Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Literature Review on Coumarin Hybrids as Potential Anticancer Agents

Author(s): Baji Baba Shaik, Naresh Kumar Katari*, Pule Seboletswe, Rambabu Gundla, Narva Deshwar Kushwaha, Vishal Kumar, Parvesh Singh, Rajshekhar Karpoormath and Muhammad D. Bala*

Volume 23, Issue 2, 2023

Published on: 20 August, 2022

Page: [142 - 163] Pages: 22

DOI: 10.2174/1871520622666220418143438

Price: $65

Abstract

Cancer is considered one of the leading causes of death globally, especially patients with lung, pancreatic, or brain tumors are most likely to die of cancer, and patients with prostate and breast cancer are at a high risk of noncancer death. As a result, there is ongoing research regarding developing new, safe, and efficient anticancer agents. Coumarin-based naturally occurring compounds possess a broad spectrum of activity in medicinal chemistry, such as anticancer, anti-inflammatory, antimicrobial, antioxidant agents, etc. Many researchers have synthesized coumarinbased novel therapeutic agents via molecular hybridization technique, which offers an excellent opportunity to develop novel compounds with improved biological activities by incorporating two or more pharmacophores. This review aims to shed light on the recent developments of coumarin-based anticancer hybrid derivatives and their Structure-Activity Relationships (SAR). This review serves as a medium that medicinal chemists could utilize to design and synthesize coumarin derivatives with significant pharmacological value as future anticancer agents.

Keywords: Coumarin, molecular hybridization, anticancer agent, therapeutic agent, broad spectrum of activity, SAR.

Graphical Abstract

[1]
WHO. WHO Report on Cancer: Setting Priorities, Investing Wisely and Providing Care for All; World Health Organization, 2020.
[2]
Cancer. World Health Organization. 2003. Available from: https://Www.Who.Int/En/News-Room/Fact-Sheets/Detail/Cancer
[3]
Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Recent advances (2015-2016) in anticancer hybrids. Eur. J. Med. Chem., 2017, 142, 179-212.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.033] [PMID: 28760313]
[4]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[5]
Kibria, G.; Hatakeyama, H.; Harashima, H. Cancer multidrug resistance: Mechanisms involved and strategies for circum-vention using a drug delivery system. Arch. Pharm. Res., 2014, 37(1), 4-15.
[http://dx.doi.org/10.1007/s12272-013-0276-2] [PMID: 24272889]
[6]
Eisen, S.A.; Miller, D.K.; Woodward, R.S.; Spitznagel, E.; Przybeck, T.R. The effect of prescribed daily dose frequency on patient medication compliance. Arch. Intern. Med., 1990, 150(9), 1881-1884.
[http://dx.doi.org/10.1001/archinte.1990.00390200073014] [PMID: 2102668]
[7]
Majnooni, M.B.; Fakhri, S.; Smeriglio, A.; Trombetta, D.; Croley, C.R.; Bhattacharyya, P.; Sobarzo-Sánchez, E.; Farzaei, M.H.; Bishayee, A. Antiangiogenic effects of coumarins against cancer: From chemistry to medicine. Molecules, 2019, 24(23), 4278.
[http://dx.doi.org/10.3390/molecules24234278] [PMID: 31771270]
[8]
Newman, D.J.; Giddings, L.A. Natural products as leads to antitumor drugs. Phytochem. Rev., 2014, 13(1), 123-137.
[http://dx.doi.org/10.1007/s11101-013-9292-6]
[9]
Teiten, M.H.; Gaascht, F.; Eifes, S.; Dicato, M.; Diederich, M. Chemopreventive potential of curcumin in prostate cancer. Genes Nutr., 2010, 5(1), 61-74.
[http://dx.doi.org/10.1007/s12263-009-0152-3] [PMID: 19806380]
[10]
Thornes, R.D.; Lynch, G.; Sheehan, M.V. Cimetidine and coumarin therapy of melanoma. Lancet, 1982, 2(8293), 328.
[http://dx.doi.org/10.1016/S0140-6736(82)90295-1] [PMID: 6124738]
[11]
Velasco-Velázquez, M.A.; Agramonte-Hevia, J.; Barrera, D.; Jiménez-Orozco, A.; García-Mondragón, M.J.; Mendoza-Patiño, N.; Landa, A.; Mandoki, J. 4-Hydroxycoumarin disor-ganizes the actin cytoskeleton in B16-F10 melanoma cells but not in B82 fibroblasts, decreasing their adhesion to extracellu-lar matrix proteins and motility. Cancer Lett., 2003, 198(2), 179-186.
[http://dx.doi.org/10.1016/S0304-3835(03)00333-1] [PMID: 12957356]
[12]
Riveiro, M.E.; Moglioni, A.; Vazquez, R.; Gomez, N.; Facor-ro, G.; Piehl, L.; de Celis, E.R.; Shayo, C.; Davio, C. Structural insights into hydroxycoumarin-induced apoptosis in U-937 cells. Bioorg. Med. Chem., 2008, 16(5), 2665-2675.
[http://dx.doi.org/10.1016/j.bmc.2007.11.038] [PMID: 18060791]
[13]
Kashman, Y.; Gustafson, K.R.; Fuller, R.W.; Cardellina, J.H., II; McMahon, J.B.; Currens, M.J.; Buckheit, R.W., Jr; Hughes, S.H.; Cragg, G.M.; Boyd, M.R. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J. Med. Chem., 1992, 35(15), 2735-2743.
[http://dx.doi.org/10.1021/jm00093a004] [PMID: 1379639]
[14]
Shikishima, Y.; Takaishi, Y.; Honda, G.; Ito, M.; Takfda, Y.; Kodzhimatov, O.K.; Ashurmetov, O.; Lee, K.H. Chemical constituents of Prangos tschiniganica; structure elucidation and absolute configuration of coumarin and furanocoumarin derivatives with anti- HIV activity. Chem. Pharm. Bull. (Tokyo), 2001, 49(7), 877-880.
[http://dx.doi.org/10.1248/cpb.49.877] [PMID: 11456095]
[15]
Ostrov, D.A.; Hernández Prada, J.A.; Corsino, P.E.; Finton, K.A.; Le, N.; Rowe, T.C. Discovery of novel DNA gyrase in-hibitors by high-throughput virtual screening. Antimicrob. Agents Chemother., 2007, 51(10), 3688-3698.
[http://dx.doi.org/10.1128/AAC.00392-07] [PMID: 17682095]
[16]
Gormley, N.A.; Orphanides, G.; Meyer, A.; Cullis, P.M.; Maxwell, A. The interaction of coumarin antibiotics with fragments of DNA gyrase B protein. Biochemistry, 1996, 35(15), 5083-5092.
[http://dx.doi.org/10.1021/bi952888n] [PMID: 8664301]
[17]
Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.E.; Nicolaides, D.N. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des., 2004, 10(30), 3813-3833.
[http://dx.doi.org/10.2174/1381612043382710] [PMID: 15579073]
[18]
Bansal, Y.; Sethi, P.; Bansal, G. Coumarin: A potential nucle-us for anti-inflammatory molecules. Med. Chem. Res., 2013, 22(7), 3049-3060.
[http://dx.doi.org/10.1007/s00044-012-0321-6]
[19]
Manvar, A.; Bavishi, A.; Radadiya, A.; Patel, J.; Vora, V.; Dodia, N.; Rawal, K.; Shah, A. Diversity oriented design of various hydrazides and their in vitro evaluation against Myco-bacterium tuberculosis H37Rv strains. Bioorg. Med. Chem. Lett., 2011, 21(16), 4728-4731.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.074] [PMID: 21752642]
[20]
Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Coumarin hybrids as novel therapeutic agents. Bioorg. Med. Chem., 2014, 22(15), 3806-3814.
[http://dx.doi.org/10.1016/j.bmc.2014.05.032] [PMID: 24934993]
[21]
Anand, P.; Singh, B.; Singh, N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg. Med. Chem., 2012, 20(3), 1175-1180.
[http://dx.doi.org/10.1016/j.bmc.2011.12.042] [PMID: 22257528]
[22]
Piazzi, L.; Cavalli, A.; Colizzi, F.; Belluti, F.; Bartolini, M.; Mancini, F.; Recanatini, M.; Andrisano, V.; Rampa, A. Multi-target-directed coumarin derivatives: hAChE and BACE1 in-hibitors as potential anti-Alzheimer compounds. Bioorg. Med. Chem. Lett., 2008, 18(1), 423-426.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.100] [PMID: 17998161]
[23]
Ma, Y.M.; Zhou, Y.B.; Xie, C.M.; Chen, D.M.; Li, J. Novel microtubule-targeted agent 6-chloro-4-(methoxyphenyl) cou-marin induces G2-M arrest and apoptosis in HeLa cells. Acta Pharmacol. Sin., 2012, 33(3), 407-417.
[http://dx.doi.org/10.1038/aps.2011.176] [PMID: 22266726]
[24]
Yuce, B.; Danis, O.; Ogan, A.; Sener, G.; Bulut, M.; Yarat, A. Antioxidative and lipid lowering effects of 7,8-dihydroxy-3- (4-methylphenyl) coumarin in hyperlipidemic rats. Arzneimittelforschung, 2009, 59(3), 129-134.
[PMID: 19402343]
[25]
Madhavan, G.R.; Balraju, V.; Mallesham, B.; Chakrabarti, R.; Lohray, V.B. Novel coumarin derivatives of heterocyclic compounds as lipid-lowering agents. Bioorg. Med. Chem. Lett., 2003, 13(15), 2547-2551.
[http://dx.doi.org/10.1016/S0960-894X(03)00490-6] [PMID: 12852963]
[26]
Harborne, J.B. The natural coumarins: Occurrence, chemistry and biochemistry. Plant Cell Environ., 1982, 5(6), 435-436.
[http://dx.doi.org/10.1111/1365-3040.ep11611630]
[27]
Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int., 2013, 2013, 963248.
[http://dx.doi.org/10.1155/2013/963248] [PMID: 23586066]
[28]
Musa, M.A.; Latinwo, L.M.; Virgile, C.; Badisa, V.L.D.; Gbadebo, A.J. Synthesis and in vitro evaluation of 3-(4-nitrophenyl)coumarin derivatives in tumor cell lines. Bioorg. Chem., 2015, 58, 96-103.
[http://dx.doi.org/10.1016/j.bioorg.2014.11.009] [PMID: 25553414]
[29]
Garazd, Y.; Garazd, M.; Lesyk, R. Synthesis and evaluation of anticancer activity of 6-pyrazolinylcoumarin derivatives. Saudi Pharm. J., 2017, 25(2), 214-223.
[http://dx.doi.org/10.1016/j.jsps.2016.05.005] [PMID: 28344471]
[30]
Önder, A. Anticancer activity of natural coumarins for biolog-ical targets. Studies Nat. Products Chem., 2020, 64, 85-109.
[http://dx.doi.org/10.1016/B978-0-12-817903-1.00003-6]
[31]
Reddy, D.S.; Kongot, M.; Singh, V.; Siddiquee, M.A.; Patel, R.; Singhal, N.K.; Avecilla, F.; Kumar, A. Biscoumarin-pyrimidine conjugates as potent anticancer agents and binding mechanism of hit candidate with human serum albumin. Arch. Pharm. (Weinheim), 2021, 354(1), e2000181.
[http://dx.doi.org/10.1002/ardp.202000181] [PMID: 32945576]
[32]
Kavetsou, E.; Katopodi, A.; Argyri, L.; Chainoglou, E.; Ponti-ki, E.; Hadjipavlou-Litina, D.; Chroni, A.; Detsi, A. Novel 3-aryl-5-substituted-coumarin analogues: Synthesis and bioac-tivity profile. Drug Dev. Res., 2020, 81(4), 456-469.
[http://dx.doi.org/10.1002/ddr.21639] [PMID: 31943295]
[33]
Karataş, M.O.; Tekin, S.; Alici, B.; Sandal, S. Cytotoxic ef-fects of coumarin substituted benzimidazolium salts against human prostate and ovarian cancer cells. J. Chem. Sci., 2019, 131(8), 1-12.
[http://dx.doi.org/10.1007/s12039-019-1647-0]
[34]
Maleki, E.H.; Bahrami, A.R.; Sadeghian, H.; Matin, M.M. Discovering the structure-activity relationships of different O-prenylated coumarin derivatives as effective anticancer agents in human cervical cancer cells. Toxicol. In Vitro, 2020, 63, 104745.
[http://dx.doi.org/10.1016/j.tiv.2019.104745] [PMID: 31830504]
[35]
Hersi, F.; Omar, H.A.; Al-Qawasmeh, R.A.; Ahmad, Z.; Jaber, A.M.; Zaher, D.M.; Al-Tel, T.H. Design and synthesis of new energy restriction mimetic agents: Potent anti-tumor activities of hybrid motifs of aminothiazoles and coumarins. Sci. Rep., 2020, 10(1), 2893.
[http://dx.doi.org/10.1038/s41598-020-59685-x] [PMID: 32076009]
[36]
Cui, N.; Lin, D-D.; Shen, Y.; Shi, J-G.; Wang, B.; Zhao, M-Z.; Zheng, L.; Chen, H.; Shi, J-H. Triphenylethylene-coumarin hybrid TCH-5c suppresses tumorigenic progression in breast cancer mainly through the inhibition of angiogenesis. Anticancer. Agents Med. Chem., 2019, 19(10), 1253-1261.
[http://dx.doi.org/10.2174/1871520619666190404155230] [PMID: 30947677]
[37]
Jantamat, P.; Weerapreeyakul, N.; Puthongking, P. Cytotoxici-ty and apoptosis induction of coumarins and carbazole alka-loids from Clausena harmandiana. Molecules, 2019, 24(18), 3385.
[http://dx.doi.org/10.3390/molecules24183385] [PMID: 31540345]
[38]
Awale, S.; Okada, T.; Dibwe, D.F.; Maruyama, T.; Takahara, S.; Okada, T.; Endo, S.; Toyooka, N. Design and synthesis of functionalized coumarins as potential anti-austerity agents that eliminates cancer cells’ tolerance to nutrition starvation. Bioorg. Med. Chem. Lett., 2019, 29(14), 1779-1784.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.010] [PMID: 31097375]
[39]
Ahmed, E.Y.; Abdel Latif, N.A.; El-Mansy, M.F.; Elserwy, W.S.; Abdelhafez, O.M. VEGFR-2 inhibiting effect and mo-lecular modeling of newly synthesized coumarin derivatives as anti-breast cancer agents. Bioorg. Med. Chem., 2020, 28(5), 115328.
[http://dx.doi.org/10.1016/j.bmc.2020.115328] [PMID: 31992477]
[40]
Abd El-Karim, S.S.; Syam, Y.M.; El Kerdawy, A.M.; Ab-delghany, T.M. New thiazol-hydrazono-coumarin hybrids tar-geting human cervical cancer cells: Synthesis, CDK2 inhibi-tion, QSAR and molecular docking studies. Bioorg. Chem., 2019, 86, 80-96.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.026] [PMID: 30685646]
[41]
Dai, H.; Huang, M.; Qian, J.; Liu, J.; Meng, C.; Li, Y.; Ming, G.; Zhang, T.; Wang, S.; Shi, Y.; Yao, Y.; Ge, S.; Zhang, Y.; Ling, Y. Excellent antitumor and antimetastatic activities based on novel coumarin/pyrazole oxime hybrids. Eur. J. Med. Chem., 2019, 166, 470-479.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.070] [PMID: 30739827]
[42]
Ding, J.; Liu, J.; Zhang, Z.; Guo, J.; Cheng, M.; Wan, Y.; Wang, R.; Fang, Y.; Guan, Z.; Jin, Y.; Xie, S.S. Design, syn-thesis and biological evaluation of coumarin-based N-hydroxycinnamamide derivatives as novel histone deacety-lase inhibitors with anticancer activities. Bioorg. Chem., 2020, 101, 104023.
[http://dx.doi.org/10.1016/j.bioorg.2020.104023] [PMID: 32650178]
[43]
Durgapal, S.D.; Soman, S.S. Evaluation of novel coumarin-proline sulfonamide hybrids as anticancer and antidiabetic agents. Synth. Commun., 2019, 49(21), 2869-2883.
[http://dx.doi.org/10.1080/00397911.2019.1647439]
[44]
Eker, Y.; Şenkuytu, E.; Ölçer, Z.; Yıldırım, T.; Çiftçi, G.Y. Novel coumarin cyclotriphosphazene derivatives: Synthesis, characterization, DNA binding analysis with automated bio-sensor and cytotoxicity. J. Mol. Struct., 2020, 1209, 127971.
[http://dx.doi.org/10.1016/j.molstruc.2020.127971]
[45]
Goud, N.S.; Pooladanda, V.; Mahammad, G.S.; Jakkula, P.; Gatreddi, S.; Qureshi, I.A.; Alvala, R.; Godugu, C.; Alvala, M. Synthesis and biological evaluation of morpholines linked coumarin-triazole hybrids as anticancer agents. Chem. Biol. Drug Des., 2019, 94(5), 1919-1929.
[http://dx.doi.org/10.1111/cbdd.13578] [PMID: 31169963]
[46]
Govindaiah, P.; Dumala, N.; Grover, P.; Jaya Prakash, M. Synthesis and biological evaluation of novel 4,7-dihydroxycoumarin derivatives as anticancer agents. Bioorg. Med. Chem. Lett., 2019, 29(14), 1819-1824.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.008] [PMID: 31104996]
[47]
Han, H.; Zhang, Z.F.; Zhang, J.F.; Zhang, B. Novel coumarin derivatives: Synthesis, anti-breast cancer activity and docking study. Main Group Chem., 2019, 18(2), 71-79.
[http://dx.doi.org/10.3233/MGC-180682]
[48]
Ma, J.; Huang, K.; Ni, X.; Chen, R.; Xu, B.; Wang, C. Design, synthesis, biological activity and molecular docking study of coumarin derivatives bearing 2-Methylbiphenyl moiety. Chem. Res. Chin. Univ., 2019, 5(3), 410-417.
[http://dx.doi.org/10.1007/s40242-019-8310-7]
[49]
Lipeeva, A.V.; Zakharov, D.O.; Gatilov, Y.V.; Pokrovskii, M.A.; Pokrovskii, A.G.; Shults, E.E. Design and synthesis of 3-(N-Substituted)aminocoumarins as anticancer agents from 3-bromopeuruthenicin. ChemistrySelect, 2019, 4(34), 10197-10201.
[http://dx.doi.org/10.1002/slct.201901377]
[50]
Mohamed, T.K.; Batran, R.Z.; Elseginy, S.A.; Ali, M.M.; Mahmoud, A.E. Synthesis, anticancer effect and molecular modeling of new thiazolylpyrazolyl coumarin derivatives tar-geting VEGFR-2 kinase and inducing cell cycle arrest and apoptosis. Bioorg. Chem., 2019, 85, 253-273.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.040] [PMID: 30641320]
[51]
Mayank; Singh, A.; Kaur, N.; Garg, N.; Singh, N. Anticancer SAR establishment and novel accruing signal transduction model of drug action using biscoumarin scaffold. Comput. Biol. Chem., 2019, 83, 107104.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.107104] [PMID: 31546212]
[52]
Narella, S.G.; Shaik, M.G.; Mohammed, A.; Alvala, M.; An-geli, A.; Supuran, C.T. Synthesis and biological evaluation of coumarin-1,3,4-oxadiazole hybrids as selective carbonic an-hydrase IX and XII inhibitors. Bioorg. Chem., 2019, 87, 765-772.
[http://dx.doi.org/10.1016/j.bioorg.2019.04.004] [PMID: 30974299]
[53]
Elhady, H.A.; Katouah, H.A. In vitro antitumor evaluation of some 3,7-disubstituted coumarin derivatives. Lat. Am. J. Pharm., 2018, 37(1), 123-130.
[54]
Tao, A.; Song, Z.; Feng, X.; Hu, B.; Lei, X. Magnolol-coumarinphenylbutyric acid conjugates: An anticancer prodrug via multiple targets. In: Proceed. IOP Conf. Series: Earth Environ. Sci; , 2019; p. 042054.
[http://dx.doi.org/10.1088/1755-1315/330/4/042054]
[55]
Chen, J.; Wang, L.; Fan, Y.; Yang, Y.; Xu, M.; Shi, X. Synthe-sis and anticancer activity of cyclotriphosphazenes function-alized with 4-Methyl-7-Hydroxycoumarin. New J. Chem., 2019, 43(46), 18316-18321.
[http://dx.doi.org/10.1039/C9NJ04787E]
[56]
Wang, B.Y.; Lin, Y.C.; Lai, Y.T.; Ou, J.Y.; Chang, W.W.; Chu, C.C. Targeted photoresponsive carbazole-coumarin and drug conjugates for efficient combination therapy in leukemia can-cer cells. Bioorg. Chem., 2020, 100, 103904.
[http://dx.doi.org/10.1016/j.bioorg.2020.103904] [PMID: 32413630]
[57]
Wei, J.N.; Jia, Z.D.; Zhou, Y.Q.; Chen, P.H.; Li, B.; Zhang, N.; Hao, X.Q.; Xu, Y.; Zhang, B. Synthesis, characterization and antitumor activity of novel ferrocene-coumarin conjugates. J. Organomet. Chem., 2019, 902, 120968.
[http://dx.doi.org/10.1016/j.jorganchem.2019.120968]
[58]
Yao, J.N.; Zhang, X.X.; Zhang, Y.Z.; Li, J.H.; Zhao, D.Y.; Gao, B.; Zhou, H.N.; Gao, S.L.; Zhang, L.F. Discovery and anticancer evaluation of a formononetin derivative against gastric cancer SGC7901 cells. Invest. New Drugs, 2019, 37(6), 1300-1308.
[http://dx.doi.org/10.1007/s10637-019-00767-7] [PMID: 30929157]
[59]
Wang, X.; Yang, C.; Zhang, Q.; Wang, C.; Zhou, X.; Zhang, X.; Liu, S. In vitro anticancer effects of esculetin against hu-man leukemia cell lines involves apoptotic cell death, autoph-agy, G0/G1 cell cycle arrest and modulation of Raf/MEK/ERK signalling pathway. J. BUON, 2019, 24(4), 1686-1691.
[PMID: 31646826]
[60]
Tosun, F.; Beutler, J.A.; Ransom, T.T.; Miski, M. Anatolicin, a highly potent and selective cytotoxic sesquiterpene couma-rin from the root extract of Heptaptera anatolica. Molecules, 2019, 24(6), 1153.
[http://dx.doi.org/10.3390/molecules24061153] [PMID: 30909537]
[61]
Sung, H.; Siegel, R.L.; Rosenberg, P.S.; Jemal, A. Emerging cancer trends among young adults in the USA: Analysis of a population-based cancer registry. Lancet Public Health, 2019, 4(3), e137-e147.
[http://dx.doi.org/10.1016/S2468-2667(18)30267-6] [PMID: 30733056]
[62]
Anker, M.S.; Holcomb, R.; Muscaritoli, M.; von Haehling, S.; Haverkamp, W.; Jatoi, A.; Morley, J.E.; Strasser, F.; Land-messer, U.; Coats, A.J.S.; Anker, S.D. Orphan disease status of cancer cachexia in the USA and in the European Union: A systematic review. J. Cachexia Sarcopenia Muscle, 2019, 10(1), 22-34.
[http://dx.doi.org/10.1002/jcsm.12402] [PMID: 30920776]
[63]
Hanna, C.R.; Boyd, K.A.; Jones, R.J. Evaluating cancer research impact: Lessons and examples from existing reviews on ap-proaches to research impact assessment. Health Res. Policy Syst., 2021, 19(1), 36.
[http://dx.doi.org/10.1186/s12961-020-00658-x]
[64]
Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of system-ic cancer treatment. (Review) Int. J. Oncol., 2019, 54(2), 407-419. [Review].
[PMID: 30570109]
[65]
Tandberg, D.J.; Tong, B.C.; Ackerson, B.G.; Kelsey, C.R. Surgery versus stereotactic body radiation therapy for stage I non-small cell lung cancer: A comprehensive review. Cancer, 2018, 124(4), 667-678.
[http://dx.doi.org/10.1002/cncr.31196] [PMID: 29266226]
[66]
Abufaraj, M.; Dalbagni, G.; Daneshmand, S.; Horenblas, S.; Kamat, A.M.; Kanzaki, R.; Zlotta, A.R.; Shariat, S.F. The role of surgery in metastatic bladder cancer: A systematic review. Eur. Urol., 2018, 73(4), 543-557.
[http://dx.doi.org/10.1016/j.eururo.2017.09.030] [PMID: 29122377]
[67]
Deli, T.; Orosz, M.; Jakab, A. Hormone replacement therapy in cancer survivors - review of the literature. Pathol. Oncol. Res., 2020, 26(1), 63-78.
[http://dx.doi.org/10.1007/s12253-018-00569-x] [PMID: 30617760]
[68]
Fesik, S.W. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer, 2005, 5(11), 876-885.
[http://dx.doi.org/10.1038/nrc1736] [PMID: 16239906]
[69]
Alecsandru, I.B.; Cornel, C. Principles of anticancer therapy. In: Comparative Oncology; The Publishing House of the Ro-manian Academy: Bucharest, 2007.
[70]
Bigi, F.; Chesini, L.; Maggi, R.; Sartori, G. Montmorillonite KSF as an inorganic, water stable, and reusable catalyst for the knoevenagel synthesis of coumarin-3-carboxylic acids. J. Org. Chem., 1999, 64(3), 1033-1035.
[http://dx.doi.org/10.1021/jo981794r] [PMID: 11674183]
[71]
Rosen, T. The perkin reaction: In comprehensive organic synthesis. Elsevier Science B.V. Amsterdum, 1991, 2, 395-408.
[72]
Yavari, I.; Hekmat-Shoar, R.; Zonuzi, A. A new and efficient route to 4- carboxymethylcoumarins mediated by vinyltri-phenylphosphonium salt. Tetrahedron Lett., 1998, 39(16), 2391-2392.
[http://dx.doi.org/10.1016/S0040-4039(98)00206-8]
[73]
Karami, B.; Kiani, M. Synthesis of the coumarins via pech-mann method in the presence of environmentally friendly Y(NO3)3.6H2O. J. Chin. Chem. Soc. (Taipei), 2014, 61(2), 213-216.
[http://dx.doi.org/10.1002/jccs.201200610]
[74]
Ghomi, J.S.; Akbarzadeh, Z. Ultrasonic accelerated Knoevenagel condensation by magnetically recoverable MgFe2O4 nanocatalyst: A rapid and green synthesis of coumarins under solvent-free conditions.Ultrason. Sonochem., 2018, 40(Pt A), 78-83.
[http://dx.doi.org/10.1016/j.ultsonch.2017.06.022] [PMID: 28946485]
[75]
Dinparast, L.; Hemmati, S.; Zengin, G.; Alizadeh, A.A.; Ba-hadori, M.B.; Kafil, H.S.; Dastmalchi, S. Rapid, efficient, and green synthesis of coumarin derivatives via knoevenagel con-densation and investigating their biological effects. ChemistrySelect, 2019, 4(31), 9211-9215.
[http://dx.doi.org/10.1002/slct.201901921]
[76]
da Silveira, P.; Ligia, S.; de Souza, M.V.N. Sonochemistry as a general procedure for the synthesis of coumarins, including multigram synthesis. Synthesis, 2017, 2677-2682.
[77]
Mirosanloo, A.; Zareyee, D.; Khalilzadeh, M.A. Recyclable cellulose nanocrystal supported Palladium nanoparticles as an efficient heterogeneous catalyst for the solvent‐free synthesis of coumarin derivatives via von Pechmann condensation. Appl. Organomet. Chem., 2018, 32(12), e4546.
[http://dx.doi.org/10.1002/aoc.4546]
[78]
Sun, Y-F.; Liu, J-M.; Sun, J.; Huang, Y-T.; Lu, J.; Li, M-M.; Jin, N.; Dai, X-F.; Fan, B. One-pot synthesis of coumarins unsubstituted on the pyranic nucleus catalysed by a wells–dawson heteropolyacid (H6P2W18O62). Preprints, 2018, 2018090349.
[79]
Bouasla, S.; Amaro-Gahete, J.; Esquivel, D.; López, M.I.; Jiménez-Sanchidrián, C.; Teguiche, M.; Romero-Salguero, F.J. Coumarin derivatives solvent-free synthesis under microwave irradiation over heterogeneous solid catalysts. Molecules, 2017, 22(12), 2072s.
[http://dx.doi.org/10.3390/molecules22122072] [PMID: 29182553]
[80]
Kalaria, P.N.; Satasia, S.P.; Purohit, V.B.; Avalani, J.R.; Sapariya, N.H.; Raval, D.K. Microwave-assisted solvent-free rapid synthesis of 4-methyl coumarin derivatives by using silica functionalized-SO3H as an effective heterogeneous cata-lyst. Polycycl. Aromat. Compd., 2021, 41(6), 1212-1222.
[http://dx.doi.org/10.1080/10406638.2019.1666887]
[81]
Pu, W.; Lin, Y.; Zhang, J.; Wang, F.; Wang, C.; Zhang, G. 3-Arylcoumarins: Synthesis and potent anti-inflammatory activ-ity. Bioorg. Med. Chem. Lett., 2014, 24(23), 5432-5434.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.033] [PMID: 25453803]
[82]
Augustine, J.K.; Bombrun, A.; Ramappa, B.; Boodappa, C. An efficient one-pot synthesis of coumarins mediated by propylphosphonic anhydride (T3P) via the Perkin condensa-tion. Tetrahedron Lett., 2012, 53(33), 4422-4425.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.037]
[83]
Krachko, T.; Lyaskovskyy, V.; Lutz, M.; Lammertsma, K.; Slootweg, J.C. Brønsted acid promoted reduction of tertiary phosphine oxides. Z. Anorg. Allg. Chem., 2017, 643(14), 916-921.
[http://dx.doi.org/10.1002/zaac.201700125]
[84]
Puspesh, K.U.; Pradeep, K. dnovel synthesis of coumarins employing triphenyl(α-carboxymethylene)phosphorane imid-azolide as a C-2 synthon. Tetrahedron Lett., 2009, 50(2), 236-238.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.133]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy