Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Pyridoxal Kinase of Disease-causing Human Parasites: Structural and Functional Insights to Understand its Role in Drug Discovery

Author(s): Mayank Saini, Sayanna Are and Insaf Ahmed Qureshi*

Volume 23, Issue 4, 2022

Published on: 21 June, 2022

Page: [271 - 289] Pages: 19

DOI: 10.2174/1389203723666220519155025

Price: $65

Abstract

Human parasites cause several diseased conditions with high morbidity and mortality in a large section of the population residing in various geographical areas. Nearly three billion people suffer from either one or many parasitic infections globally, with almost one million deaths annually. In spite of extensive research and advancement in the medical field, no effective vaccine is available against prominent human parasitic diseases that necessitate identification of novel targets for designing specific inhibitors. Vitamin B6 is an important ubiquitous co-enzyme that participates in several biological processes and plays an important role in scavenging ROS (reactive oxygen species) along with providing resistance to oxidative stress. Moreover, the absence of the de novo vitamin B6 biosynthetic pathway in human parasites makes this pathway indispensable for the survival of these pathogens. Pyridoxal kinase (PdxK) is a crucial enzyme for vitamin B6 salvage pathway and participates in the process of vitamers B6 phosphorylation. Since the parasites are dependent on pyridoxal kinase for their survival and infectivity to the respective hosts, it is considered a promising candidate for drug discovery. The detailed structural analysis of PdxK from disease-causing parasites has provided insights into the catalytic mechanism of this enzyme as well as significant differences from their human counterpart. Simultaneously, structure-based studies have identified small lead molecules that can be exploited for drug discovery against protozoan parasites. The present review provides structural and functional highlights of pyridoxal kinase for its implication in developing novel and potent therapeutics to combat fatal parasitic diseases.

Keywords: Human parasites, vitamin B6, pyridoxal kinase, three-dimensional structure, catalytic mechanism, drug discovery.

Graphical Abstract

[1]
Evering, T.; Weiss, L.M. The immunology of parasite infections in immunocompromised hosts. Parasite Immunol., 2006, 28(11), 549-565.
[http://dx.doi.org/10.1111/j.1365-3024.2006.00886.x] [PMID: 17042927]
[2]
Li, X.X.; Zhou, X.N. Co-infection of tuberculosis and parasitic diseases in humans: A systematic review. Parasit. Vectors, 2013, 6, 79.
[http://dx.doi.org/10.1186/1756-3305-6-79] [PMID: 23522098]
[3]
Evans, E.E.; Siedner, M.J. Tropical parasitic infections in individuals infected with HIV. Curr. Trop. Med. Rep., 2017, 4(4), 268-280.
[http://dx.doi.org/10.1007/s40475-017-0130-6] [PMID: 33842194]
[4]
Laniado-Laborín, R.; Cabrales-Vargas, M.N.; Amphotericin, B. Side effects and toxicity. Rev. Iberoam. Micol., 2009, 26(4), 223-227.
[http://dx.doi.org/10.1016/j.riam.2009.06.003] [PMID: 19836985]
[5]
Jones, D.C.; Alphey, M.S.; Wyllie, S.; Fairlamb, A.H. Chemical, genetic and structural assessment of pyridoxal kinase as a drug target in the African trypanosome. Mol. Microbiol., 2012, 86(1), 51-64.
[http://dx.doi.org/10.1111/j.1365-2958.2012.08189.x] [PMID: 22857512]
[6]
Devi, S.; Tomar, P.; Faisal Tarique, K.; Gourinath, S. Faisal, Tarique, K.; Gourinath, S. Inhibiting pyridoxal kinase of Entamoeba histolytica is lethal for this pathogen. Front. Cell. Infect. Microbiol., 2021, 11, 660466.
[http://dx.doi.org/10.3389/fcimb.2021.660466] [PMID: 33937101]
[7]
Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: A review. F1000 Res., 2017, 6, 750.
[http://dx.doi.org/10.12688/f1000research.11120.1] [PMID: 28649370]
[8]
Assimina, Z.; Charilaos, K. Fotoula. B. Leishmaniasis: An overlooked public. Health Sci. J., 2008, 2, 196-205.
[10]
Barrett, M.P.; Croft, S.L. Management of trypanosomiasis and leishmaniasis. Br. Med. Bull., 2012, 104, 175-196.
[http://dx.doi.org/10.1093/bmb/lds031] [PMID: 23137768]
[11]
Dorlo, T.P.; Balasegaram, M.; Beijnen, J.H.; de Vries, P.J. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother., 2012, 67(11), 2576-2597.
[http://dx.doi.org/10.1093/jac/dks275] [PMID: 22833634]
[12]
Hafiz, S.; Kyriakopoulos, C. Pentamidine. StatPearls; StatPearls Publishing: Treasure Island, FL, 2021.
[13]
Jhingran, A.; Chawla, B.; Saxena, S.; Barrett, M.P.; Madhubala, R. Paromomycin: Uptake and resistance in Leishmania donovani. Mol. Biochem. Parasitol., 2009, 164(2), 111-117.
[http://dx.doi.org/10.1016/j.molbiopara.2008.12.007] [PMID: 19146886]
[14]
Galvão, E.L.; Rabello, A.; Cota, G.F. Efficacy of azole therapy for tegumentary leishmaniasis: A systematic review and meta-analysis. PLoS One, 2017, 12(10), e0186117.
[http://dx.doi.org/10.1371/journal.pone.0186117] [PMID: 29016694]
[15]
Trypanosomiasis, human African (sleeping sickness) – WHO. www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness)
[16]
Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet, 2018, 391(10115), 82-94.
[http://dx.doi.org/10.1016/S0140-6736(17)31612-4] [PMID: 28673423]
[17]
[18]
Kennedy, P.G. Human African trypanosomiasis-neurological aspects. J. Neurol., 2006, 253(4), 411-416.
[http://dx.doi.org/10.1007/s00415-006-0093-3] [PMID: 16541214]
[19]
Burri, C.; Brun, R. Eflornithine for the treatment of human African trypanosomiasis. Parasitol. Res., 2003, 90(Suppl. 1), S49-S52.
[http://dx.doi.org/10.1007/s00436-002-0766-5] [PMID: 12811548]
[20]
Deeks, E.D. Fexinidazole: First global approval. Drugs, 2019, 79(2), 215-220.
[http://dx.doi.org/10.1007/s40265-019-1051-6] [PMID: 30635838]
[21]
Vermelho, A.B.; Rodrigues, G.C.; Supuran, C.T. Why hasn’t there been more progress in new Chagas disease drug discovery? Expert Opin. Drug Discov., 2020, 15(2), 145-158.
[http://dx.doi.org/10.1080/17460441.2020.1681394] [PMID: 31670987]
[22]
Mawson, A.R.; Majumdar, S. Malaria, Epstein-Barr virus infection and the pathogenesis of Burkitt’s lymphoma. Int. J. Cancer, 2017, 141(9), 1849-1855.
[http://dx.doi.org/10.1002/ijc.30885] [PMID: 28707393]
[23]
World Malaria Report 2021. 2021. www.who.int/publications/i/item/9789240040496
[24]
Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar. J., 2011, 10, 144.
[http://dx.doi.org/10.1186/1475-2875-10-144] [PMID: 21609473]
[25]
Kano, S. Artemisinin-based combination therapies and their introduction in Japan. Kansenshogaku Zasshi, 2014, 88(3)(Suppl 9-10), 18-25.
[PMID: 24979951]
[26]
Cui, L.; Mharakurwa, S.; Ndiaye, D.; Rathod, P.K.; Rosenthal, P.J. Antimalarial drug resistance: Literature review and activities and findings of the ICEMR network. Am. J. Trop. Med. Hyg., 2015, 93(3)(Suppl.), 57-68.
[http://dx.doi.org/10.4269/ajtmh.15-0007] [PMID: 26259943]
[27]
Jilani, O.K.; Yang, Y.; Khan, S.; Chernyavsky, S. Undiagnosed amoebic colitis presenting as anemia. Am. J. Gastroenterol., 2016, 111, S626.
[http://dx.doi.org/10.14309/00000434-201610001-01388]
[28]
Chou, A.; Austin, R.L. Entamoeba histolytica. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2021. www.ncbi.nlm.nih.gov/books/NBK557718/[Updated 2021 Apr 25 Internet]
[29]
Shirley, D.T.; Farr, L.; Watanabe, K.; Moonah, S. A review of the global burden, new diagnostics, and current therapeutics for amebiasis. Open Forum Infect. Dis., 2018, 5(7), ofy161.
[http://dx.doi.org/10.1093/ofid/ofy161] [PMID: 30046644]
[31]
Gryseels, B.; Polman, K.; Clerinx, J.; Kestens, L. Human schistosomiasis. Lancet, 2006, 368(9541), 1106-1118.
[http://dx.doi.org/10.1016/S0140-6736(06)69440-3] [PMID: 16997665]
[32]
Siqueira, L.D.P.; Fontes, D.A.F.; Aguilera, C.S.B.; Timóteo, T.R.R.; Ângelos, M.A.; Silva, L.C.P.B.B.; de Melo, C.G.; Rolim, L.A.; da Silva, R.M.F.; Neto, P.J.R. Schistosomiasis: Drugs used and treatment strategies. Acta Trop., 2017, 176, 179-187.
[http://dx.doi.org/10.1016/j.actatropica.2017.08.002] [PMID: 28803725]
[33]
Vale, N.; Gouveia, M.J.; Rinaldi, G.; Brindley, P.J.; Gärtner, F.; Correia da Costa, J.M. Praziquantel for schistosomiasis: Single-drug metabolism revisited, mode of action, and resistance. Antimicrob. Agents Chemother., 2017, 61(5), e02582-e16.
[http://dx.doi.org/10.1128/AAC.02582-16] [PMID: 28264841]
[34]
Kramer, C.V.; Zhang, F.; Sinclair, D.; Olliaro, P.L. Drugs for treating urinary schistosomiasis. Cochrane Database Syst. Rev., 2014, 2014(8), CD000053.
[PMID: 25099517]
[35]
Burri, C. Chemotherapy against human African trypanosomiasis: Is there a road to success? Parasitology, 2010, 137(14), 1987-1994.
[http://dx.doi.org/10.1017/S0031182010001137] [PMID: 20961469]
[36]
Barrett, M.P.; Boykin, D.W.; Brun, R.; Tidwell, R.R. Human African trypanosomiasis: Pharmacological re-engagement with a neglected disease. Br. J. Pharmacol., 2007, 152(8), 1155-1171.
[http://dx.doi.org/10.1038/sj.bjp.0707354] [PMID: 17618313]
[37]
Baker, N.; de Koning, H.P.; Mäser, P.; Horn, D. Drug resistance in African trypanosomiasis: The melarsoprol and pentamidine story. Trends Parasitol., 2013, 29(3), 110-118.
[http://dx.doi.org/10.1016/j.pt.2012.12.005] [PMID: 23375541]
[38]
Duggan, A.J. The treatment of African trypanosomiasis. Trop. Doct., 1973, 3(4), 162-164.
[http://dx.doi.org/10.1177/004947557300300405] [PMID: 4270411]
[39]
Melles, R.B.; Marmor, M.F. Pericentral retinopathy and racial differences in hydroxychloroquine toxicity. Ophthalmology, 2015, 122(1), 110-116.
[http://dx.doi.org/10.1016/j.ophtha.2014.07.018] [PMID: 25182842]
[40]
Winstanley, P.; Ward, S. Malaria chemotherapy. Adv. Parasitol., 2006, 61, 47-76.
[http://dx.doi.org/10.1016/S0065-308X(05)61002-0] [PMID: 16735162]
[41]
Pereira, T.A.; Vaz de Melo Trindade, G.; Trindade Santos, E.; Pereira, F.E.L.; Souza, M.M. Praziquantel pharmacotherapy reduces systemic osteopontin levels and liver collagen content in murine schistosomiasis mansoni. Int. J. Parasitol., 2021, 51(6), 437-440.
[http://dx.doi.org/10.1016/j.ijpara.2020.11.002] [PMID: 33493521]
[42]
Palatnik-de-Sousa, C.B.; Nico, D. The delay in the licensing of protozoal vaccines: A comparative history. Front. Immunol., 2020, 11, 204.
[http://dx.doi.org/10.3389/fimmu.2020.00204] [PMID: 32210953]
[43]
Laurens, M.B. RTS,S/AS01 vaccine (Mosquirix™): an overview. Hum. Vaccin. Immunother., 2020, 16(3), 480-489.
[http://dx.doi.org/10.1080/21645515.2019.1669415] [PMID: 31545128]
[44]
Natera, J.; Massad, W.; García, N.A. The role of vitamin B6 as an antioxidant in the presence of vitamin B2-photogenerated reactive oxygen species. A kinetic and mechanistic study. Photochem. Photobiol. Sci., 2012, 11(6), 938-945.
[http://dx.doi.org/10.1039/c2pp05318g] [PMID: 22231514]
[45]
Hsu, C.C.; Cheng, C.H.; Hsu, C.L.; Lee, W.J.; Huang, S.C.; Huang, Y.C. Role of vitamin B6 status on antioxidant defenses, glutathione, and related enzyme activities in mice with homocysteine-induced oxidative stress. Food Nutr. Res., 2015, 59, 25702.
[http://dx.doi.org/10.3402/fnr.v59.25702] [PMID: 25933612]
[46]
Geng, M.Y.; Saito, H.; Katsuki, H. Effects of vitamin B6 and its related compounds on survival of cultured brain neurons. Neurosci. Res., 1995, 24(1), 61-65.
[http://dx.doi.org/10.1016/0168-0102(96)81279-X] [PMID: 8848291]
[47]
Plecko, B.; Stöckler, S. Vitamin B6 dependent seizures. Can. J. Neurol. Sci., 2009, 36(Suppl. 2), S73-S77.
[PMID: 19760909]
[48]
Boycheva, S.; Dominguez, A.; Rolcik, J.; Boller, T.; Fitzpatrick, T.B. Consequences of a deficit in vitamin B6 biosynthesis de novo for hormone homeostasis and root development in Arabidopsis. Plant Physiol., 2015, 167(1), 102-117.
[http://dx.doi.org/10.1104/pp.114.247767] [PMID: 25475669]
[49]
Burns, K.E.; Xiang, Y.; Kinsland, C.L.; McLafferty, F.W.; Begley, T.P. Reconstitution and biochemical characterization of a new pyridoxal-5′-phosphate biosynthetic pathway. J. Am. Chem. Soc., 2005, 127(11), 3682-3683.
[http://dx.doi.org/10.1021/ja042792t] [PMID: 15771487]
[50]
Wrenger, C.; Knöckel, J.; Walter, R.D.; Müller, I.B. Vitamin B1 and B6 in the malaria parasite: Requisite or dispensable? Braz. J. Med. Biol. Res., 2008, 41(2), 82-88.
[http://dx.doi.org/10.1590/S0100-879X2008005000006] [PMID: 18235965]
[51]
Gray, A. Trypanosoma brucei brucei: Uptake and metabolism of pyridoxine and pyridoxal. Exp. Parasitol., 1995, 80(3), 390-400.
[http://dx.doi.org/10.1006/expr.1995.1051] [PMID: 7729474]
[52]
Khayat, M.; Korman, S.H.; Frankel, P.; Weintraub, Z.; Hershckowitz, S.; Sheffer, V.F.; Elisha, M.B.; Wevers, R.A.; Falik-Zaccai, T.C. PNPO deficiency: An under diagnosed inborn error of pyridoxine metabolism. Mol. Genet. Metab., 2008, 94(4), 431-434.
[http://dx.doi.org/10.1016/j.ymgme.2008.04.008] [PMID: 18485777]
[53]
Pruess, J.B.; Fewell, R.R.; Bennett, F.C. Vitamin therapy and children with Down syndrome: A review of research. Except. Child., 1989, 55(4), 336-341.
[http://dx.doi.org/10.1177/001440298905500408] [PMID: 2521601]
[54]
Zhang, X.H.; Ma, J.; Smith-Warner, S.A.; Lee, J.E.; Giovannucci, E. Vitamin B6 and colorectal cancer: Current evidence and future directions. World J. Gastroenterol., 2013, 19(7), 1005-1010.
[http://dx.doi.org/10.3748/wjg.v19.i7.1005] [PMID: 23467420]
[55]
Contestabile, R.; di Salvo, M.L.; Bunik, V.; Tramonti, A.; Vernì, F. The multifaceted role of vitamin B6 in cancer: Drosophila as a model system to investigate DNA damage. Open Biol., 2020, 10(3), 200034.
[http://dx.doi.org/10.1098/rsob.200034] [PMID: 32208818]
[56]
Matxain, J.M.; Ristilä, M.; Strid, A.; Eriksson, L.A. Theoretical study of the antioxidant properties of pyridoxine. J. Phys. Chem. A, 2006, 110(48), 13068-13072.
[http://dx.doi.org/10.1021/jp065115p] [PMID: 17134167]
[57]
Lyon, P.; Strippoli, V.; Fang, B.; Cimmino, L. Vitamins and one-carbon metabolism: Implications in human health and disease. Nutrients, 2020, 12(9), 2867.
[http://dx.doi.org/10.3390/nu12092867] [PMID: 32961717]
[58]
Da’dara, A.A.; Elzoheiry, M.; El-Beshbishi, S.N.; Skelly, P.J. Vitamin B6 acquisition and metabolism in schistosoma mansoni. Front. Immunol., 2021, 11, 622162.
[http://dx.doi.org/10.3389/fimmu.2020.622162] [PMID: 33613557]
[59]
White, R.S.; Dempsey, W.B. Purification and properties of vitamin B6 kinase from Escherichia coli B. Biochemistry, 1970, 9(21), 4057-4064.
[http://dx.doi.org/10.1021/bi00823a005] [PMID: 4917899]
[60]
Lum, H.K.; Kwok, F.; Lo, S.C. Cloning and characterization of Arabidopsis thaliana pyridoxal kinase. Planta, 2002, 215(5), 870-879.
[http://dx.doi.org/10.1007/s00425-002-0799-0] [PMID: 12244454]
[61]
Hirakawa-Sakurai, T.; Ohkawa, K.; Matsuda, M. Purification and properties of pyridoxal kinase from bovine brain. Mol. Cell. Biochem., 1993, 119(1-2), 203-207.
[http://dx.doi.org/10.1007/BF00926872] [PMID: 8384299]
[62]
Safo, M.K.; Musayev, F.N.; Hunt, S.; di Salvo, M.L.; Scarsdale, N.; Schirch, V. Crystal structure of the PdxY Protein from Escherichia coli. J. Bacteriol., 2004, 186(23), 8074-8082.
[http://dx.doi.org/10.1128/JB.186.23.8074-8082.2004] [PMID: 15547280]
[63]
Safo, M.K.; Musayev, F.N.; di Salvo, M.L.; Hunt, S.; Claude, J.B.; Schirch, V. Crystal structure of pyridoxal kinase from the Escherichia coli pdxK gene: Implications for the classification of pyridoxal kinases. J. Bacteriol., 2006, 188(12), 4542-4552.
[http://dx.doi.org/10.1128/JB.00122-06] [PMID: 16740960]
[64]
Cao, P.; Gong, Y.; Tang, L.; Leung, Y.C.; Jiang, T. Crystal structure of human pyridoxal kinase. J. Struct. Biol., 2006, 154(3), 327-332.
[http://dx.doi.org/10.1016/j.jsb.2006.02.008] [PMID: 16600635]
[65]
Maras, B.; Valiante, S.; Orru, S.; Simmaco, M.; Barra, D.; Churchich, J.E. Structure of pyridoxal kinase from sheep brain and role of the tryptophanyl residues. J. Protein Chem., 1999, 18(3), 259-268.
[http://dx.doi.org/10.1023/A:1021079110358] [PMID: 10395444]
[66]
Newman, J.A.; Das, S.K.; Sedelnikova, S.E.; Rice, D.W. Cloning, purification and preliminary crystallographic analysis of a putative pyridoxal kinase from Bacillus subtilis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2006, 62(Pt 10), 1006-1009.
[http://dx.doi.org/10.1107/S1744309106035779] [PMID: 17012797]
[67]
Kim, M.I.; Hong, M. Crystal structure and catalytic mechanism of pyridoxal kinase from Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun., 2016, 478(1), 300-306.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.007] [PMID: 27425248]
[68]
Nodwell, M.B.; Koch, M.F.; Alte, F.; Schneider, S.; Sieber, S.A. A subfamily of bacterial ribokinases utilizes a hemithioacetal for pyridoxal phosphate salvage. J. Am. Chem. Soc., 2014, 136(13), 4992-4999.
[http://dx.doi.org/10.1021/ja411785r] [PMID: 24601602]
[69]
Deka, G.; Kalyani, J.N.; Jahangir, F.B.; Sabharwal, P.; Savithri, H.S.; Murthy, M.R.N. Structural and functional studies on Salmonella typhimurium pyridoxal kinase: The first structural evidence for the formation of Schiff base with the substrate. FEBS J., 2019, 286(18), 3684-3700.
[http://dx.doi.org/10.1111/febs.14933] [PMID: 31116912]
[70]
Yang, Y.; Tsui, H.C.; Man, T.K.; Winkler, M.E. Identification and function of the pdxY gene, which encodes a novel pyridoxal kinase involved in the salvage pathway of pyridoxal 5′-phosphate biosynthesis in Escherichia coli K-12. J. Bacteriol., 1998, 180(7), 1814-1821.
[http://dx.doi.org/10.1128/JB.180.7.1814-1821.1998] [PMID: 9537380]
[71]
Are, S.; Gatreddi, S.; Jakkula, P.; Qureshi, I.A. Structural attributes and substrate specificity of pyridoxal kinase from Leishmania donovani. Int. J. Biol. Macromol., 2020, 152, 812-827.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.257] [PMID: 32105687]
[72]
Gao, K.; Wang, W.; Kronenberger, T.; Wrenger, C.; Groves, M.R. The Crystal Structure of the Plasmodium falciparum PdxK provides an experimental model for pro-drug activation. Crystals (Basel), 2019, 9, 534.
[http://dx.doi.org/10.3390/cryst9100534]
[73]
Tarique, K.F.; Devi, S.; Tomar, P.; Ali, M.F.; Rehman, S.A.A.; Gourinath, S. Characterization and functional insights into the Entamoeba histolytica pyridoxal kinase, an enzyme essential for its survival. J. Struct. Biol., 2020, 212(3), 107645.
[http://dx.doi.org/10.1016/j.jsb.2020.107645] [PMID: 33045383]
[74]
Gandhi, A.K.; Desai, J.V.; Ghatge, M.S.; di Salvo, M.L.; Di Biase, S.; Danso-Danquah, R.; Musayev, F.N.; Contestabile, R.; Schirch, V.; Safo, M.K. Crystal structures of human pyridoxal kinase in complex with the neurotoxins, ginkgotoxin and theophylline: Insights into pyridoxal kinase inhibition. PLoS One, 2012, 7(7), e40954.
[http://dx.doi.org/10.1371/journal.pone.0040954] [PMID: 22879864]
[75]
Gatreddi, S.; Pillalamarri, V.; Vasudevan, D.; Addlagatta, A.; Qureshi, I.A. Unraveling structural insights of ribokinase from Leishmania donovani. Int. J. Biol. Macromol., 2019, 136, 253-265.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.001] [PMID: 31170491]
[76]
Richard, J.P.; Carr, M.C.; Ives, D.H.; Frey, P.A. The stereochemical course of thiophosphoryl group transfer catalyzed by adenosine kinase. Biochem. Biophys. Res. Commun., 1980, 94(4), 1052-1056.
[http://dx.doi.org/10.1016/0006-291X(80)90525-2] [PMID: 6249295]
[77]
Sigrell, J.A.; Cameron, A.D.; Jones, T.A.; Mowbray, S.L. Structure of Escherichia coli ribokinase in complex with ribose and dinucleotide determined to 1.8 A resolution: Insights into a new family of kinase structures. Structure, 1998, 6(2), 183-193.
[http://dx.doi.org/10.1016/S0969-2126(98)00020-3] [PMID: 9519409]
[78]
Li, M.H.; Kwok, F.; Chang, W.R.; Liu, S.Q.; Lo, S.C.; Zhang, J.P.; Jiang, T.; Liang, D.C. Conformational changes in the reaction of pyridoxal kinase. J. Biol. Chem., 2004, 279(17), 17459-17465.
[http://dx.doi.org/10.1074/jbc.M312380200] [PMID: 14722069]
[79]
Kumar, V.; Sharma, M.; Rakesh, B.R.; Malik, C.K.; Neelagiri, S.; Neerupudi, K.B.; Garg, P.; Singh, S. Pyridoxal kinase: A vitamin B6 salvage pathway enzyme from Leishmania donovani. Int. J. Biol. Macromol., 2018, 119, 320-334.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.095] [PMID: 30031075]
[80]
Wrenger, C.; Eschbach, M.L.; Müller, I.B.; Warnecke, D.; Walter, R.D. Analysis of the vitamin B6 biosynthesis pathway in the human malaria parasite Plasmodium falciparum. J. Biol. Chem., 2005, 280(7), 5242-5248.
[http://dx.doi.org/10.1074/jbc.M412475200] [PMID: 15590634]
[81]
Lainé-Cessac, P.; Cailleux, A.; Allain, P. Mechanisms of the inhibition of human erythrocyte pyridoxal kinase by drugs. Biochem. Pharmacol., 1997, 54(8), 863-870.
[http://dx.doi.org/10.1016/S0006-2952(97)00252-9] [PMID: 9354586]
[82]
Kimura, T.; Shirakawa, R.; Yaoita, N.; Hayashi, T.; Nagano, K.; Horiuchi, H. The antimalarial drugs chloroquine and primaquine inhibit pyridoxal kinase, an essential enzyme for vitamin B6 production. FEBS Lett., 2014, 588(20), 3673-3676.
[http://dx.doi.org/10.1016/j.febslet.2014.08.011] [PMID: 25157434]
[83]
Kästner, U.; Hallmen, C.; Wiese, M.; Leistner, E.; Drewke, C. The human pyridoxal kinase, a plausible target for ginkgotoxin from Ginkgo biloba. FEBS J., 2007, 274(4), 1036-1045.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05654.x] [PMID: 17250738]
[84]
Tang, L.; Li, M.H.; Cao, P.; Wang, F.; Chang, W.R.; Bach, S.; Reinhardt, J.; Ferandin, Y.; Galons, H.; Wan, Y.; Gray, N.; Meijer, L.; Jiang, T.; Liang, D.C. Crystal structure of pyridoxal kinase in complex with roscovitine and derivatives. J. Biol. Chem., 2005, 280(35), 31220-31229.
[http://dx.doi.org/10.1074/jbc.M500805200] [PMID: 15985434]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy