prajnan O Sadhona Sci. Annu., 2015, 2, 99-115.
[27]
Gholivand, K.; Salami, R.; Shahsavari, Z.; Torabi, E. Novel binuclear and polymeric diorganotin(IV) complexes with N-nicotinyl phosphoramides: Synthesis, characterization, struc-tural studies and anticancer activity. J. Organomet. Chem., 2016, 819, 155-165.
[http://dx.doi.org/10.1016/j.jorganchem.2016.05.008]
[28]
Pellerito, C.; D’Agati, P.; Fiore, T.; Mansueto, C.; Mansueto, V.; Stocco, G.; Nagy, L.; Pellerito, L. Synthesis, structural in-vestigations on organotin(IV) chlorin-e6 complexes, their ef-fect on sea urchin embryonic development and induced apop-tosis. J. Inorg. Biochem., 2005, 99(6), 1294-1305.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.03.002] [PMID: 15917083]
[29]
Yan, F.F.; Ma, C.L.; Li, Q.L.; Zhang, S.L.; Ru, J.; Cheng, S.; Zhang, R.F. Syntheses, structures and anti-tumor activity of four organotin(IV) dicarboxylates based on (1, 3, 4-thiadiazole-2, 5-diyldithio) diacetic acid. New J. Chem., 2018, 42(14), 11601-11609.
[http://dx.doi.org/10.1039/C8NJ00431E]
[30]
Khan, A.; Parveen, S.; Khalid, A.; Shafi, S. Recent advance-ments in the anticancer potentials of phenylorganotin (IV) complexes. Inorg. Chim. Acta, 2020, 505, 119464.
[http://dx.doi.org/10.1016/j.ica.2020.119464]
[31]
Ali, S.; Shahzadi, S. Anticarcinogenicity and toxicity of or-ganotin(IV) complexes: A review. Iran. J. Sci. Technol. Trans. A Sci., 2018, 42(2), 505-524.
[http://dx.doi.org/10.1007/s40995-016-0048-1]
[32]
Devi, J.; Yadav, J. Recent advancements in organotin(IV) complexes as potential anticancer agents. Anticancer. Agents Med. Chem., 2018, 18(3), 335-353.
[http://dx.doi.org/10.2174/1871520617666171106125114] [PMID: 29110624]
[33]
Devi, J.; Pachwania, S. Recent advancements in DNA interac-tion studies of organotin(IV) complexes. Inorg. Chem. Commun., 2018, 91, 44-62.
[http://dx.doi.org/10.1016/j.inoche.2018.03.012]
[34]
Guan, R.; Zhou, Z.; Zhang, M.; Liu, H.; Du, W.; Tian, X.; Tian, Y. Organotin(IV) carboxylate complexes containing polyether oxygen chains with two-photon absorption in the near infrared region and their anticancer activity. Dyes Pigm., 2018, 158, 428-437.
[http://dx.doi.org/10.1016/j.dyepig.2018.05.072]
[35]
Liu, K.; Chang, G.; Yan, H.; Li, Z.; Hong, M.; Niu, M. Dime-thyltin(IV) complexes derived from hydroxamic acid and acylhydrazone ligands: Synthesis, DNA/bovine serum albu-min interaction and cytotoxicity. Appl. Organomet. Chem., 2018, 32(1), e3973.
[http://dx.doi.org/10.1002/aoc.3973]
[36]
Attanzio, A.; Ippolito, M.; Girasolo, M.A.; Saiano, F.; Ro-tondo, A.; Rubino, S.; Mondello, L.; Capobianco, M.L.; Saba-tino, P.; Tesoriere, L.; Casella, G. Anti-cancer activity of di- and tri-organotin(IV) compounds with D-(+)-Galacturonic ac-id on human tumor cells. J. Inorg. Biochem., 2018, 188, 102-112.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.04.006] [PMID: 29807841]
[37]
Agiorgiti, M.S.; Evangelou, A.; Vezyraki, P.; Hadjikakou, S.K.; Kalfakakou, V.; Tsanaktsidis, I.; Peschos, D. Cytotoxic effect, antitumour activity and toxicity of organotin deriva-tives with ortho-or para-hydroxy-benzoic acids. Med. Chem. Res., 2018, 27(4), 1122-1130.
[http://dx.doi.org/10.1007/s00044-018-2135-7]
[38]
Han, X.; Tian, M.; Xiao, X.; Liang, J.; Zhu, D. Syntheses, crystal structures and biological activities of two new drum-shaped organotin(IV) carboxylate complexes with 2-(4-alkylbenzoyl) benzoic acid (alkyl = methyl or ethyl). J. Iran. Chem. Soc., 2018, 15(3), 513-519.
[http://dx.doi.org/10.1007/s13738-017-1251-5]
[39]
Yan, F.F.; Maa, C.; Lia, Q.; Zhanga, S.L.; Rua, J.; Cheng, S.; Zhang, R. Synthesis, structures and anti-tumor activity of four organotin(IV) dicarboxylates based on (1,3,4-thiadiazole-2,5-diyldithio)diacetic acid. New J. Chem., 2018, 42(14), 11601-11609.
[http://dx.doi.org/10.1039/C8NJ00431E]
[40]
Latsis, G.K.; Banti, C.N.; Kourkoumelis, N.; Papatriantafyl-lopoulou, C.; Panagiotou, N.; Tasiopoulos, A.; Douvalis, A.; Kalampounias, A.G.; Bakas, T.; Hadjikakou, S.K. Poly organ-otin acetates against DNA with possible implementation on human breast cancer. Int. J. Mol. Sci., 2018, 19(7), 2055.
[http://dx.doi.org/10.3390/ijms19072055] [PMID: 30011935]
[41]
Wen, G.H.; Zhang, R.F.; Li, Q.L.; Zhang, S.L.; Ru, J.; Du, J.Y.; Ma, C.L. Synthesis, structure and in vitro cytostatic ac-tivity study of the novel organotin(IV) derivatives of p -aminobenzenesulfonic acid. J. Organomet. Chem., 2018, 861, 151-158.
[http://dx.doi.org/10.1016/j.jorganchem.2018.02.033]
[42]
Shpakovsky, D.B.; Banti, C.N.; Mukhatova, E.M.; Gracheva, Yu.A.; Mukhatova, E.M.; Osipova, V.P.; Berberova, N.T.; Albov, D.V.; Antonenko, T.A.; Aslanov, L.A.; Milaeva, E.R.; Hadjikakoub, S.K. Synthesis, antiradical activity and in vitro cytotoxicity of novel organotin complexes based on 2,6-di-tert-butyl-4-mercaptophenol. Dalton Trans., 2014, 43, 6880-6690.
[http://dx.doi.org/10.1039/C3DT53469C] [PMID: 24658418]
[43]
Dorosti, N.; Mohammadpour, H. Synthesis, characterization and biological evaluation of a nanorod five‐coordinated Sn(IV) complex. Theoretical studies of (CH3)2Sn (O2PPh2)2. Appl. Organomet. Chem., 2018, 32(12), 1-14.
[http://dx.doi.org/10.1002/aoc.4610]
[44]
Antonenko, T.A.; Shpakovsky, D.B.; Vorobyov, M.A.; Gra-cheva, Y.A.; Kharitonashvili, E.V.; Dubova, L.G.; Milaeva, E.R. Antioxidative vs cytotoxic activities of organotin com-plexes bearing 2,6‐di‐tert‐butylphenol moieties. Appl. Organomet. Chem., 2018, 32(7), 1-12.
[http://dx.doi.org/10.1002/aoc.4381]
[45]
Yan, F.F.; Zhu, Q.; Li, Q.L.; Zhang, R.F.; Ma, C.L. Triorgan-otin coordination polymers based on three dicarboxylate lig-ands containing flexible SS bonds: Synthesis, structures and in vitro anti-tumor activity. J. Organomet. Chem., 2019, 880, 156-162.
[http://dx.doi.org/10.1016/j.jorganchem.2018.11.003]
[46]
Zhang, Q.; Zhang, M.; Wang, H.; Tian, X.; Ma, W.; Luo, L.; Wu, J.; Zhou, H.; Li, S.; Tian, Y. A series of two-photon ab-sorption organotin (IV) cyano carboxylate derivatives for tar-geting nuclear and visualization of anticancer activities. J. Inorg. Biochem., 2019, 192, 1-6.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.12.001] [PMID: 30544075]
[47]
Muhammad, N.; Ali, S.; Nawaz, T.M.; Shujah, S.; Wadood, A.; Khan, H. Diorganotin(IV) carboxylates of 3-methylphenyl ethanoic acid: Synthesis, crystal structure, antibacterial, anti-cancer and molecular docking studies. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(11), 1067-1073.
[http://dx.doi.org/10.1080/10426507.2019.1603227]
[48]
Hudkins, R.L.; DeHaven-Hudkins, D.L.; Doukas, P. Design of dual acting anticonvulsant-antimuscarinic succinimide and hydantoin derivatives. Bioorg. Med. Chem., 1997, 7(8), 979-984.
[http://dx.doi.org/10.1016/S0960-894X(97)00143-1]
[49]
Pękala, E.; Liana, P.; Kubowicz, P.; Powroźnik, B.; Obniska, J.; Chlebek, I.; Węgrzyn, A.; Węgrzyn, G. Evaluation of muta-genic and antimutagenic properties of new derivatives of pyr-rolidine-2,5-dione with anti-epileptic activity, by use of the Vibrio harveyi mutagenicity test. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2013, 758(1-2), 18-22.
[http://dx.doi.org/10.1016/j.mrgentox.2013.07.011] [PMID: 24060509]
[50]
Obniska, J.; Rzepka, S.; Kamiński, K. Synthesis and anticon-vulsant activity of new N-Mannich bases derived from 3-(2-fluorophenyl)- and 3-(2-bromophenyl)-pyrrolidine-2,5-diones. Part II. Bioorg. Med. Chem., 2012, 20(15), 4872-4880.
[http://dx.doi.org/10.1016/j.bmc.2012.05.032] [PMID: 22717240]
[51]
Muszalska, I. Studies of the degradation mechanism of pyr-rolo[3,4-c] pyridine-1,3(2H)-dione derivatives with analgesic activity: Isolation and identification of products and sum-mary. Acta Pol. Pharm., 2010, 67(3), 233-238.
[PMID: 20524424]
[52]
Crowe, A.J.; Smith, P.J.; Atassi, G. Investigations into the antitumour activity of organotin compounds. I. Diorganotin dihalide and di-pseudohalide complexes. Chem. Biol. Interact., 1980, 32(1-2), 171-178.
[http://dx.doi.org/10.1016/0009-2797(80)90075-7] [PMID: 7428110]
[53]
Pretsch, E.; Bühlmann, P.; Badertscher, M. Structure Determi-nation of Organic Compounds, 4th ed; Springer-Verlag Berlin Heidelberg, 2009.
[54]
Davies, A.G. Organotin Chemistry 2nd ed; Wiley-VCH Verlag: GmbH & Co: KGaA, Weinheim; , 2004.
[http://dx.doi.org/10.1002/3527601899]
[55]
Pantelic, N.D.; Zmejkovski, B.B.; Zizak, Z.; Banjac, N.R.; Bozic, B.D.; Stanojkovic, T.P.; Kaluđerovic, G.N. Design and in vitro biological evaluation of a novel organotin(IV) com-plex with 1-(4-carboxyphenyl)-3-ethyl-3-methylpyrrolidine-2, 5-dione. J. Chem., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/2905840]
[56]
Pantelić, N.D.; Zmejkovski, B.B.; Božić, B.; Dojčinović, B.; Banjac, N.R.; Wessjohann, L.A.; Kaluđerović, G.N. Synthesis, characterization and in vitro biological evaluation of novel or-ganotin(IV) compounds with derivatives of 2-(5-arylidene-2,4-dioxothiazolidin-3-yl)propanoic acid. J. Inorg. Biochem., 2020, 211, 111207.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111207] [PMID: 32801055]
[57]
Ahmad, I.; Waseem, A.; Tariq, M.; MacBeth, C.; Bacsa, J.; Venkataraman, D.; Tabassum, S. Organotin(IV) derivatives of amide-based carboxylates: Synthesis, spectroscopic charac-terization, single crystal studies and antimicrobial, antioxi-dant, cytotoxic, anti-leishmanial, hemolytic, noncancerous, anticancer activities. Inorg. Chim. Acta, 2020, 505, 119433.
[http://dx.doi.org/10.1016/j.ica.2020.119433]
[58]
Slawek, P.; Carraher, C.E.; Roner, M.R.; Mosca, F.; Moric-Johnson, A.; Miller, L.C.; Haky, J.E. Amino acid organotin polymers from diglycine-synthesis, structural characterization and initial anticancer activity. J. Inorg. Organomet. Polym. Mater., 2020, 30(1), 182-195.
[http://dx.doi.org/10.1007/s10904-019-01222-z]
[59]
Mazayev, V.P.; Fomina, I.G.; Kazakov, E.N.; Sulimov, V.A.; Zvereva, T.V.; Lyusov, V.A.; Orlov, V.A.; Olbinskaya, L.I.; Bolshakova, T.D.; Sullivan, J.; Spormann, D.O. Valsartan in heart failure patients previously untreated with an ACE inhibi-tor. Int. J. Cardiol., 1998, 65(3), 239-246.
[http://dx.doi.org/10.1016/S0167-5273(98)00149-1] [PMID: 9740480]
[60]
Andersen, M.B.; Simonsen, U.; Wehland, M.; Pietsch, J.; Grimm, D. LCZ 696 (Valsartan/Sacubitril)–A possible new treatment for hypertension and heart failure. Basic Clin. Pharmacol. Toxicol., 2016, 118(1), 14-22.
[http://dx.doi.org/10.1111/bcpt.12453] [PMID: 26280447]
[61]
Nielsen, P.M.; Grimm, D.; Wehland, M.; Simonsen, U.; Krüger, M. The combination of valsartan and sacubitril in the treatment of hypertension and heart failure-An update. Basic Clin. Pharmacol. Toxicol., 2018, 122(1), 9-18.
[http://dx.doi.org/10.1111/bcpt.12912] [PMID: 28944989]
[62]
Mohammed, A.; Makia, R.; Ali, M.; Raheem, R.; Yousif, E. Cytotoxic effects of valsartan organotin(IV) complexes on human lung cancer cells. Basic Clin. Pharmacol. Toxicol., 2020, 11(1), 8156-8164.
[63]
Stambaugh, J.E., Jr; Drew, J. The combination of ibuprofen and oxycodone/acetaminophen in the management of chronic cancer pain. Clin. Pharmacol. Ther., 1988, 44(6), 665-669.
[http://dx.doi.org/10.1038/clpt.1988.209] [PMID: 2461823]
[64]
Owen, H.; Glavin, R.J.; Shaw, N.A. Ibuprofen in the manage-ment of postoperative pain. Br. J. Anaesth., 1986, 58(12), 1371-1375.
[http://dx.doi.org/10.1093/bja/58.12.1371] [PMID: 3539165]
[65]
Lima, L.M.; Barreiro, E.J. Bioisosterism: A useful strategy for molecular modification and drug design. Curr. Med. Chem., 2005, 12(1), 23-49.
[http://dx.doi.org/10.2174/0929867053363540] [PMID: 15638729]
[66]
Farooqi, S.I.; Arshad, N.; Perveen, F.; Channar, P.A.; Saeed, A.; Javed, A.; Florke, U. Structure and surface analysis of ibuprofen-organotin conjugate: Potential anticancer drug can-didacy of the compound is proven by in-vitro DNA binding and cytotoxicity studies. Polyhedron, 2020, 192, 114845.
[http://dx.doi.org/10.1016/j.poly.2020.114845]
[67]
Antonenko, T.A.; Shpakovsky, D.B.; Berseneva, D.A.; Gra-cheva, Y.A.; Dubova, L.G.; Shevtsov, P.N.; Milaeva, E.R. Cy-totoxic activity of organotin carboxylates based on synthetic phenolic antioxidants and polycyclic bile acids. J. Organomet. Chem., 2020, 909, 121089.
[http://dx.doi.org/10.1016/j.jorganchem.2019.121089]
[68]
An, B.H.; Zhang, R.F.; Du, X.M.; Li, Q.L.; Cheng, S.; Huang, H.L.; Ma, C.L. Novel triorganotin complexes based on phos-phonic acid ligands: Syntheses, structures and in vitro cyto-static activity. J. Inorg. Biochem., 2020, 206, 111022.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111022] [PMID: 32070916]
[69]
Amir, M.K.; Khan, S.; Shah, A.; Butler, I.S. Anticancer activi-ty of organotin(IV) carboxylates. Inorg. Chim. Acta, 2014, 423, 14-25.
[http://dx.doi.org/10.1016/j.ica.2014.07.053]
[70]
Baul, T.S.B.; Masharing, C.; Basu, S.; Rivarola, E.; Holcapek, M.; Jirasko, R.; Linden, A. Synthesis, characterization, cyto-toxic activity and crystal structures of tri-and di-organotin(IV) complexes constructed from the β-{[(E)-1-(2-hydroxyaryl) alkylidene]amino}propionate and β-{[(2Z)-(3-hydroxy-1-methyl-2-butenylidene)] amino}propionate skeletons. J. Organomet. Chem., 2006, 691(5), 952-965.
[http://dx.doi.org/10.1016/j.jorganchem.2005.10.057]
[71]
Sirajuddin, M.; Ali, S.; McKee, V.; Matin, A. Synthesis, char-acterization and biological screenings of 5-coordinated organ-otin(IV) complexes based on carboxylate ligand. J. Mol. Struct., 2020, 1206, 127683.
[http://dx.doi.org/10.1016/j.molstruc.2020.127683]
[72]
Sirajuddin, M.; Ali, S.; Tahir, M.N. Organotin(IV) derivatives based on 2-((2-methoxyphenyl)carbamoyl)benzoicacid: Syn-thesis, spectroscopic characterization, assessment of antibac-terial, DNA interaction, anticancer and antileishmanial poten-tials. J. Mol. Struct., 2021, 1229, 129600.
[http://dx.doi.org/10.1016/j.molstruc.2020.129600]
[73]
Butt, A.F.; Aamir, M.; Bhatti, M.H.; Choudhary, M.A.; Ah-mad, J.; Tahir, M.N. Synthesis of novel organotin(IV) com-plex for multiple applications: As biologically potent and sin-gle molecular precursor. J. Iran. Chem. Soc., 2021, 18(2), 307-315.
[http://dx.doi.org/10.1007/s13738-020-02027-5]
[74]
Pantelić, N.D.; Božić, B.; Zmejkovski, B.B.; Banjac, N.R.; Dojčinović, B.; Wessjohann, L.A.; Kaluđerović, G.N. In vitro evaluation of antiproliferative properties of novel organ-otin(IV) carboxylate compounds with propanoic acid deriva-tives on a panel of human cancer cell lines. Molecules, 2021, 26(11), 3199.
[http://dx.doi.org/10.3390/molecules26113199] [PMID: 34071809]
[75]
Karges, J.; Yempala, T.; Tharaud, M.; Gibson, D.; Gasser, G. A multi-action and multi-target Ru(II)–Pt(IV) conjugate com-bining cancer-activated chemotherapy and photodynamic therapy to overcome drug resistant cancers. Angew. Chem. Int. Ed. Engl., 2020, 59(18), 7069-7075.
[http://dx.doi.org/10.1002/anie.201916400] [PMID: 32017379]
[76]
Chen, Y.; Gao, Y.; Li, Y.; Wang, K.; Zhu, J. Synergistic chemo-photodynamic therapy mediated by light-activated ROS-degradable nanocarriers. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(3), 460-468.
[http://dx.doi.org/10.1039/C8TB03030H] [PMID: 32254733]
[77]
Toubia, I.; Nguyen, C.; Diring, S.; Pays, M.; Mattana, E.; Ar-noux, P.; Frochot, C.; Gary-Bobo, M.; Kobeissi, M.; Odobel, F. study of cytotoxic and photodynamic activities of dyads composed of a zinc phthalocyanine appended to an organotin. Pharmaceuticals (Basel), 2021, 14(5), 413.
[http://dx.doi.org/10.3390/ph14050413] [PMID: 33924752]
[78]
Uddin, N.; Rashid, F.; Haider, A.; Tirmizi, S.A.; Raheel, A.; Imran, M.; Ali, S. Triorganotin(IV) carboxylates as potential anticancer agents: Their synthesis, physiochemical characteri-zation, and cytotoxic activity against HeLa and MCF‐7 cancer cells. Appl. Organomet. Chem., 2021, 35(4), 1-21.
[http://dx.doi.org/10.1002/aoc.6165]
[79]
Nguyen, C.; Toubia, I.; Diring, S.; Hadj-Kaddour, K.; Gary-Bobo, M.; Kobeissi, M.; Odobel, F. Synergetic anticancer ac-tivity of gold porphyrin appended to phenyl tin malonate or-ganometallic complexes. Dalton Trans., 2021, 50(13), 4583-4592.
[http://dx.doi.org/10.1039/D0DT03792C] [PMID: 33705511]
[80]
Su, H.Q.; Zhang, R.F.; Guo, Q.; Wang, J.; Li, Q.L.; Du, X.M.; Ma, C.L. Five organotin complexes derived from hy-droxycinnamic acid ligands: Synthesis, structure, in vitro cy-tostatic activity and binding interaction with BSA. J. Mol. Struct., 2021, 1247, 131290.
[http://dx.doi.org/10.1016/j.molstruc.2021.131290]
[81]
Entin-Meer, M.; Rephaeli, A.; Yang, X.; Nudelman, A.; Van-denBerg, S.R.; Haas-Kogan, D.A. Butyric acid prodrugs are histone deacetylase inhibitors that show antineoplastic activity and radiosensitizing capacity in the treatment of malignant gli-omas. Mol. Cancer Ther., 2005, 4(12), 1952-1961.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0087] [PMID: 16373710]
[82]
Giuliano, M.; Pellerito, C.; Celesia, A.; Fiore, T.; Emanuele, S. Tributyltin(IV) butyrate: A novel epigenetic modifier with ER stress-and apoptosis-inducing properties in colon cancer cells. Molecules, 2021, 26(16), 5010.
[http://dx.doi.org/10.3390/molecules26165010] [PMID: 34443600]
[83]
Rashid, F.; Uddin, N.; Ali, S.; Haider, A.; Tirmizi, S.A.; Di-aconescu, P.L.; Iqbal, J. New triorganotin(IV) compounds with aromatic carboxylate ligands: Synthesis and evaluation of the pro-apoptotic mechanism. RSC Advances, 2021, 11(8), 4499-4514.
[http://dx.doi.org/10.1039/D0RA06695H]
[84]
Stathopoulou, M.E.K.; Zoupanou, N.; Banti, C.N.; Douvalis, A.P.; Papachristodoulou, C.; Marousis, K.D.; Spyroulias, G.A.; Mavromoustakos, T.; Hadjikakou, S.K. Organotin de-rivatives of cholic acid induce apoptosis into breast cancer cells and interfere with mitochondrion; Synthesis, characteri-zation and biological evaluation. Steroids, 2021, 167, 108798.
[http://dx.doi.org/10.1016/j.steroids.2021.108798] [PMID: 33472044]
[85]
Kumar, S.; Johansson, H.; Kanda, T.; Engman, L.; Müller, T.; Bergenudd, H.; Jonsson, M.; Pedulli, G.F.; Amorati, R.; Val-gimigli, L. Catalytic chain-breaking pyridinol antioxidants. J. Org. Chem., 2010, 75(3), 716-725.
[http://dx.doi.org/10.1021/jo902226t] [PMID: 20073487]
[86]
Brodsky, M.; Hirsh, S.; Albeck, M.; Sredni, B. Resolution of inflammation-related apoptotic processes by the synthetic tel-lurium compound, AS101 following liver injury. J. Hepatol., 2009, 51(3), 491-503.
[http://dx.doi.org/10.1016/j.jhep.2009.04.024] [PMID: 19595469]
[87]
Brodsky, M.; Halpert, G.; Albeck, M.; Sredni, B. The anti-inflammatory effects of the tellurium redox modulating com-pound, AS101, are associated with regulation of NFkappaB signaling pathway and nitric oxide induction in macrophages. J. Inflamm. (Lond.), 2010, 7(1), 3.
[http://dx.doi.org/10.1186/1476-9255-7-3] [PMID: 20205748]
[88]
Chen, S.; Zhang, R.F.; Guo, Q.; Nie, J.J.; Li, Q.L.; Cheng, S.; Ma, C. L. Four triorganotin(IV) esters based on 3,5-bifluorobenzenetelluronic acid: Synthesis, structures, in vitro cytostatic activity and BSA-binding assessment. Inorg. Chem. Commun., 2021, 125, 108404.
[http://dx.doi.org/10.1016/j.inoche.2020.108404]
[89]
Chen, L.; Frank, J.; Carraher, J.C.E.; Roner, M.R.; Shahi, K.; Slawek, P.; Mosca, F. Synthetic nucleic acids from thymidine and organotin dihalides and their ability to inhibit human can-cer cell lines including pancreatic acid and glioblastomas cell lines. World J. Pharm. Res., 2021, 10, 1832-1853.
[90]
Shoukry, M.M.; Shehata, M.R.; Abdel, W.A.M. Synthesis, characterization, thermal degradation, docking, DFT calcula-tion, and biological activity of dimethyltin(IV) complex with homopiperazine. J. Chin. Chem. Soc. (Taipei), 2021, 2021, 1-13.
[http://dx.doi.org/10.1002/jccs.202100227]
[91]
Abdou, S.N. Ultrasonic assisted nano-structures of novel organotin supramolecular coordination polymers as potent antitumor agents. J. Inorg. Organomet. Polym. Mater., 2021, 31, 3962-3975.
[http://dx.doi.org/10.1007/s10904-021-02055-5]
[92]
Saleh, D.I.; Mahmoud, S.F.; Etaiw, S.E.H. Nanoscale supra-molecular architectures assembly of copper cyanide, organ-otin, and 1,10‐phenanthroline coordination polymers: Design and biological applications. Appl. Organomet. Chem., 2021, 35(7), 1-12.
[http://dx.doi.org/10.1002/aoc.6247]
[93]
Shaheen, F.; Sirajuddin, M.; Ali, S. Zia-ur-Rehman; Dyson, P.J.; Shah, N.A.; Tahir, M.N. Organotin(IV) 4-(benzo[d][1,3]dioxol-5-ylmethyl)piperazine-1-carbodithioates: Synthesis, characterization and biological ac-tivities. J. Organomet. Chem., 2018, 856, 13-22.
[http://dx.doi.org/10.1016/j.jorganchem.2017.12.010]
[94]
Pillai, V.; Patel, S.K.; Buch, L.; Singh, V.K. Binuclear diphe-nyltin(IV)dithiocarbamate complexes bearing functionalized linkers: Synthesis, spectral characterization, DFT and in vitro anticancer activity. Appl. Organomet. Chem., 2018, 32(12), 1-12.
[http://dx.doi.org/10.1002/aoc.4559]
[95]
Yadav, R.; Awasthi, M.K.; Singh, A.; Kociok-Köhn, G.; Trivedi, M.; Prasad, R.; Kumar, A. Molecular structure, su-pramolecular association and anion sensing by chlorodi-organotin(IV)methylferrocenyl-dithiocarbamates. J. Mol. Struct., 2017, 1145, 197-203.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.111]
[96]
Tiekink, E.R. Tindithiocarbamates: Applications and struc-tures. Appl. Organomet. Chem., 2008, 22(9), 533-550.
[http://dx.doi.org/10.1002/aoc.1441]
[97]
Selvaganapathi, P.; Thirumaran, S.; Ciattini, S. Synthesis, spectra, crystal structures and anticancer studies of 26‐membered macrocyclic dibutyltin(IV) dithiocarbamate com-plexes: Single‐source precursors for tin sulfide nanoparti-cles. Appl. Organomet. Chem., 2019, 33(9), 1-14.
[http://dx.doi.org/10.1002/aoc.5089]
[98]
Kadu, R.; Roy, H.; Singh, V.K. Diphenyltin(IV) dithiocarba-mate macrocyclic scaffolds as potent apoptosis inducers for human cancer HEP 3B and IMR 32 cells: Synthesis, spectral characterization, density functional theory study and in vitro cytotoxicity. Appl. Organomet. Chem., 2015, 29(11), 746.
[http://dx.doi.org/10.1002/aoc.3362]
[99]
Hassan, E.A.; Zayed, S.E. Dithiocarbamates as precursors in organic chemistry; Synthesis and uses. Phosphorus Sulfur Silicon Relat. Elem., 2014, 189(3), 300-323.
[http://dx.doi.org/10.1080/10426507.2013.797416]
[100]
Adeyemi, J.O.; Onwudiwe, D.C. Organotin(IV) dithiocarba-mate complexes: Chemistry and biological activity. Molecules, 2018, 23(10), 1-27.
[http://dx.doi.org/10.3390/molecules23102571] [PMID: 30304779]
[101]
Adeyemi, J.O.; Onwudiwe, D.C. Antimicrobial and cytotoxici-ty studies of some organotin(IV) N-ethyl-N-phenyl dithiocar-bamate complexes. Pol. J. Environ. Stud., 2021, 29(4), 1-8.
[102]
Haezam, F.N.; Awang, N.; Kamaludin, N.F.; Mohamad, R. Synthesis and cytotoxic activity of organotin(IV) diallyldithi-ocarbamate compounds as anticancer agent towards colon ad-enocarcinoma cells (HT-29). Saudi J. Biol. Sci., 2021, 28(5), 3160-3168.
[http://dx.doi.org/10.1016/j.sjbs.2021.02.060] [PMID: 34025187]
[103]
Sirajuddin, M.; McKee, V.; Tariq, M.; Ali, S. Newly designed organotin(IV) carboxylates with peptide linkage: Synthesis, structural elucidation, physicochemical characterizations and pharmacological investigations. Eur. J. Med. Chem., 2018, 143, 1903-1918.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.001] [PMID: 29133050]
[104]
Raza, R.; Matin, A.; Sarwar, S.; Barsukova-Stuckart, M.; Ibra-him, M.; Kortz, U.; Iqbal, J. Polyoxometalates as potent and selective inhibitors of alkaline phosphatases with profound anticancer and amoebicidal activities. Dalton Trans., 2012, 41(47), 14329-14336.
[http://dx.doi.org/10.1039/c2dt31784b] [PMID: 23044850]
[105]
Zhang, Z.J.; Zeng, H.T.; Liu, Y.; Kuang, D.Z.; Zhang, F.X.; Tan, Y.X.; Jiang, W.J. Synthesis, crystal structure and anti-cancer activity of the dibutyltin(IV) oxide complexes contain-ing substituted salicylaldehyde-o-aminophenol Schiff base with appended donor functionality. Inorg. Nano-Met. Chem, 2018, 48(10), 486-494.
[106]
Castillo, E.R-D.; Gómez-García, O.; Andrade-Pavón, D.; Vil-la-Tanaca, L.; Ramírez-Apan, T.; Nieto-Camacho, A.; Gómez, E. Dibutyltin(IV) complexes derived from L-DOPA: Synthe-sis, molecular docking, cytotoxic and antifungal activity. Chem. Pharm. Bull. (Tokyo), 2018, 66(12), 1104-1113.
[http://dx.doi.org/10.1248/cpb.c18-00441] [PMID: 30504627]
[107]
Ullah, H.; Previtali, V.; Mihigo, H.B.; Twamley, B.; Rauf, M.K.; Javed, F.; Waseem, A.; Baker, R.J.; Rozas, I. Structure-activity relationships of new Organotin(IV) anticancer agents and their cytotoxicity profile on HL-60, MCF-7 and HeLa human cancer cell lines. Eur. J. Med. Chem., 2019, 181, 111544.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.047] [PMID: 31374420]
[108]
Galván-Hidalgo, J.M.; Ramírez-Apán, T.; Nieto-Camacho, A.; Hernández-Ortega, S.; Gómez, E. Schiff base Sn(IV) com-plexes as cytotoxic agents: Synthesis, structure, isosteric and bioisosteric replacement. J. Organomet. Chem., 2017, 848, 332-343.
[http://dx.doi.org/10.1016/j.jorganchem.2017.08.017]
[109]
Ordonez-Hernandez, J.; Arcos-Ramos, R.; Garcia-Ortega, H.; Munguía-Viveros, E.; Romero-Avila, M.; Flores-Alamo, M.; Farfán, N. Synthesis and structural analysis of bioactive Schiff-base pentacoordinated diorganotin(IV) complexes. J. Mol. Struct., 2019, 1180, 462-471.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.107]
[110]
Hiromori, Y.; Nishikawa, J.; Yoshida, I.; Nagase, H.; Nakani-shi, T. Structure-dependent activation of peroxisome prolifer-ator-activated receptor (PPAR) γ by organotin compounds. Chem. Biol. Interact., 2009, 180(2), 238-244.
[http://dx.doi.org/10.1016/j.cbi.2009.03.006] [PMID: 19497422]
[111]
Zhu, Q.; Yu, H.; Liu, M.; Zhang, F.; Kuang, D.; Tan, Y.; Jiang, W. Syntheses, crystal structures and biological activity of bi-nuclear di-2, 4-dichlorobenzyltin complexes based on aryl-formylhydrazone ligand. Chin. J. Appl. Chem., 2019, 36(12), 1387.
[112]
Jiang, W.J.; Zhou, Q.; Liu, M.Q.; Zhang, F.X.; Kuang, D.Z.; Tan, Y.X. Microwave assisted synthesis of disubstituted ben-zyltinarylformylhydrazone complexes: Anticancer activity and DNA‐binding properties. Appl. Organomet. Chem., 2019, 33(9), 1-14.
[113]
Jiang, W.; Fan, S.; Zhou, Q.; Zhang, F.; Kuang, D.; Tan, Y. Diversity of complexes based on p-nitrobenzoylhydrazide, benzoylformic acid and diorganotin halides or oxides self-assemble: Cytotoxicity, the induction of apoptosis in cancer cells and DNA-binding properties. Bioinorg. Chem., 2020, 94, 103402.
[http://dx.doi.org/10.1016/j.bioorg.2019.103402] [PMID: 31718891]
[114]
Galvan-Hidalgo, J.M.; Roldan-Marchan, D.M.; Gonzalez-Hernandez, A.; Ramirez-Apan, T.; Nieto-Camacho, A. Her-nandez-Ortega, S.; Gomez, E. Organotin(IV) complexes from Schiff bases ligands based on 2-amino-3-hydroxypyridine: Synthesis, characterization, and cytotoxicity. Med. Chem. Res., 2020, 29(12), 2146-2156.
[http://dx.doi.org/10.1007/s00044-020-02630-4]
[115]
Attanzio, A.; D’Agostino, S.; Busà, R.; Frazzitta, A.; Rubino, S.; Girasolo, M.A.; Sabatino, P.; Tesoriere, L. Cytotoxic activ-ity of organotin (IV) derivatives with triazolopyrimidine con-taining exocyclic oxygen atoms. Molecules, 2020, 25(4), 1-16.
[http://dx.doi.org/10.3390/molecules25040859] [PMID: 32075253]
[116]
Devi, J.; Yadav, J.; Deepak, K.; Deepak, K.J.; Biswarup, B. Synthesis, spectral analysis and in vitro cytotoxicity of di-organotin(IV) complexes derived from indole-3-butyric hy-drazide. Appl. Organomet. Chem., 2020, 34(10), 1-17.
[http://dx.doi.org/10.1002/aoc.5815]
[117]
Devi, J.; Pachwania, S.; Kumar, D.; Jindal, D.K.; Jan, S.; Dash, A.K. Diorganotin(IV) complexes derived from thiazole Schiff bases: Synthesis, characterization, antimicrobial and cytotoxic studies. Res. Chem. Intermed., 2021, 48, 267-289.
[118]
Devi, J.; Yadav, J.; Lal, K.; Kumar, N.; Paul, A.K.; Kumar, D.; Jindal, D.K. Design, synthesis, crystal structure, molecular docking studies of some Diorganotin(IV) complexes derived from the piperonylic hydrazide Schiff base ligands as cyto-toxic agents. J. Mol. Struct., 2021, 1232, 129992.
[http://dx.doi.org/10.1016/j.molstruc.2021.129992]
[119]
Du, X.; Zhang, R.; Li, Q.; Cheng, S.; Li, Y.; Ru, J.; Ma, C. Organotin (IV) complexes derived from 1, 4-naphthalenedicarboxylic acid: Synthesis, structure, in vitro cytostatic activity. J. Organomet. Chem., 2021, 935, 121654.
[http://dx.doi.org/10.1016/j.jorganchem.2020.121654]
[120]
Kapila, A.; Kaur, M.; Kaur, H. Organotin (IV) complexes of tridentate (O, N, O) Schiff base ligand: Computational, spec-troscopic and biological studies. Mater. Today Proc., 2021, 40, S102-S106.
[http://dx.doi.org/10.1016/j.matpr.2020.04.080]
[121]
Helleday, T.; Petermann, E.; Lundin, C.; Hodgson, B.; Shar-ma, R.A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer, 2008, 8(3), 193-204.
[http://dx.doi.org/10.1038/nrc2342] [PMID: 18256616]
[122]
Bugide, S.; David, D.; Nair, A.; Kannan, N.; Samanthapudi, V.S.K.; Prabhakar, J.; Manavathi, B. Hematopoietic PBX-interacting protein (HPIP) is over expressed in breast infiltra-tive ductal carcinoma and regulates cell adhesion and migra-tion through modulation of focal adhesion dynamics. Oncogene, 2015, 34(35), 4601-4612.
[http://dx.doi.org/10.1038/onc.2014.389] [PMID: 25486428]
[123]
Roos, W.P.; Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol. Med., 2006, 12(9), 440-450.
[http://dx.doi.org/10.1016/j.molmed.2006.07.007] [PMID: 16899408]
[124]
Shehata, M.R.; Shoukry, M.M.; Abdel Wahab, A.M. Equilib-rium studies of binary and mixed-ligand dimethyltin(IV) complexes involving homopiperazine and DNA constituents with reference to the antitumor activity. Phys. Chem. Liquids, 2021, 59(4), 523-536.
[http://dx.doi.org/10.1080/00319104.2020.1752689]
[125]
Sathisha, M.P.; Revankar, V.K.; Pai, K.S.R. Synthesis, struc-ture, electrochemistry, and spectral characterization of bis-isatin thiocarbohydrazone metal complexes and their anti-tumor activity against ehrlich ascites carcinoma in swiss albi-no mice. Met. Based Drugs, 2008, 2008, 362105.
[http://dx.doi.org/10.1155/2008/362105] [PMID: 18320020]
[126]
Abou Melha, K.S. In-vitro antibacterial, antifungal activity of some transition metal complexes of thiosemicarbazone Schiff base (HL) derived from N4-(7′-chloroquinolin-4′-ylamino) thiosemicarbazide. J. Enzyme Inhib. Med. Chem., 2008, 23(4), 493-503.
[http://dx.doi.org/10.1080/14756360701631850] [PMID: 18665996]
[127]
Wang, J.; Wang, Y.T.; Fang, Y.; Lu, Y.L.; Li, M.X. Tinthio-carbonohydrazone complexes: Synthesis, crystal structures and biological evaluation. Toxicol. Res., 2019, 8(6), 862-867.
[http://dx.doi.org/10.1039/c9tx00109c]
[128]
Matichenkov, V.V.; Bocharnikova, E.A.; Pahnenko, E.P.; Khomiakov, D.M.; Matichenkov, I.V.; Zhan, Q.; Wei, X. Re-duction of Cd, Cu, Ni, and Pb mobility by active Si in a labor-atory study. Mine Water Environ., 2016, 35, 302.
[http://dx.doi.org/10.1007/s10230-015-0353-5]
[129]
Xie, Q.L.; Sha, G.L.; Liu, Y.L. The Synthesis of [(phenyl-dimehtylsilyl) methyl] dicyelohexylitndihtiophosphates. Youji Huaxue, 1994, 14, 536.
[130]
Liu, Q.; Xie, B.; Lin, S.; Liao, Q.; Deng, R.; Zhaohua, Y. Sili-con-containing diorganotin complexes with salicylaldehyde thiosemicarbazone and their anticancer activity. J. Chem. Sci., 2019, 131(8), 1-8.
[http://dx.doi.org/10.1007/s12039-019-1650-5]
[131]
Qu, X.; Allan, A.; Chui, G.; Hutchings, T.J.; Jiao, P.; Johnson, L.; Leung, W.Y.; Li, P.K.; Steel, G.R.; Thompson, A.S.; Threadgill, M.D.; Woodman, T.J.; Lloyd, M.D. Hydrolysis of ibuprofenoyl-CoA and other 2-APA-CoA esters by human acyl-CoA thioesterases-1 and -2 and their possible role in the chiral inversion of profens. Biochem. Pharmacol., 2013, 86(11), 1621-1625.
[http://dx.doi.org/10.1016/j.bcp.2013.08.067] [PMID: 24041740]
[132]
Matos, P.; Jordan, P. Beyond COX-inhibition: ‘Side-effects’ of ibuprofen on neoplastic development and progression. Curr. Pharm. Des., 2015, 21(21), 2978-2982.
[http://dx.doi.org/10.2174/1381612821666150514104608] [PMID: 26004413]
[133]
Kumari, R.; Banerjee, S.; Roy, P.; Nath, M. Organotin(IV) complexes of NSAID, ibuprofen, X‐ray structure of Ph3Sn (IBF), binding and cleavage interaction with DNA and in vitro cytotoxic studies of several organotin complexes of drugs. Appl. Organomet. Chem., 2020, 34(1), 1-24.
[http://dx.doi.org/10.1002/aoc.5283]
[134]
Kumari, R.; Nath, M. Synthesis, characterization and binding studies of novel diorganotin (IV) complexes of sodium 2‐mercaptoethanesulfonate. Appl. Organomet. Chem., 2018, 32(5), 1-17.
[http://dx.doi.org/10.1002/aoc.4365]
[135]
Kumari, R.; Nath, M. Tri‐and diorganotin(IV) derivatives of non‐steroidal anti‐inflammatory drug sulindac: Characteriza-tion, electronic structures (DFT), DNA binding and plasmid cleavage studies. Appl. Organomet. Chem., 2017, 31(8), 1-17.
[http://dx.doi.org/10.1002/aoc.3661]
[136]
Kumari, R.; Nath, M. Synthesis and characterization of novel trimethyltin(IV) and tributylltin(IV) complexes of anticoagu-lant, WARFARIN: Potential DNA binding and plasmid cleav-ing agents. Inorg. Chem. Commun., 2018, 95, 40-46.
[http://dx.doi.org/10.1016/j.inoche.2018.07.001]
[137]
Yusof, E.N.M.; Latif, M.A.; Tahir, M.I.; Sakoff, J.A.; Veera-kumarasivam, A.; Page, A.J.; Ravoof, T.B. Homoleptic tin(IV) compounds containing tridentate ONS dithiocarbazate Schiff bases: Synthesis, X-ray crystallography, DFT and cytotoxicity studies. J. Mol. Struct., 2020, 1205, 127635.
[http://dx.doi.org/10.1016/j.molstruc.2019.127635]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy