Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Molecular Mechanisms of Chloroquine and Hydroxychloroquine Used in Cancer Therapy

Author(s): Juan Bautista De Sanctis, Jaime Charris, Zuleyma Blanco, Hegira Ramírez, Gricelis Patricia Martínez and Michael Rodney Mijares*

Volume 23, Issue 10, 2023

Published on: 31 March, 2023

Page: [1122 - 1144] Pages: 23

DOI: 10.2174/1871520622666220519102948

Price: $65

Abstract

Tumour relapse, chemotherapy resistance, and metastasis continue to be unsolved issues in cancer therapy. A recent approach has been to scrutinise drugs used in the clinic for other illnesses and modify their structure to increase selectivity to cancer cells. Chloroquine (CQ) and hydroxychloroquine (HCQ), known antimalarials, have successfully treated autoimmune and neoplastic diseases. CQ and HCQ, well-known lysosomotropic agents, induce apoptosis, downregulate autophagy, and modify the tumour microenvironment. Moreover, they affect the Toll 9/NF-κB receptor pathway, activate stress response pathways, enhance p53 activity and CXCR4-CXCL12 expression in cancer cells, which would help explain their effects in cancer treatment. These compounds can normalise the tumourassociated vasculature, promote the activation of the immune system, change the phenotype of tumour-associated macrophages (from M2 to M1), and stimulate cancer-associated fibroblasts. We aim to review the historical aspects of CQ and its derivatives and the most relevant mechanisms that support the therapeutic use of CQ and HCQ for the treatment of cancer.

Keywords: chloroquine, hydroxychloroquine, apoptosis, chemotherapy, metastasis, non-small cell lung cancer, Repurposing Drugs in Oncology

Graphical Abstract

[1]
Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021, 127(16), 3029-3030.
[http://dx.doi.org/10.1002/cncr.33587] [PMID: 34086348]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Rallis, K.S.; Lai Yau, T.H.; Sideris, M. Chemoradiotherapy in cancer treatment: Rationale and clinical applications. Anticancer Res., 2021, 41(1), 1-7.
[http://dx.doi.org/10.21873/anticanres.14746] [PMID: 33419794]
[4]
Chen, W.; Yuan, Y.; Jiang, X. Antibody and antibody fragments for cancer immunotherapy. J. Control. Release, 2020, 328, 395-406.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.021] [PMID: 32853733]
[5]
Tsao, L.C.; Force, J.; Hartman, Z.C. Mechanisms of therapeutic antitumor monoclonal antibodies. Cancer Res., 2021, 81(18), 4641-4651.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-1109] [PMID: 34145037]
[6]
Hayes, C. Cellular immunotherapies for cancer. Ir. J. Med. Sci., 2021, 190(1), 41-57.
[http://dx.doi.org/10.1007/s11845-020-02264-w] [PMID: 32607912]
[7]
Liu, J.; Pandya, P.; Afshar, S. Therapeutic advances in oncology. Int. J. Mol. Sci., 2021, 22(4), 2008.
[http://dx.doi.org/10.3390/ijms22042008] [PMID: 33670524]
[8]
Dembic, Z. Antitumor drugs and their targets. Molecules, 2020, 25(23), 5776.
[http://dx.doi.org/10.3390/molecules25235776] [PMID: 33297561]
[9]
Blidner, A.G.; Choi, J.; Cooksley, T.; Dougan, M.; Glezerman, I.; Ginex, P.; Girotra, M.; Gupta, D.; Johnson, D.; Shannon, V.R.; Suarez-Almazor, M.; Rapoport, B.L.; Anderson, R. Cancer immunotherapy-related adverse events: Causes and challenges. Support. Care Cancer, 2020, 28(12), 6111-6117.
[http://dx.doi.org/10.1007/s00520-020-05705-5] [PMID: 32857220]
[10]
Fortes, B.H.; Tailor, P.D.; Dalvin, L.A. Ocular toxicity of targeted anticancer agents. Drugs, 2021, 81(7), 771-823.
[http://dx.doi.org/10.1007/s40265-021-01507-z] [PMID: 33788182]
[11]
Kamat, S.; Kumari, M. Repurposing chloroquine against multiple diseases with special attention to SARS-CoV-2 and associated toxicity. Front. Pharmacol., 2021, 12, 576093.
[http://dx.doi.org/10.3389/fphar.2021.576093] [PMID: 33912030]
[12]
Bertolini, F.; Sukhatme, V.P.; Bouche, G. Drug repurposing in oncology-patient and health systems opportunities. Nat. Rev. Clin. Oncol., 2015, 12(12), 732-742.
[http://dx.doi.org/10.1038/nrclinonc.2015.169] [PMID: 26483297]
[13]
Armando, R.G.; Mengual Gómez, D.L.; Gomez, D.E. New drugs are not enough drug repositioning in oncology: An update. Int. J. Oncol., 2020, 56(3), 651-684.
[http://dx.doi.org/10.3892/ijo.2020.4966] [PMID: 32124955]
[14]
Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P.; Vikas, P. The repurposing drugs in oncology (ReDO) project. Ecancermedicalscience, 2014, 8, 442.
[http://dx.doi.org/10.3332/ecancer.2014.485] [PMID: 25075216]
[15]
Plantone, D.; Koudriavtseva, T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: A mini-review. Clin. Drug Investig., 2018, 38(8), 653-671.
[http://dx.doi.org/10.1007/s40261-018-0656-y] [PMID: 29737455]
[16]
Pantziarka, P. Scientific advice - is drug repurposing missing a trick? Nat. Rev. Clin. Oncol., 2017, 14(8), 455-456.
[http://dx.doi.org/10.1038/nrclinonc.2017.69] [PMID: 28534529]
[17]
Singhal, S.; Mehta, J.; Desikan, R.; Ayers, D.; Roberson, P.; Eddlemon, P.; Munshi, N.; Anaissie, E.; Wilson, C.; Dhodapkar, M.; Zeddis, J.; Barlogie, B. Antitumor activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med., 1999, 341(21), 1565-1571.
[http://dx.doi.org/10.1056/NEJM199911183412102] [PMID: 10564685]
[18]
DeBusk, R.F.; Pepine, C.J.; Glasser, D.B.; Shpilsky, A.; DeRiesthal, H.; Sweeney, M. Efficacy and safety of sildenafil citrate in men with erectile dysfunction and stable coronary artery disease. Am. J. Cardiol., 2004, 93(2), 147-153.
[http://dx.doi.org/10.1016/j.amjcard.2003.09.030] [PMID: 14715338]
[19]
Al-Bari, M.A. Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J. Antimicrob. Chemother., 2015, 70(6), 1608-1621.
[http://dx.doi.org/10.1093/jac/dkv018] [PMID: 25693996]
[20]
Martínez, G.P.; Zabaleta, M.E.; Di Giulio, C.; Charris, J.E.; Mijares, M.R. The role of chloroquine and hydroxychloroquine in immune regulation and diseases. Curr. Pharm. Des., 2020, 26(35), 4467-4485.
[http://dx.doi.org/10.2174/1381612826666200707132920] [PMID: 32634079]
[21]
Huang, H.; He, Q.; Guo, B.; Xu, X.; Wu, Y.; Li, X. Progress in redirecting antiparasitic drugs for cancer treatment. Drug Des. Devel. Ther., 2021, 15, 2747-2767.
[http://dx.doi.org/10.2147/DDDT.S308973] [PMID: 34188451]
[22]
Romero, J.A.; Acosta, M.E.; Gamboa, N.D.; Mijares, M.R.; De Sanctis, J.B.; Charris, J.E. Optimization of antimalarial, and anticancer activities of (E)-methyl 2-(7-chloroquinolin-4-ylthio)-3-(4-hydroxyphenyl) acrylate. Bioorg. Med. Chem., 2018, 26(4), 815-823.
[http://dx.doi.org/10.1016/j.bmc.2017.12.022] [PMID: 29398445]
[23]
Zhou, W.; Wang, H.; Yang, Y.; Chen, Z.S.; Zou, C.; Zhang, J. Chloroquine against malaria, cancers and viral diseases. Drug Discov. Today, 2020, 25(11), 2012-2022.
[http://dx.doi.org/10.1016/j.drudis.2020.09.010] [PMID: 32947043]
[24]
Coban, C. The host targeting effect of chloroquine in malaria. Curr. Opin. Immunol., 2020, 66, 98-107.
[http://dx.doi.org/10.1016/j.coi.2020.07.005] [PMID: 32823144]
[25]
Li, Y.Q.; Zheng, Z.; Liu, Q.X.; Lu, X.; Zhou, D.; Zhang, J.; Zheng, H.; Dai, J.G. Repositioning of antiparasitic drugs for tumor treatment. Front. Oncol., 2021, 11, 670804.
[http://dx.doi.org/10.3389/fonc.2021.670804] [PMID: 33996598]
[26]
Compter, I.; Eekers, D.B.P.; Hoeben, A.; Rouschop, K.M.A.; Reymen, B.; Ackermans, L.; Beckervordersantforth, J.; Bauer, N.J.C.; Anten, M.M.; Wesseling, P.; Postma, A.A.; De Ruysscher, D.; Lambin, P. Chloroquine combined with concurrent radiotherapy and temozolomide for newly diagnosed glioblastoma: A phase IB trial. Autophagy, 2021, 17(9), 2604-2612.
[http://dx.doi.org/10.1080/15548627.2020.1816343] [PMID: 32866424]
[27]
Weyerhäuser, P.; Kantelhardt, S.R.; Kim, E.L. Re-purposing chloroquine for glioblastoma: Potential merits and confounding variables. Front. Oncol., 2018, 8, 335.
[http://dx.doi.org/10.3389/fonc.2018.00335] [PMID: 30211116]
[28]
Wallace, D.J. Antimalarials-The ‘real’ advance in lupus. Lupus, 2001, 10(6), 385-387.
[http://dx.doi.org/10.1191/096120301678646092] [PMID: 11434570]
[29]
Krafts, K.; Hempelmann, E.; Skórska-Stania, A. From methylene blue to chloroquine: A brief review of the development of an antimalarial therapy. Parasitol. Res., 2012, 111(1), 1-6.
[http://dx.doi.org/10.1007/s00436-012-2886-x] [PMID: 22411634]
[30]
Black, R.H.; Canfield, C.J.; Clyde, D.F.; Peters, W. _Chemotherapy of malaria_Ed., Bruce-Chwatt, L.J. rev. 2nded.; World Health Organization: Geneva, 1986.
[31]
Andersag, H.; Breitner, S.; Jung, H. Quinoline compound and process of making the same. German Pat. 683 692. Chem. Abstr. 1942, 36, 4973.
[32]
Coatney, G.R. Pitfalls in a discovery: The chronicle of chloroquine. Am. J. Trop. Med. Hyg., 1963, 12(2), 121-128.
[http://dx.doi.org/10.4269/ajtmh.1963.12.121] [PMID: 14021822]
[33]
FDA approved drug products: Aralen chloroquine oral tablets. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=006002 [Accessed on: 8 Mar, 2021].
[34]
[35]
Mushtaque, M. Shahjahan, Reemergence of chloroquine (CQ) analogs as multi-targeting antimalarial agents: A review. Eur. J. Med. Chem., 2015, 90, 280-295.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.022] [PMID: 25461328]
[36]
Staines, H.; Krishna, S. Treatment and prevention of malaria: Antimalarial drug chemistry, action and use; Springer: Basel, 2012.
[http://dx.doi.org/10.1007/978-3-0346-0480-2]
[37]
Yayon, A.; Cabantchik, Z.I.; Ginsburg, H. Susceptibility of human malaria parasites to chloroquine is pH dependent. Proc. Natl. Acad. Sci. USA, 1985, 82(9), 2784-2788.
[http://dx.doi.org/10.1073/pnas.82.9.2784] [PMID: 3887411]
[38]
Krishna, S.; White, N.J. Pharmacokinetics of quinine, chloroquine and amodiaquine. Clinical implications. Clin. Pharmacokinet., 1996, 30(4), 263-299.
[http://dx.doi.org/10.2165/00003088-199630040-00002] [PMID: 8983859]
[39]
Kaschula, C.H.; Egan, T.J.; Hunter, R.; Basilico, N.; Parapini, S.; Taramelli, D.; Pasini, E.; Monti, D. Structure-activity relationships in 4-aminoquinoline antiplasmodials. The role of the group at the 7-position. J. Med. Chem., 2002, 45(16), 3531-3539.
[http://dx.doi.org/10.1021/jm020858u] [PMID: 12139464]
[40]
Pou, S.; Winter, R.W.; Nilsen, A.; Kelly, J.X.; Li, Y.; Doggett, J.S.; Riscoe, E.W.; Wegmann, K.W.; Hinrichs, D.J.; Riscoe, M.K. Sontochin as a guide to the development of drugs against chloroquine-resistant malaria. Antimicrob. Agents Chemother., 2012, 56(7), 3475-3480.
[http://dx.doi.org/10.1128/AAC.00100-12] [PMID: 22508305]
[41]
Surrey, A.; Hammer, H. The preparation of 7-Chloro-4- (4-(N-ethyl-N-β-hydroxyethylamino)-1-methylbutylamino)-quinoline and related compounds. J. Am. Chem. Soc., 1950, 72(4), 1814-1815.
[http://dx.doi.org/10.1021/ja01160a116]
[42]
Wenzel, N.I.; Chavain, N.; Wang, Y.; Friebolin, W.; Maes, L.; Pradines, B.; Lanzer, M.; Yardley, V.; Brun, R.; Herold-Mende, C.; Biot, C.; Tóth, K.; Davioud-Charvet, E. Antimalarial versus cytotoxic properties of dual drugs derived from 4-aminoquinolines and Mannich bases: Interaction with DNA. J. Med. Chem., 2010, 53(8), 3214-3226.
[http://dx.doi.org/10.1021/jm9018383] [PMID: 20329733]
[43]
Nordstrøm, L.U.; Sironi, J.; Aranda, E.; Maisonet, J.; Perez-Soler, R.; Wu, P.; Schwartz, E.L. Discovery of autophagy inhibitors with antiproliferative activity in lung and pancreatic cancer cells. ACS Med. Chem. Lett., 2015, 6(2), 134-139.
[http://dx.doi.org/10.1021/ml500348p] [PMID: 25699157]
[44]
Sleightholm, R.; Yang, B.; Yu, F.; Xie, Y.; Oupický, D. Chloroquine-modified hydroxyethyl starch as a polymeric drug for cancer therapy. Biomacromolecules, 2017, 18(8), 2247-2257.
[http://dx.doi.org/10.1021/acs.biomac.7b00023] [PMID: 28708385]
[45]
De Lellis, L.; Veschi, S.; Tinari, N.; Mokini, Z.; Carradori, S.; Brocco, D.; Florio, R.; Grassadonia, A.; Cama, A. Drug repurposing, an attractive strategy in pancreatic cancer treatment: Preclinical and clinical updates. Cancers , 2021, 13(16), 3946.
[http://dx.doi.org/10.3390/cancers13163946] [PMID: 34439102]
[46]
Fong, W.; To, K.K.W. Repurposing chloroquine analogs as an adjuvant cancer therapy. Recent Pat. Anticancer Drug Discov., 2021, 16(2), 204-221.
[http://dx.doi.org/10.2174/1574892815666210106111012] [PMID: 33413069]
[47]
Krajewski, W.A. Alterations in the internucleosomal DNA helical twist in chromatin of human erythroleukemia cells in vivo influences the chromatin higher-order folding. FEBS Lett., 1995, 361(2-3), 149-152.
[http://dx.doi.org/10.1016/0014-5793(95)00144-X] [PMID: 7698313]
[48]
Yin, F.; Guo, M.; Yao, S. Kinetics of DNA binding with chloroquine phosphate using capacitive sensing method. Biosens. Bioelectron., 2003, 19(4), 297-304.
[http://dx.doi.org/10.1016/S0956-5663(03)00197-0] [PMID: 14615086]
[49]
Chen, D.; Xie, J.; Fiskesund, R.; Dong, W.; Liang, X.; Lv, J.; Jin, X.; Liu, J.; Mo, S.; Zhang, T.; Cheng, F.; Zhou, Y.; Zhang, H.; Tang, K.; Ma, J.; Liu, Y.; Huang, B. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat. Commun., 2018, 9(1), 873.
[http://dx.doi.org/10.1038/s41467-018-03225-9] [PMID: 29491374]
[50]
Verbaanderd, C.; Maes, H.; Schaaf, M.B.; Sukhatme, V.P.; Pantziarka, P.; Sukhatme, V.; Agostinis, P.; Bouche, G. Repurposing drugs in oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience, 2017, 11, 781.
[http://dx.doi.org/10.3332/ecancer.2017.781] [PMID: 29225688]
[51]
Grønningsæter, I.S.; Reikvam, H.; Aasebø, E.; Bartaula-Brevik, S.; Hernandez-Valladares, M.; Selheim, F.; Berven, F.S.; Tvedt, T.H.; Bruserud, Ø.; Hatfield, K.J. Effects of the autophagy-inhibiting agent chloroquine on acute myeloid leukemia cells; Characterization of patient heterogeneity. J. Pers. Med., 2021, 11(8), 779.
[http://dx.doi.org/10.3390/jpm11080779] [PMID: 34442423]
[52]
Anand, K.; Niravath, P.; Patel, T.; Ensor, J.; Rodriguez, A.; Boone, T.; Wong, S.T.; Chang, J.C. A phase II study of the efficacy and safety of chloroquine in combination with taxanes in the treatment of patients with advanced or metastatic anthracycline-refractory breast cancer. Clin. Breast Cancer, 2021, 21(3), 199-204.
[http://dx.doi.org/10.1016/j.clbc.2020.09.015] [PMID: 34159901]
[53]
Briceño, E.; Reyes, S.; Sotelo, J. Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine. Neurosurg. Focus, 2003, 14(2), e3.
[http://dx.doi.org/10.3171/foc.2003.14.2.4] [PMID: 15727424]
[54]
Arnaout, A.; Robertson, S.J.; Pond, G.R.; Lee, H.; Jeong, A.; Ianni, L.; Kroeger, L.; Hilton, J.; Coupland, S.; Gottlieb, C.; Hurley, B.; McCarthy, A.; Clemons, M. A randomized, double-blind, window of opportunity trial evaluating the effects of chloroquine in breast cancer patients. Breast Cancer Res. Treat., 2019, 178(2), 327-335.
[http://dx.doi.org/10.1007/s10549-019-05381-y] [PMID: 31392517]
[55]
Molenaar, R.J.; Coelen, R.J.S.; Khurshed, M.; Roos, E.; Caan, M.W.A.; van Linde, M.E.; Kouwenhoven, M.; Bramer, J.A.M.; Bovée, J.V.M.G.; Mathôt, R.A.; Klümpen, H.J.; van Laarhoven, H.W.M.; van Noorden, C.J.F.; Vandertop, W.P.; Gelderblom, H.; van Gulik, T.M.; Wilmink, J.W. Study protocol of a phase IB/II clinical trial of metformin and chloroquine in patients with IDH1-mutated or IDH2-mutated solid tumours. BMJ Open, 2017, 7(6), e014961.
[http://dx.doi.org/10.1136/bmjopen-2016-014961] [PMID: 28601826]
[56]
Sotelo, J.; Briceño, E.; López-González, M.A. Adding chloroquine to conventional treatment for glioblastoma multiforme: A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med., 2006, 144(5), 337-343.
[http://dx.doi.org/10.7326/0003-4819-144-5-200603070-00008] [PMID: 16520474]
[57]
Rojas-Puentes, L.L.; Gonzalez-Pinedo, M.; Crismatt, A.; Ortega-Gomez, A.; Gamboa-Vignolle, C.; Nuñez-Gomez, R.; Dorantes-Gallareta, Y.; Arce-Salinas, C.; Arrieta, O. Phase II randomized, double-blind, placebo-controlled study of whole-brain irradiation with concomitant chloroquine for brain metastases. Radiat. Oncol., 2013, 8(1), 209.
[http://dx.doi.org/10.1186/1748-717X-8-209] [PMID: 24010771]
[58]
Samaras, P.; Tusup, M.; Nguyen-Kim, T.D.L.; Seifert, B.; Bachmann, H.; von Moos, R.; Knuth, A.; Pascolo, S. Phase I study of a chloroquine-gemcitabine combination in patients with metastatic or unresectable pancreatic cancer. Cancer Chemother. Pharmacol., 2017, 80(5), 1005-1012.
[http://dx.doi.org/10.1007/s00280-017-3446-y] [PMID: 28980060]
[59]
Mehnert, J.M.; Kaveney, A.D.; Malhotra, J.; Spencer, K.; Portal, D.; Goodin, S.; Tan, A.R.; Aisner, J.; Moss, R.A.; Lin, H.; Bertino, J.R.; Gibbon, D.; Doyle, L.A.; White, E.P.; Stein, M.N. A phase I trial of MK-2206 and hydroxychloroquine in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2019, 84(4), 899-907.
[http://dx.doi.org/10.1007/s00280-019-03919-x] [PMID: 31463691]
[60]
Haas, N.B.; Appleman, L.J.; Stein, M.; Redlinger, M.; Wilks, M.; Xu, X.; Onorati, A.; Kalavacharla, A.; Kim, T.; Zhen, C.J.; Kadri, S.; Segal, J.P.; Gimotty, P.A.; Davis, L.E.; Amaravadi, R.K. Autophagy inhibition to augment mTOR inhibition: A phase I/II trial of everolimus and hydroxychloroquine in patients with previously treated renal cell carcinoma. Clin. Cancer Res., 2019, 25(7), 2080-2087.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2204] [PMID: 30635337]
[61]
Karasic, T.B.; O’Hara, M.H.; Loaiza-Bonilla, A.; Reiss, K.A.; Teitelbaum, U.R.; Borazanci, E.; De Jesus-Acosta, A.; Redlinger, C.; Burrell, J.A.; Laheru, D.A.; Von Hoff, D.D.; Amaravadi, R.K.; Drebin, J.A.; O’Dwyer, P.J. Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: A phase 2 randomized clinical trial. JAMA Oncol., 2019, 5(7), 993-998.
[http://dx.doi.org/10.1001/jamaoncol.2019.0684] [PMID: 31120501]
[62]
Lim, M.; Bradshaw, S.; Kirchhof, M.G. Primary cutaneous low-grade B-cell lymphoma treated with hydroxychloroquine. JAAD Case Rep., 2020, 6(10), 1048-1050.
[http://dx.doi.org/10.1016/j.jdcr.2020.08.003] [PMID: 32995443]
[63]
Mahalingam, D.; Mita, M.; Sarantopoulos, J.; Wood, L.; Amaravadi, R.K.; Davis, L.E.; Mita, A.C.; Curiel, T.J.; Espitia, C.M.; Nawrocki, S.T.; Giles, F.J.; Carew, J.S. Combined autophagy and HDAC inhibition: A phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy, 2014, 10(8), 1403-1414.
[http://dx.doi.org/10.4161/auto.29231] [PMID: 24991835]
[64]
Zeh, H.J.; Bahary, N.; Boone, B.A.; Singhi, A.D.; Miller-Ocuin, J.L.; Normolle, D.P.; Zureikat, A.H.; Hogg, M.E.; Bartlett, D.L.; Lee, K.K.; Tsung, A.; Marsh, J.W.; Murthy, P.; Tang, D.; Seiser, N.; Amaravadi, R.K.; Espina, V.; Liotta, L.; Lotze, M.T. A randomized phase II preoperative study of autophagy inhibition with high-dose hydroxychloroquine and gemcitabine/NAB-paclitaxel in pancreatic cancer patients. Clin. Cancer Res., 2020, 26(13), 3126-3134.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-4042] [PMID: 32156749]
[65]
Patel, S.; Hurez, V.; Nawrocki, S.T.; Goros, M.; Michalek, J.; Sarantopoulos, J.; Curiel, T.; Mahalingam, D. Vorinostat and hydroxychloroquine improve immunity and inhibit autophagy in metastatic colorectal cancer. Oncotarget, 2016, 7(37), 59087-59097.
[http://dx.doi.org/10.18632/oncotarget.10824] [PMID: 27463016]
[66]
Scott, E.C.; Maziarz, R.T.; Spurgeon, S.E.; Medvedova, E.; Gajewski, J.; Reasor-Heard, S.; Park, B.; Kratz, A.; Thomas, G.V.; Loriaux, M.; Cascio, M.; Podolak, J.; Gordon, M.; Botelho, J.; Stadtmauer, E.; Amaravadi, R.; Vogl, D.T. Double autophagy stimulation using chemotherapy and mTOR inhibition combined with hydroxychloroquine for autophagy modulation in patients with relapsed or refractory multiple myeloma. Haematologica, 2017, 102(7), e261-e265.
[http://dx.doi.org/10.3324/haematol.2016.162321] [PMID: 28385778]
[67]
Brazil, L.; Swampillai, A.L.; Mak, K.M.; Edwards, D.; Mesiri, P.; Clifton-Hadley, L.; Shaffer, R.; Lewis, J.; Watts, C.; Jeffries, S.; Gkogkou, P.; Chalmers, A.J.; Fersht, N.L.; Hackshaw, A.; Short, S.C. Hydroxychloroquine and short-course radiotherapy in elderly patients with newly diagnosed high-grade glioma: A randomized phase II trial. Neurooncol. Adv., 2020, 2(1), vdaa046.
[http://dx.doi.org/10.1093/noajnl/vdaa046] [PMID: 32642699]
[68]
Horne, G.A.; Stobo, J.; Kelly, C.; Mukhopadhyay, A.; Latif, A.L.; Dixon-Hughes, J.; McMahon, L.; Cony-Makhoul, P.; Byrne, J.; Smith, G.; Koschmieder, S. BrÜmmendorf, T.H.; Schafhausen, P.; Gallipoli, P.; Thomson, F.; Cong, W.; Clark, R.E.; Milojkovic, D.; Helgason, G.V.; Foroni, L.; Nicolini, F.E.; Holyoake, T.L.; Copland, M. A randomised phase II trial of hydroxychloroquine and imatinib versus imatinib alone for patients with chronic myeloid leukaemia in major cytogenetic response with residual disease. Leukemia, 2020, 34(7), 1775-1786.
[http://dx.doi.org/10.1038/s41375-019-0700-9] [PMID: 31925317]
[69]
Wang, P.; Burikhanov, R.; Jayswal, R.; Weiss, H.L.; Arnold, S.M.; Villano, J.L.; Rangnekar, V.M. Neoadjuvant administration of hydroxychloroquine in a phase 1 clinical trial induced plasma Par-4 levels and apoptosis in diverse tumors. Genes Cancer, 2018, 9(5-6), 190-197.
[http://dx.doi.org/10.18632/genesandcancer.181] [PMID: 30603055]
[70]
Wolpin, B.M.; Rubinson, D.A.; Wang, X.; Chan, J.A.; Cleary, J.M.; Enzinger, P.C.; Fuchs, C.S.; McCleary, N.J.; Meyerhardt, J.A.; Ng, K.; Schrag, D.; Sikora, A.L.; Spicer, B.A.; Killion, L.; Mamon, H.; Kimmelman, A.C. Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist, 2014, 19(6), 637-638.
[http://dx.doi.org/10.1634/theoncologist.2014-0086] [PMID: 24821822]
[71]
Rangwala, R.; Leone, R.; Chang, Y.C.; Fecher, L.A.; Schuchter, L.M.; Kramer, A.; Tan, K.S.; Heitjan, D.F.; Rodgers, G.; Gallagher, M.; Piao, S.; Troxel, A.B.; Evans, T.L.; DeMichele, A.M.; Nathanson, K.L.; O’Dwyer, P.J.; Kaiser, J.; Pontiggia, L.; Davis, L.E.; Amaravadi, R.K. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy, 2014, 10(8), 1369-1379 a.
[http://dx.doi.org/10.4161/auto.29118] [PMID: 24991839]
[72]
Boone, B.A.; Bahary, N.; Zureikat, A.H.; Moser, A.J.; Normolle, D.P.; Wu, W.C.; Singhi, A.D.; Bao, P.; Bartlett, D.L.; Liotta, L.A.; Espina, V.; Loughran, P.; Lotze, M.T.; Zeh, H.J., III Safety and biologic response of pre-operative autophagy inhibition in combination with gemcitabine in patients with pancreatic adenocarcinoma. Ann. Surg. Oncol., 2015, 22(13), 4402-4410.
[http://dx.doi.org/10.1245/s10434-015-4566-4] [PMID: 25905586]
[73]
Goldberg, S.B.; Supko, J.G.; Neal, J.W.; Muzikansky, A.; Digumarthy, S.; Fidias, P.; Temel, J.S.; Heist, R.S.; Shaw, A.T.; McCarthy, P.O.; Lynch, T.J.; Sharma, S.; Settleman, J.E.; Sequist, L.V. A phase I study of erlotinib and hydroxychloroquine in advanced non-small-cell lung cancer. J. Thorac. Oncol., 2012, 7(10), 1602-1608.
[http://dx.doi.org/10.1097/JTO.0b013e318262de4a] [PMID: 22878749]
[74]
Vogl, D.T.; Stadtmauer, E.A.; Tan, K.S.; Heitjan, D.F.; Davis, L.E.; Pontiggia, L.; Rangwala, R.; Piao, S.; Chang, Y.C.; Scott, E.C.; Paul, T.M.; Nichols, C.W.; Porter, D.L.; Kaplan, J.; Mallon, G.; Bradner, J.E.; Amaravadi, R.K. Combined autophagy and proteasome inhibition: A phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy, 2014, 10(8), 1380-1390.
[http://dx.doi.org/10.4161/auto.29264] [PMID: 24991834]
[75]
Rosenfeld, M.R.; Ye, X.; Supko, J.G.; Desideri, S.; Grossman, S.A.; Brem, S.; Mikkelson, T.; Wang, D.; Chang, Y.C.; Hu, J.; McAfee, Q.; Fisher, J.; Troxel, A.B.; Piao, S.; Heitjan, D.F.; Tan, K.S.; Pontiggia, L.; O’Dwyer, P.J.; Davis, L.E.; Amaravadi, R.K. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy, 2014, 10(8), 1359-1368.
[http://dx.doi.org/10.4161/auto.28984] [PMID: 24991840]
[76]
Rangwala, R.; Chang, Y.C.; Hu, J.; Algazy, K.M.; Evans, T.L.; Fecher, L.A.; Schuchter, L.M.; Torigian, D.A.; Panosian, J.T.; Troxel, A.B.; Tan, K.S.; Heitjan, D.F.; DeMichele, A.M.; Vaughn, D.J.; Redlinger, M.; Alavi, A.; Kaiser, J.; Pontiggia, L.; Davis, L.E.; O’Dwyer, P.J.; Amaravadi, R.K. Combined MTOR and autophagy inhibition: Phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy, 2014, 10(8), 1391-1402 b.
[http://dx.doi.org/10.4161/auto.29119] [PMID: 24991838]
[77]
El-Chemaly, S.; Taveira-Dasilva, A.; Goldberg, H.J.; Peters, E.; Haughey, M.; Bienfang, D.; Jones, A.M.; Julien-Williams, P.; Cui, Y.; Villalba, J.A.; Bagwe, S.; Maurer, R.; Rosas, I.O.; Moss, J.; Henske, E.P. Sirolimus and autophagy inhibition in lymphangioleiomyomatosis: Results of a phase I clinical trial. Chest, 2017, 151(6), 1302-1310.
[http://dx.doi.org/10.1016/j.chest.2017.01.033] [PMID: 28192114]
[78]
Chi, K.H.; Ko, H.L.; Yang, K.L.; Lee, C.Y.; Chi, M.S.; Kao, S.J. Addition of rapamycin and hydroxychloroquine to metronomic chemotherapy as a second line treatment results in high salvage rates for refractory metastatic solid tumors: A pilot safety and effectiveness analysis in a small patient cohort. Oncotarget, 2015, 6(18), 16735-16745. a.
[http://dx.doi.org/10.18632/oncotarget.3793] [PMID: 25944689]
[79]
Chi, M.S.; Lee, C.Y.; Huang, S.C.; Yang, K.L.; Ko, H.L.; Chen, Y.K.; Chung, C.H.; Liao, K.W.; Chi, K.H. Double autophagy modulators reduce 2-deoxyglucose uptake in sarcoma patients. Oncotarget, 2015, 6(30), 29808-29817. b.
[http://dx.doi.org/10.18632/oncotarget.5060] [PMID: 26375670]
[80]
Mukhopadhyay, S.; Mahapatra, K.K.; Praharaj, P.P.; Patil, S.; Bhutia, S.K. Recent progress of autophagy signaling in tumor microenvironment and its targeting for possible cancer therapeutics. Semin. Cancer Biol., 2022 Oct 1;85, 196-208.
[http://dx.doi.org/10.1016/j.semcancer.2021.09.003] [PMID: 34500075]
[81]
Al-Bari, M.A.A. A current view of molecular dissection in autophagy machinery. J. Physiol. Biochem., 2020, 76(3), 357-372. a.
[http://dx.doi.org/10.1007/s13105-020-00746-0] [PMID: 32451934]
[82]
Zhao, Y.G.; Codogno, P.; Zhang, H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat. Rev. Mol. Cell Biol., 2021, 22(11), 733-750.
[http://dx.doi.org/10.1038/s41580-021-00392-4] [PMID: 34302147]
[83]
Duan, Y.; Tian, X.; Liu, Q.; Jin, J.; Shi, J.; Hou, Y. Role of autophagy on cancer immune escape. Cell Commun. Signal., 2021, 19(1), 91.
[http://dx.doi.org/10.1186/s12964-021-00769-0] [PMID: 34493296]
[84]
Kocaturk, N.M.; Akkoc, Y.; Kig, C.; Bayraktar, O.; Gozuacik, D.; Kutlu, O. Autophagy as a molecular target for cancer treatment. Eur. J. Pharm. Sci., 2019, 134, 116-137.
[http://dx.doi.org/10.1016/j.ejps.2019.04.011] [PMID: 30981885]
[85]
Schaaf, M.B.; Houbaert, D.; Meçe, O.; Agostinis, P. Autophagy in endothelial cells and tumor angiogenesis. Cell Death Differ., 2019, 26(4), 665-679. a.
[http://dx.doi.org/10.1038/s41418-019-0287-8] [PMID: 30692642]
[86]
Chmurska, A.; Matczak, K.; Marczak, A. Two faces of autophagy in the struggle against cancer. Int. J. Mol. Sci., 2021, 22(6), 2981.
[http://dx.doi.org/10.3390/ijms22062981] [PMID: 33804163]
[87]
Shin, D.W. Dual roles of autophagy and their potential drugs for improving cancer therapeutics. Biomol. Ther. (Seoul), 2020, 28(6), 503-511.
[http://dx.doi.org/10.4062/biomolther.2020.155] [PMID: 33077698]
[88]
Niklaus, M.; Adams, O.; Berezowska, S.; Zlobec, I.; Graber, F.; Slotta-Huspenina, J.; Nitsche, U.; Rosenberg, R.; Tschan, M.P.; Langer, R. Expression analysis of LC3B and p62 indicates intact activated autophagy is associated with an unfavorable prognosis in colon cancer. Oncotarget, 2017, 8(33), 54604-54615.
[http://dx.doi.org/10.18632/oncotarget.17554] [PMID: 28903368]
[89]
Jena, B.C.; Rout, L.; Dey, A.; Mandal, M. Active autophagy in cancer-associated fibroblasts: Recent advances in understanding the novel mechanism of tumor progression and therapeutic response. J. Cell. Physiol., 2021, 236(11), 7887-7902.
[http://dx.doi.org/10.1002/jcp.30419] [PMID: 34008184]
[90]
Amaravadi, R.K.; Kimmelman, A.C.; Debnath, J. Targeting autophagy in cancer: Recent advances and future directions. Cancer Discov., 2019, 9(9), 1167-1181.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0292] [PMID: 31434711]
[91]
Amaravadi, R.K.; Lippincott-Schwartz, J.; Yin, X.M.; Weiss, W.A.; Takebe, N.; Timmer, W.; DiPaola, R.S.; Lotze, M.T.; White, E. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res., 2011, 17(4), 654-666.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2634] [PMID: 21325294]
[92]
Nam, H.J. Autophagy modulators in cancer: Focus on cancer treatment. Life, 2021, 11(8), 839.
[http://dx.doi.org/10.3390/life11080839] [PMID: 34440583]
[93]
Yang, G.; Li, Y.; Zhao, Y.; Ouyang, L.; Chen, Y.; Liu, B.; Liu, J. Targeting Atg4B for cancer therapy: Chemical mediators. Eur. J. Med. Chem., 2021, 209, 112917.
[http://dx.doi.org/10.1016/j.ejmech.2020.112917] [PMID: 33077263]
[94]
Chun, Y.; Kim, J. Autophagy: An essential degradation program for cellular homeostasis and life. Cells, 2018, 7(12), 278.
[http://dx.doi.org/10.3390/cells7120278] [PMID: 30572663]
[95]
Jogalekar, M.P.; Veerabathini, A.; Gangadaran, P. Recent developments in autophagy-targeted therapies in cancer. Exp. Biol. Med., 2021, 246(2), 207-212.
[http://dx.doi.org/10.1177/1535370220966545] [PMID: 33167689]
[96]
Chiang, C.F.; Hsu, Y.H.; Liu, C.C.; Liang, P.C.; Miaw, S.C.; Lin, W.L. Pulsed-wave ultrasound hyperthermia enhanced nanodrug delivery combined with chloroquine exerts effective antitumor response and postpones recurrence. Sci. Rep., 2019, 9(1), 12448.
[http://dx.doi.org/10.1038/s41598-019-47345-8] [PMID: 31462676]
[97]
Lin, Y.C.; Lin, J.F.; Wen, S.I.; Yang, S.C.; Tsai, T.F.; Chen, H.E.; Chou, K.Y.; Hwang, T.I. Chloroquine and hydroxychloroquine inhibit bladder cancer cell growth by targeting basal autophagy and enhancing apoptosis. Kaohsiung J. Med. Sci., 2017, 33(5), 215-223.
[http://dx.doi.org/10.1016/j.kjms.2017.01.004] [PMID: 28433067]
[98]
Ruiz, A.; Rockfield, S.; Taran, N.; Haller, E.; Engelman, R.W.; Flores, I.; Panina-Bordignon, P.; Nanjundan, M. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis. Cell Death Dis., 2016, 7(1), e2059.
[http://dx.doi.org/10.1038/cddis.2015.361] [PMID: 26775710]
[99]
Golden, E.B.; Cho, H.Y.; Hofman, F.M.; Louie, S.G.; Schönthal, A.H.; Chen, T.C. Quinoline-based antimalarial drugs: A novel class of autophagy inhibitors. Neurosurg. Focus, 2015, 38(3), E12.
[http://dx.doi.org/10.3171/2014.12.FOCUS14748] [PMID: 25727221]
[100]
Golden, E.B.; Cho, H.Y.; Jahanian, A.; Hofman, F.M.; Louie, S.G.; Schönthal, A.H.; Chen, T.C. Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy. Neurosurg. Focus, 2014, 37(6), E12.
[http://dx.doi.org/10.3171/2014.9.FOCUS14504] [PMID: 25434381]
[101]
Fleisher, B.; Mody, H.; Werkman, C.; Ait-Oudhia, S. Chloroquine sensitizes MDA-MB-231 cells to osimertinib through autophagy-apoptosis crosstalk pathway. Breast Cancer (Dove Med. Press), 2019, 11, 231-241.
[http://dx.doi.org/10.2147/BCTT.S211030] [PMID: 31839713]
[102]
Ovejero-Sánchez, M.; González-Sarmiento, R.; Herrero, A.B. Synergistic effect of chloroquine and panobinostat in ovarian cancer through induction of DNA damage and inhibition of DNA repair. Neoplasia, 2021, 23(5), 515-528.
[http://dx.doi.org/10.1016/j.neo.2021.04.003] [PMID: 33930758]
[103]
Tian, A.L.; Wu, Q.; Liu, P.; Zhao, L.; Martins, I.; Kepp, O.; Leduc, M.; Kroemer, G. Lysosomotropic agents including azithromycin, chloroquine and hydroxychloroquine activate the integrated stress response. Cell Death Dis., 2021, 12(1), 6.
[http://dx.doi.org/10.1038/s41419-020-03324-w] [PMID: 33414432]
[104]
Ferreira, P.M.P.; Ferreira, J.R.O.; de Sousa, R.W.R.; Bezerra, D.P.; Militão, G.C.G. Aminoquinolines as translational models for drug repurposing: Anticancer adjuvant properties and toxicokinetic-related features. J. Oncol., 2021, 2021, 3569349.
[http://dx.doi.org/10.1155/2021/3569349] [PMID: 34527050]
[105]
Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X.; Luhr, M.; Hijlkema, K.J.; Coppes, R.P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy, 2018, 14(8), 1435-1455.
[http://dx.doi.org/10.1080/15548627.2018.1474314] [PMID: 29940786]
[106]
Nagelkerke, A.; Bussink, J.; van der Kogel, A.J.; Sweep, F.C.; Span, P.N. The PERK/ATF4/LAMP3-arm of the unfolded protein response affects radioresistance by interfering with the DNA damage response. Radiother. Oncol., 2013, 108(3), 415-421.
[http://dx.doi.org/10.1016/j.radonc.2013.06.037] [PMID: 23891100]
[107]
Duarte, D.; Vale, N. New trends for antimalarial drugs: Synergism between antineoplastics and antimalarials on breast cancer cells. Biomolecules, 2020, 10(12), 1623.
[http://dx.doi.org/10.3390/biom10121623] [PMID: 33271968]
[108]
Gil, D.; Laidler, P.; Zarzycka, M.; Dulińska-Litewka, J. Inhibition effect of chloroquine and integrin-linked kinase knockdown on translation in melanoma cells. Int. J. Mol. Sci., 2021, 22(7), 3682.
[http://dx.doi.org/10.3390/ijms22073682] [PMID: 33916175]
[109]
Hsu, S.P.C.; Kuo, J.S.; Chiang, H.C.; Wang, H.E.; Wang, Y.S.; Huang, C.C.; Huang, Y.C.; Chi, M.S.; Mehta, M.P.; Chi, K.H. Temozolomide, sirolimus and chloroquine is a new therapeutic combination that synergizes to disrupt lysosomal function and cholesterol homeostasis in GBM cells. Oncotarget, 2018, 9(6), 6883-6896.
[http://dx.doi.org/10.18632/oncotarget.23855] [PMID: 29467937]
[110]
Avsec, D.; Jakoš Djordjevic, A.T.; Kandušer, M.; Podgornik, H.; Škerget, M.; Mlinaric-Rašcan, I. Targeting autophagy triggers apoptosis and complements the action of venetoclax in chronic lymphocytic leukemia cells. Cancers, 2021, 13(18), 4557.
[http://dx.doi.org/10.3390/cancers13184557] [PMID: 34572784]
[111]
Thorburn, A. Crosstalk between autophagy and apoptosis: Mechanisms and therapeutic implications. Prog. Mol. Biol. Transl. Sci., 2020, 172, 55-65.
[http://dx.doi.org/10.1016/bs.pmbts.2020.04.023] [PMID: 32620250]
[112]
Chou, K.Y.; Chen, P.C.; Chang, A.C.; Tsai, T.F.; Chen, H.E.; Ho, C.Y.; Hwang, T.I. Attenuation of chloroquine and hydroxychloroquine on the invasive potential of bladder cancer through targeting matrix metalloproteinase 2 expression. Environ. Toxicol., 2021, 36(11), 2138-2145.
[http://dx.doi.org/10.1002/tox.23328] [PMID: 34278709]
[113]
Morgan, M.J.; Fitzwalter, B.E.; Owens, C.R.; Powers, R.K.; Sottnik, J.L.; Gamez, G.; Costello, J.C.; Theodorescu, D.; Thorburn, A. Metastatic cells are preferentially vulnerable to lysosomal inhibition. Proc. Natl. Acad. Sci. USA, 2018, 115(36), E8479-E8488.
[http://dx.doi.org/10.1073/pnas.1706526115] [PMID: 30127018]
[114]
Hwang, J.R.; Kim, W.Y.; Cho, Y.J.; Ryu, J.Y.; Choi, J.J.; Jeong, S.Y.; Kim, M.S.; Kim, J.H.; Paik, E.S.; Lee, Y.Y.; Han, H.D.; Lee, J.W. Chloroquine reverses chemoresistance via upregulation of p21WAF1/CIP1 and autophagy inhibition in ovarian cancer. Cell Death Dis., 2020, 11(12), 1034.
[http://dx.doi.org/10.1038/s41419-020-03242-x] [PMID: 33277461]
[115]
Zhu, J.; Zheng, Y.; Zhang, H.; Zhu, J.; Sun, H. Low concentration of chloroquine enhanced efficacy of cisplatin in the treatment of human ovarian cancer dependent on autophagy. Am. J. Transl. Res., 2017, 9(9), 4046-4058.
[PMID: 28979680]
[116]
Rebecca, V.W.; Nicastri, M.C.; Fennelly, C.; Chude, C.I.; Barber-Rotenberg, J.S.; Ronghe, A.; McAfee, Q.; McLaughlin, N.P.; Zhang, G.; Goldman, A.R.; Ojha, R.; Piao, S.; Noguera-Ortega, E.; Martorella, A.; Alicea, G.M.; Lee, J.J.; Schuchter, L.M.; Xu, X.; Herlyn, M.; Marmorstein, R.; Gimotty, P.A.; Speicher, D.W.; Winkler, J.D.; Amaravadi, R.K. PPT1 promotes tumor growth and is the molecular target of chloroquine derivatives in cancer. Cancer Discov., 2019, 9(2), 220-229.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0706] [PMID: 30442709]
[117]
Vergoten, G.; Bailly, C. Binding of hydroxychloroquine and chloroquine dimers to palmitoyl-protein thioesterase 1 (PPT1) and its glycosylated forms: A computational approach. J. Biomol. Struct. Dyn., 2021, 1-9.
[http://dx.doi.org/10.1080/07391102.2021.1908167] [PMID: 33876698]
[118]
Cho, S.; Dawson, P.E.; Dawson, G. Role of palmitoyl-protein thioesterase in cell death: Implications for infantile neuronal ceroid lipofuscinosis. Eur. J. Paediatr. Neurol., 2001, 5(Suppl. A), 53-55.
[http://dx.doi.org/10.1053/ejpn.2000.0435] [PMID: 11589008]
[119]
Cho, S.; Dawson, G. Palmitoyl protein thioesterase 1 protects against apoptosis mediated by Ras-Akt-caspase pathway in neuroblastoma cells. J. Neurochem., 2000, 74(4), 1478-1488.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0741478.x] [PMID: 10737604]
[120]
Sharma, G.; Ojha, R.; Noguera-Ortega, E.; Rebecca, V.W.; Attanasio, J.; Liu, S.; Piao, S.; Lee, J.J.; Nicastri, M.C.; Harper, S.L.; Ronghe, A.; Jain, V.; Winkler, J.D.; Speicher, D.W.; Mastio, J.; Gimotty, P.A.; Xu, X.; Wherry, E.J.; Gabrilovich, D.I.; Amaravadi, R.K. PPT1 inhibition enhances the antitumor activity of anti-PD-1 antibody in melanoma. JCI Insight, 2020, 5(17), e133225.
[http://dx.doi.org/10.1172/jci.insight.133225] [PMID: 32780726]
[121]
Ratikan, J.A.; Sayre, J.W.; Schaue, D. Chloroquine engages the immune system to eradicate irradiated breast tumors in mice. Int. J. Radiat. Oncol. Biol. Phys., 2013, 87(4), 761-768.
[http://dx.doi.org/10.1016/j.ijrobp.2013.07.024] [PMID: 24138918]
[122]
Ancel, J.; Perotin, J.M.; Dewolf, M.; Launois, C.; Mulette, P.; Nawrocki-Raby, B.; Dalstein, V.; Gilles, C.; Deslée, G.; Polette, M.; Dormoy, V. Hypoxia in lung cancer management: A translational approach. Cancers, 2021, 13(14), 3421.
[http://dx.doi.org/10.3390/cancers13143421] [PMID: 34298636]
[123]
Kabakov, A.E.; Yakimova, A.O. Hypoxia-induced cancer cell responses driving radioresistance of hypoxic tumors: Approaches to targeting and radiosensitizing. Cancers, 2021, 13(5), 1102.
[http://dx.doi.org/10.3390/cancers13051102] [PMID: 33806538]
[124]
Ferreira, P.M.P.; Sousa, R.W.R.; Ferreira, J.R.O.; Militão, G.C.G.; Bezerra, D.P. Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms. Pharmacol. Res., 2021, 168, 105582.
[http://dx.doi.org/10.1016/j.phrs.2021.105582] [PMID: 33775862]
[125]
Jutten, B.; Keulers, T.G.; Peeters, H.J.M.; Schaaf, M.B.E.; Savelkouls, K.G.M.; Compter, I.; Clarijs, R.; Schijns, O.E.M.G.; Ackermans, L.; Teernstra, O.P.M.; Zonneveld, M.I.; Colaris, R.M.E.; Dubois, L.; Vooijs, M.A.; Bussink, J.; Sotelo, J.; Theys, J.; Lammering, G.; Rouschop, K.M.A. EGFRvIII expression triggers a metabolic dependency and therapeutic vulnerability sensitive to autophagy inhibition. Autophagy, 2018, 14(2), 283-295.
[http://dx.doi.org/10.1080/15548627.2017.1409926] [PMID: 29377763]
[126]
Li, Y.; Cho, M.H.; Lee, S.S.; Lee, D.E.; Cheong, H.; Choi, Y. Hydroxychloroquine-loaded hollow mesoporous silica nanoparticles for enhanced autophagy inhibition and radiation therapy. J. Control. Release, 2020, 325, 100-110.
[http://dx.doi.org/10.1016/j.jconrel.2020.06.025] [PMID: 32621826]
[127]
Lin, T.; Zhang, Q.; Yuan, A.; Wang, B.; Zhang, F.; Ding, Y.; Cao, W.; Chen, W.; Guo, H. Synergy of tumor microenvironment remodeling and autophagy inhibition to sensitize radiation for bladder cancer treatment. Theranostics, 2020, 10(17), 7683-7696.
[http://dx.doi.org/10.7150/thno.45358] [PMID: 32685013]
[128]
Zou, Y.M.; Hu, G.Y.; Zhao, X.Q.; Lu, T.; Zhu, F.; Yu, S.Y.; Xiong, H. Hypoxia-induced autophagy contributes to radioresistance via c-Jun-mediated Beclin1 expression in lung cancer cells. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2014, 34(5), 761-767.
[http://dx.doi.org/10.1007/s11596-014-1349-2] [PMID: 25318890]
[129]
Xu, R.; Ji, Z.; Xu, C.; Zhu, J. The clinical value of using chloroquine or hydroxychloroquine as autophagy inhibitors in the treatment of cancers: A systematic review and meta-analysis. Medicine, 2018, 97(46), e12912.
[http://dx.doi.org/10.1097/MD.0000000000012912] [PMID: 30431566]
[130]
Krueger, J.; Santinon, F.; Kazanova, A.; Issa, M.E.; Larrivee, B.; Kremer, R.; Milhalcioiu, C.; Rudd, C.E. Hydroxychloroquine (HCQ) decreases the benefit of anti-PD-1 immune checkpoint blockade in tumor immunotherapy. PLoS One, 2021, 16(6), e0251731.
[http://dx.doi.org/10.1371/journal.pone.0251731] [PMID: 34181666]
[131]
Repnik, U.; Hafner Česen, M.; Turk, B. Lysosomal membrane permeabilization in cell death: Concepts and challenges. Mitochondrion, 2014, 19 Pt A, 49-57.
[http://dx.doi.org/10.1016/j.mito.2014.06.006] [PMID: 24984038]
[132]
Boya, P.; Gonzalez-Polo, R.A.; Poncet, D.; Andreau, K.; Vieira, H.L.; Roumier, T.; Perfettini, J.L.; Kroemer, G. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene, 2003, 22(25), 3927-3936.
[http://dx.doi.org/10.1038/sj.onc.1206622] [PMID: 12813466]
[133]
Boya, P.; Kroemer, G. Lysosomal membrane permeabilization in cell death. Oncogene, 2008, 27(50), 6434-6451.
[http://dx.doi.org/10.1038/onc.2008.310] [PMID: 18955971]
[134]
Sironi, J.; Aranda, E.; Nordstrøm, L.U.; Schwartz, E.L. Lysosome membrane permeabilization and disruption of the molecular target of rapamycin (mTOR)-lysosome interaction are associated with the inhibition of lung cancer cell proliferation by a chloroquinoline analog. Mol. Pharmacol., 2019, 95(1), 127-138.
[http://dx.doi.org/10.1124/mol.118.113118] [PMID: 30409790]
[135]
Charris, J.E.; Monasterios, M.C.; Acosta, M.E.; Rodríguez, M.A.; Gamboa, N.D.; Martínez, G.P.; Rojas, H.R.; Mijares, M.R.; De Sanctis, J.B. Antimalarial, antiproliferative, and apoptotic activity of quinoline-chalcone and quinoline-pyrazoline hybrids. A dual action. Med. Chem. Res., 2019, 28(11), 2050-2066.
[http://dx.doi.org/10.1007/s00044-019-02435-0]
[136]
Fan, C.; Wang, W.; Zhao, B.; Zhang, S.; Miao, J. Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg. Med. Chem., 2006, 14(9), 3218-3222.
[http://dx.doi.org/10.1016/j.bmc.2005.12.035] [PMID: 16413786]
[137]
Hu, T.; Li, P.; Luo, Z.; Chen, X.; Zhang, J.; Wang, C.; Chen, P.; Dong, Z. Chloroquine inhibits hepatocellular carcinoma cell growth in vitro and in vivo. Oncol. Rep., 2016, 35(1), 43-49.
[http://dx.doi.org/10.3892/or.2015.4380] [PMID: 26530158]
[138]
Jiang, P.D.; Zhao, Y.L.; Shi, W.; Deng, X.Q.; Xie, G.; Mao, Y.Q.; Li, Z.G.; Zheng, Y.Z.; Yang, S.Y.; Wei, Y.Q. Cell growth inhibition, G2/M cell cycle arrest, and apoptosis induced by chloroquine in human breast cancer cell line Bcap-37. Cell. Physiol. Biochem., 2008, 22(5-6), 431-440 a.
[http://dx.doi.org/10.1159/000185488] [PMID: 19088425]
[139]
Jiang, P.D.; Zhao, Y.L.; Yang, S.Y.; Mao, Y.Q.; Zheng, Y.Z.; Li, Z.G.; Wei, Y.Q. Effects of chloroquine diphosphate on proliferation and apoptosis of human leukemic K562 cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2008, 16(4), 768-771 b.
[PMID: 18718057]
[140]
Liu, L.; Han, C.; Yu, H.; Zhu, W.; Cui, H.; Zheng, L.; Zhang, C.; Yue, L. Chloroquine inhibits cell growth in human A549 lung cancer cells by blocking autophagy and inducing mitochondrial mediated apoptosis. Oncol. Rep., 2018, 39(6), 2807-2816.
[http://dx.doi.org/10.3892/or.2018.6363] [PMID: 29658606]
[141]
Ramírez, H.; Fernandez, E.; Rodrigues, J.; Mayora, S.; Martínez, G.; Celis, C.; De Sanctis, J.B.; Mijares, M.; Charris, J. Synthesis and antimalarial and anticancer evaluation of 7-chlorquinoline-4-thiazoleacetic derivatives containing aryl hydrazide moieties. Arch. Pharm., 2021, 354(7), e2100002.
[http://dx.doi.org/10.1002/ardp.202100002] [PMID: 33660349]
[142]
Ramírez, H.; Rodrigues, J.R.; Mijares, M.R.; De Sanctis, J.B.; Charris, J.E. Synthesis and biological activity of 2-[2-(7-chloroquinolin-4-ylthio)-4-methylthiazol-5-yl]-N-phenylacetamide derivatives as antimalarial and cytotoxic agents. J. Chem. Res., 2020, 44(5-6), 305-314.
[http://dx.doi.org/10.1177/1747519819899073]
[143]
Zheng, Y.; Zhao, Y.L.; Deng, X.; Yang, S.; Mao, Y.; Li, Z.; Jiang, P.; Zhao, X.; Wei, Y. Chloroquine inhibits colon cancer cell growth in vitro and tumor growth in vivo via induction of apoptosis. Cancer Invest., 2009, 27(3), 286-292.
[http://dx.doi.org/10.1080/07357900802427927] [PMID: 19194831]
[144]
Jiang, P.D.; Zhao, Y.L.; Deng, X.Q.; Mao, Y.Q.; Shi, W.; Tang, Q.Q.; Li, Z.G.; Zheng, Y.Z.; Yang, S.Y.; Wei, Y.Q. Antitumor and antimetastatic activities of chloroquine diphosphate in a murine model of breast cancer. Biomed. Pharmacother., 2010, 64(9), 609-614.
[http://dx.doi.org/10.1016/j.biopha.2010.06.004] [PMID: 20888174]
[145]
Ganguli, A.; Choudhury, D.; Datta, S.; Bhattacharya, S.; Chakrabarti, G. Inhibition of autophagy by chloroquine potentiates synergistically anti-cancer property of artemisinin by promoting ROS dependent apoptosis. Biochimie, 2014, 107 Pt B, 338-349.
[http://dx.doi.org/10.1016/j.biochi.2014.10.001] [PMID: 25308836]
[146]
Masud Alam, M.; Kariya, R.; Kawaguchi, A.; Matsuda, K.; Kudo, E.; Okada, S. Inhibition of autophagy by chloroquine induces apoptosis in primary effusion lymphoma in vitro and in vivo through induction of endoplasmic reticulum stress. Apoptosis, 2016, 21(10), 1191-1201.
[http://dx.doi.org/10.1007/s10495-016-1277-7] [PMID: 27484211]
[147]
Makowska, A.; Eble, M.; Prescher, K.; Hoß, M.; Kontny, U. Chloroquine sensitizes nasopharyngeal carcinoma cells but not nasoepithelial cells to irradiation by blocking autophagy. PLoS One, 2016, 11(11), e0166766.
[http://dx.doi.org/10.1371/journal.pone.0166766] [PMID: 27902742]
[148]
Monma, H.; Iida, Y.; Moritani, T.; Okimoto, T.; Tanino, R.; Tajima, Y.; Harada, M. Chloroquine augments TRAIL-induced apoptosis and induces G2/M phase arrest in human pancreatic cancer cells. PLoS One, 2018, 13(3), e0193990.
[http://dx.doi.org/10.1371/journal.pone.0193990] [PMID: 29513749]
[149]
Johnson, C.E.; Hunt, D.K.; Wiltshire, M.; Herbert, T.P.; Sampson, J.R.; Errington, R.J.; Davies, D.M.; Tee, A.R. Endoplasmic reticulum stress and cell death in mTORC1-overactive cells is induced by nelfinavir and enhanced by chloroquine. Mol. Oncol., 2015, 9(3), 675-688.
[http://dx.doi.org/10.1016/j.molonc.2014.11.005] [PMID: 25498902]
[150]
Lopiccolo, J.; Kawabata, S.; Gills, J.J.; Dennis, P.A. Combining nelfinavir with chloroquine inhibits in vivo growth of human lung cancer xenograft tumors. In Vivo, 2021, 35(1), 141-145.
[http://dx.doi.org/10.21873/invivo.12241] [PMID: 33402459]
[151]
Maycotte, P.; Aryal, S.; Cummings, C.T.; Thorburn, J.; Morgan, M.J.; Thorburn, A. Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy, 2012, 8(2), 200-212.
[http://dx.doi.org/10.4161/auto.8.2.18554] [PMID: 22252008]
[152]
Hao, X.; Li, W. Chloroquine diphosphate suppresses liver cancer via inducing apoptosis in Wistar rats using interventional therapy. Oncol. Lett., 2021, 21(3), 233.
[http://dx.doi.org/10.3892/ol.2021.12494] [PMID: 33613722]
[153]
Eloranta, K.; Cairo, S.; Liljeström, E.; Soini, T.; Kyrönlahti, A.; Judde, J.G.; Wilson, D.B.; Heikinheimo, M.; Pihlajoki, M. Chloroquine triggers cell death and inhibits PARPs in cell models of aggressive hepatoblastoma. Front. Oncol., 2020, 10, 1138.
[http://dx.doi.org/10.3389/fonc.2020.01138] [PMID: 32766148]
[154]
Burikhanov, R.; Hebbar, N.; Noothi, S.K.; Shukla, N.; Sledziona, J.; Araujo, N.; Kudrimoti, M.; Wang, Q.J.; Watt, D.S.; Welch, D.R.; Maranchie, J.; Harada, A.; Rangnekar, V.M. Chloroquine-inducible Par-4 secretion is essential for tumor cell apoptosis and inhibition of metastasis. Cell Rep., 2017, 18(2), 508-519.
[http://dx.doi.org/10.1016/j.celrep.2016.12.051] [PMID: 28076793]
[155]
Jia, B.; Xue, Y.; Yan, X.; Li, J.; Wu, Y.; Guo, R.; Zhang, J.; Zhang, L.; Li, Y.; Liu, Y.; Sun, L. Autophagy inhibitor chloroquine induces apoptosis of cholangiocarcinoma cells via endoplasmic reticulum stress. Oncol. Lett., 2018, 16(3), 3509-3516.
[http://dx.doi.org/10.3892/ol.2018.9131] [PMID: 30127955]
[156]
Nakano, K.; Masui, T.; Yogo, A.; Uchida, Y.; Sato, A.; Kasai, Y.; Nagai, K.; Anazawa, T.; Kawaguchi, Y.; Uemoto, S. Chloroquine induces apoptosis in pancreatic neuroendocrine neoplasms via endoplasmic reticulum stress. Endocr. Relat. Cancer, 2020, 27(7), 431-439.
[http://dx.doi.org/10.1530/ERC-20-0028] [PMID: 32369772]
[157]
Pandey, S.; Sharma, V.K.; Biswas, A.; Lahiri, M.; Basu, S. Small molecule-mediated induction of endoplasmic reticulum stress in cancer cells. RSC Med Chem., 2021, 12(9), 1604-1611.
[http://dx.doi.org/10.1039/D1MD00095K] [PMID: 34671742]
[158]
Arneth, B. Tumor microenvironment. Medicina, 2019, 56(1), 15.
[http://dx.doi.org/10.3390/medicina56010015] [PMID: 31906017]
[159]
Boyle, S.T.; Johan, M.Z.; Samuel, M.S. Tumour-directed microenvironment remodelling at a glance. J. Cell Sci., 2020, 133(24), jcs247783.
[http://dx.doi.org/10.1242/jcs.247783] [PMID: 33443095]
[160]
Liang, W.; Huang, X.; Carlos, C.J.J.; Lu, X. Research progress of tumor microenvironment and tumor-associated macrophages. Clin. Transl. Oncol., 2020, 22(12), 2141-2152.
[http://dx.doi.org/10.1007/s12094-020-02367-x] [PMID: 32447645]
[161]
Pan, Y.; Yu, Y.; Wang, X.; Zhang, T. Tumor-associated macrophages in tumor immunity. Front. Immunol., 2020, 11.
[http://dx.doi.org/10.3389/fimmu.2020.583084] [PMID: 33365025]
[162]
Cheng, N.; Bai, X.; Shu, Y.; Ahmad, O.; Shen, P. Targeting tumor-associated macrophages as an antitumor strategy. Biochem. Pharmacol., 2021, 183, 114354.
[http://dx.doi.org/10.1016/j.bcp.2020.114354] [PMID: 33279498]
[163]
Crezee, T.; Rabold, K.; de Jong, L.; Jaeger, M.; Netea-Maier, R.T. Metabolic programming of tumor associated macrophages in the context of cancer treatment. Ann. Transl. Med., 2020, 8(16), 1028.
[http://dx.doi.org/10.21037/atm-20-1114] [PMID: 32953828]
[164]
Li, Y.; Cao, F.; Li, M.; Li, P.; Yu, Y.; Xiang, L.; Xu, T.; Lei, J.; Tai, Y.Y.; Zhu, J.; Yang, B.; Jiang, Y.; Zhang, X.; Duo, L.; Chen, P.; Yu, X. Hydroxychloroquine induced lung cancer suppression by enhancing chemo-sensitization and promoting the transition of M2-TAMs to M1-like macrophages. J. Exp. Clin. Cancer Res., 2018, 37(1), 259.
[http://dx.doi.org/10.1186/s13046-018-0938-5] [PMID: 30373678]
[165]
Zhang, Y.; Cao, Y.; Sun, X.; Feng, Y.; Du, Y.; Liu, F.; Yu, C.; Jin, F. Chloroquine (CQ) exerts anti-breast cancer through modulating microenvironment and inducing apoptosis. Int. Immunopharmacol., 2017, 42, 100-107.
[http://dx.doi.org/10.1016/j.intimp.2016.11.027] [PMID: 27912145]
[166]
Guo, Y.; Feng, Y.; Cui, X.; Wang, Q.; Pan, X. Autophagy inhibition induces the repolarisation of tumour-associated macrophages and enhances chemosensitivity of laryngeal cancer cells to cisplatin in mice. Cancer Immunol. Immunother., 2019, 68(12), 1909-1920.
[http://dx.doi.org/10.1007/s00262-019-02415-8] [PMID: 31641796]
[167]
Zarogoulidis, P.; Petanidis, S.; Domvri, K.; Kioseoglou, E.; Anestakis, D.; Freitag, L.; Zarogoulidis, K.; Hohenforst-Schmidt, W.; Eberhardt, W. Autophagy inhibition upregulates CD4+ tumor infiltrating lymphocyte expression via miR-155 regulation and TRAIL activation. Mol. Oncol., 2016, 10(10), 1516-1531.
[http://dx.doi.org/10.1016/j.molonc.2016.08.005] [PMID: 27692344]
[168]
Zamame, R.J.A.; Romagnoli, G.G.; Falasco, B.F.; Gorgulho, C.M.; Sanzochi, F.C.; Dos Santos, D.C.; Junior, J.P.A.; Lotze, M.T.; Ureshino, R.P.; Kaneno, R. Blocking drug-induced autophagy with chloroquine in HCT-116 colon cancer cells enhances DC maturation and T cell responses induced by tumor cell lysate. Int. Immunopharmacol., 2020, 84, 106495.
[http://dx.doi.org/10.1016/j.intimp.2020.106495] [PMID: 32298965]
[169]
Biffi, G.; Tuveson, D.A. Diversity and biology of cancer-associated fibroblasts. Physiol. Rev., 2021, 101(1), 147-176.
[http://dx.doi.org/10.1152/physrev.00048.2019] [PMID: 32466724]
[170]
Sotgia, F.; Martinez-Outschoorn, U.E.; Howell, A.; Pestell, R.G.; Pavlides, S.; Lisanti, M.P. Caveolin-1 and cancer metabolism in the tumor microenvironment: Markers, models, and mechanisms. Annu. Rev. Pathol., 2012, 7(1), 423-467.
[http://dx.doi.org/10.1146/annurev-pathol-011811-120856] [PMID: 22077552]
[171]
Martínez-Outschoorn, U.E.; Trimmer, C.; Lin, Z.; Whitaker-Menezes, D.; Chiavarina, B.; Zhou, J.; Wang, C.; Pavlides, S.; Martinez-Cantarin, M.P.; Capozza, F.; Witkiewicz, A.K.; Flomenberg, N.; Howell, A.; Pestell, R.G.; Caro, J.; Lisanti, M.P.; Sotgia, F. Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle, 2010, 9(17), 3515-3533.
[http://dx.doi.org/10.4161/cc.9.17.12928] [PMID: 20855962]
[172]
Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Li, X.; Cao, K.; Deng, H.; He, Y.; Liao, Q.; Xiang, B.; Zhou, M.; Guo, C.; Zeng, Z.; Li, G.; Li, X.; Xiong, W. The role of microenvironment in tumor angiogenesis. J. Exp. Clin. Cancer Res., 2020, 39(1), 204.
[http://dx.doi.org/10.1186/s13046-020-01709-5] [PMID: 32993787]
[173]
De Palma, M.; Biziato, D.; Petrova, T.V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer, 2017, 17(8), 457-474.
[http://dx.doi.org/10.1038/nrc.2017.51] [PMID: 28706266]
[174]
El Alaoui-Lasmaili, K.; Faivre, B. Antiangiogenic therapy: Markers of response, “normalization” and resistance. Crit. Rev. Oncol. Hematol., 2018, 128, 118-129.
[http://dx.doi.org/10.1016/j.critrevonc.2018.06.001] [PMID: 29958627]
[175]
Frezzetti, D.; Gallo, M.; Maiello, M.R.; D’Alessio, A.; Esposito, C.; Chicchinelli, N.; Normanno, N.; De Luca, A. VEGF as a potential target in lung cancer. Expert Opin. Ther. Targets, 2017, 21(10), 959-966.
[http://dx.doi.org/10.1080/14728222.2017.1371137] [PMID: 28831824]
[176]
Itatani, Y.; Kawada, K.; Yamamoto, T.; Sakai, Y. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway. Int. J. Mol. Sci., 2018, 19(4), 1232.
[http://dx.doi.org/10.3390/ijms19041232] [PMID: 29670046]
[177]
Carmeliet, P.; Jain, R.K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov., 2011, 10(6), 417-427.
[http://dx.doi.org/10.1038/nrd3455] [PMID: 21629292]
[178]
Jain, R.K. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science, 2005, 307(5706), 58-62.
[http://dx.doi.org/10.1126/science.1104819] [PMID: 15637262]
[179]
Matuszewska, K.; Pereira, M.; Petrik, D.; Lawler, J.; Petrik, J. Normalizing tumor vasculature to reduce hypoxia, enhance perfusion, and optimize therapy uptake. Cancers, 2021, 13(17), 4444.
[http://dx.doi.org/10.3390/cancers13174444] [PMID: 34503254]
[180]
Viallard, C.; Larrivée, B. Tumor angiogenesis and vascular normalization: Alternative therapeutic targets. Angiogenesis, 2017, 20(4), 409-426.
[http://dx.doi.org/10.1007/s10456-017-9562-9] [PMID: 28660302]
[181]
Park, J.S.; Kim, I.K.; Han, S.; Park, I.; Kim, C.; Bae, J.; Oh, S.J.; Lee, S.; Kim, J.H.; Woo, D.C.; He, Y.; Augustin, H.G.; Kim, I.; Lee, D.; Koh, G.Y. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell, 2016, 30(6), 953-967.
[http://dx.doi.org/10.1016/j.ccell.2016.10.018] [PMID: 27960088]
[182]
Schaaf, M.B.; Houbaert, D.; Meçe, O.; To, S.K.; Ganne, M.; Maes, H.; Agostinis, P. Lysosomal pathways and autophagy distinctively control endothelial cell behavior to affect tumor vasculature. Front. Oncol., 2019, 9, 171.
[http://dx.doi.org/10.3389/fonc.2019.00171] [PMID: 30949450]
[183]
Tian, L.; Goldstein, A.; Wang, H.; Ching Lo, H.; Sun Kim, I.; Welte, T.; Sheng, K.; Dobrolecki, L.E.; Zhang, X.; Putluri, N.; Phung, T.L.; Mani, S.A.; Stossi, F.; Sreekumar, A.; Mancini, M.A.; Decker, W.K.; Zong, C.; Lewis, M.T.; Zhang, X.H. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature, 2017, 544(7649), 250-254.
[http://dx.doi.org/10.1038/nature21724] [PMID: 28371798]
[184]
Liu, Z.; Wang, Y.; Huang, Y.; Kim, B.Y.S.; Shan, H.; Wu, D.; Jiang, W. Tumor vasculatures: A new target for cancer immunotherapy. Trends Pharmacol. Sci., 2019, 40(9), 613-623.
[http://dx.doi.org/10.1016/j.tips.2019.07.001] [PMID: 31331639]
[185]
Maes, H.; Kuchnio, A.; Carmeliet, P.; Agostinis, P. Chloroquine anticancer activity is mediated by autophagy-independent effects on the tumor vasculature. Mol. Cell. Oncol., 2015, 3(1), e970097.
[http://dx.doi.org/10.4161/23723548.2014.970097] [PMID: 27308577]
[186]
Maes, H.; Kuchnio, A.; Peric, A.; Moens, S.; Nys, K.; De Bock, K.; Quaegebeur, A.; Schoors, S.; Georgiadou, M.; Wouters, J.; Vinckier, S.; Vankelecom, H.; Garmyn, M.; Vion, A.C.; Radtke, F.; Boulanger, C.; Gerhardt, H.; Dejana, E.; Dewerchin, M.; Ghesquière, B.; Annaert, W.; Agostinis, P.; Carmeliet, P. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell, 2014, 26(2), 190-206.
[http://dx.doi.org/10.1016/j.ccr.2014.06.025] [PMID: 25117709]
[187]
Maes, H.; Kuchnio, A.; Carmeliet, P.; Agostinis, P. How to teach an old dog new tricks: Autophagy-independent action of chloroquine on the tumor vasculature. Autophagy, 2014, 10(11), 2082-2084.
[http://dx.doi.org/10.4161/auto.36259] [PMID: 25484095]
[188]
Yang, T.; Xiao, H.; Liu, X.; Wang, Z.; Zhang, Q.; Wei, N.; Guo, X. Vascular normalization: A new window opened for cancer therapies. Front. Oncol., 2021, 11, 719836.
[http://dx.doi.org/10.3389/fonc.2021.719836] [PMID: 34476218]
[189]
Hounjet, J.; Habets, R.; Schaaf, M.B.; Hendrickx, T.C.; Barbeau, L.M.O.; Yahyanejad, S.; Rouschop, K.M.; Groot, A.J.; Vooijs, M. The anti-malarial drug chloroquine sensitizes oncogenic NOTCH1 driven human T-ALL to γ-secretase inhibition. Oncogene, 2019, 38(27), 5457-5468.
[http://dx.doi.org/10.1038/s41388-019-0802-x] [PMID: 30967635]
[190]
Li, L.Q.; Pan, D.; Zhang, S.W. -Y-Xie, D.; Zheng, X.L.; Chen, H. Autophagy regulates chemoresistance of gastric cancer stem cells via the Notch signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(11), 3402-3407.
[http://dx.doi.org/10.26355/eurrev_201806_15162] [PMID: 29917191]
[191]
Lv, T.; Li, Z.; Xu, L.; Zhang, Y.; Chen, H.; Gao, Y. Chloroquine in combination with aptamer-modified nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to overcome drug resistance in EGFR-mutated non-small cell lung cancer. Acta Biomater., 2018, 76, 257-274.
[http://dx.doi.org/10.1016/j.actbio.2018.06.034] [PMID: 29960010]
[192]
López-Gil, J.C.; Martin-Hijano, L.; Hermann, P.C.; Sainz, B., Jr The CXCL12 crossroads in cancer stem cells and their niche. Cancers , 2021, 13(3), 469.
[http://dx.doi.org/10.3390/cancers13030469] [PMID: 33530455]
[193]
Walcher, L.; Kistenmacher, A.K.; Suo, H.; Kitte, R.; Dluczek, S.; Strauß, A.; Blaudszun, A.R.; Yevsa, T.; Fricke, S.; Kossatz-Boehlert, U. Cancer stem cells-origins and biomarkers: Perspectives for targeted personalized therapies. Front. Immunol., 2020, 11, 1280.
[http://dx.doi.org/10.3389/fimmu.2020.01280] [PMID: 32849491]
[194]
Chan, M.M.; Chen, R.; Fong, D. Targeting cancer stem cells with dietary phytochemical - Repositioned drug combinations. Cancer Lett., 2018, 433, 53-64.
[http://dx.doi.org/10.1016/j.canlet.2018.06.034] [PMID: 29960048]
[195]
Duan, H.; Liu, Y.; Gao, Z.; Huang, W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm. Sin. B, 2021, 11(1), 55-70.
[http://dx.doi.org/10.1016/j.apsb.2020.09.016] [PMID: 33532180]
[196]
Fong, D.; Christensen, C.T.; Chan, M.M. Targeting cancer stem cells with repurposed drugs to improve current therapies. Recent Pat. Anticancer Drug Discov., 2021, 16(2), 136-160.
[http://dx.doi.org/10.2174/1574892816666210208232251] [PMID: 33563159]
[197]
Vazquez-Martin, A.; López-Bonetc, E.; Cufí, S.; Oliveras-Ferraros, C.; Del Barco, S.; Martin-Castillo, B.; Menendez, J.A. Repositioning chloroquine and metformin to eliminate cancer stem cell traits in pre-malignant lesions. Drug Resist. Updat., 2011, 14(4-5), 212-223.
[http://dx.doi.org/10.1016/j.drup.2011.04.003] [PMID: 21600837]
[198]
Datta, S.; Choudhury, D.; Das, A.; Mukherjee, D.D.; Dasgupta, M.; Bandopadhyay, S.; Chakrabarti, G. Autophagy inhibition with chloroquine reverts paclitaxel resistance and attenuates metastatic potential in human nonsmall lung adenocarcinoma A549 cells via ROS mediated modulation of β-catenin pathway. Apoptosis, 2019, 24(5-6), 414-433.
[http://dx.doi.org/10.1007/s10495-019-01526-y] [PMID: 30767087]
[199]
Hao, C.; Liu, G.; Tian, G. Autophagy inhibition of cancer stem cells promotes the efficacy of cisplatin against non-small cell lung carcinoma. Ther. Adv. Respir. Dis., 2019, 13.
[http://dx.doi.org/10.1177/1753466619866097] [PMID: 31368411]
[200]
Song, Y.J.; Zhang, S.S.; Guo, X.L.; Sun, K.; Han, Z.P.; Li, R.; Zhao, Q.D.; Deng, W.J.; Xie, X.Q.; Zhang, J.W.; Wu, M.C.; Wei, L.X. Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett., 2013, 339(1), 70-81.
[http://dx.doi.org/10.1016/j.canlet.2013.07.021] [PMID: 23879969]
[201]
Bousquet, G.; El Bouchtaoui, M.; Sophie, T.; Leboeuf, C.; de Bazelaire, C.; Ratajczak, P.; Giacchetti, S.; de Roquancourt, A.; Bertheau, P.; Verneuil, L.; Feugeas, J.P.; Espié, M.; Janin, A. Targeting autophagic cancer stem-cells to reverse chemoresistance in human triple negative breast cancer. Oncotarget, 2017, 8(21), 35205-35221.
[http://dx.doi.org/10.18632/oncotarget.16925] [PMID: 28445132]
[202]
Choi, D.S.; Blanco, E.; Kim, Y.S.; Rodriguez, A.A.; Zhao, H.; Huang, T.H.; Chen, C.L.; Jin, G.; Landis, M.D.; Burey, L.A.; Qian, W.; Granados, S.M.; Dave, B.; Wong, H.H.; Ferrari, M.; Wong, S.T.; Chang, J.C. Chloroquine eliminates cancer stem cells through deregulation of Jak2 and DNMT1. Stem Cells, 2014, 32(9), 2309-2323.
[http://dx.doi.org/10.1002/stem.1746] [PMID: 24809620]
[203]
Liang, D.H.; Choi, D.S.; Ensor, J.E.; Kaipparettu, B.A.; Bass, B.L.; Chang, J.C. The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. Cancer Lett., 2016, 376(2), 249-258.
[http://dx.doi.org/10.1016/j.canlet.2016.04.002] [PMID: 27060208]
[204]
Stagni, V.; Kaminari, A.; Sideratou, Z.; Sakellis, E.; Vlahopoulos, S.A.; Tsiourvas, D. Targeting breast cancer stem-like cells using chloroquine encapsulated by a triphenylphosphonium-functionalized hyperbranched polymer. Int. J. Pharm., 2020, 585, 119465.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119465] [PMID: 32497731]
[205]
Sun, R.; Shen, S.; Zhang, Y.J.; Xu, C.F.; Cao, Z.T.; Wen, L.P.; Wang, J. Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials, 2016, 103, 44-55.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.038] [PMID: 27376558]
[206]
Firat, E.; Weyerbrock, A.; Gaedicke, S.; Grosu, A.L.; Niedermann, G. Chloroquine or chloroquine-PI3K/Akt pathway inhibitor combinations strongly promote γ-irradiation-induced cell death in primary stem-like glioma cells. PLoS One, 2012, 7(10), e47357.
[http://dx.doi.org/10.1371/journal.pone.0047357] [PMID: 23091617]
[207]
Balic, A.; Sørensen, M.D.; Trabulo, S.M.; Sainz, B., Jr; Cioffi, M.; Vieira, C.R.; Miranda-Lorenzo, I.; Hidalgo, M.; Kleeff, J.; Erkan, M.; Heeschen, C. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling. Mol. Cancer Ther., 2014, 13(7), 1758-1771.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0948] [PMID: 24785258]
[208]
Yue, D.; Zhang, D.; Shi, X.; Liu, S.; Li, A.; Wang, D.; Qin, G.; Ping, Y.; Qiao, Y.; Chen, X.; Wang, F.; Chen, R.; Zhao, S.; Wang, L.; Zhang, Y. Chloroquine inhibits stemness of esophageal squamous cell carcinoma cells through targeting CXCR4-STAT3 pathway. Front. Oncol., 2020, 10, 311.
[http://dx.doi.org/10.3389/fonc.2020.00311] [PMID: 32232002]
[209]
Roy, B.C.; Ahmed, I.; Ramalingam, S.; Jala, V.; Haribabu, B.; Ramamoorthy, P.; Ashcraft, J.; Valentino, J.; Anant, S.; Sampath, V.; Umar, S. Co-localization of autophagy-related protein p62 with cancer stem cell marker dclk1 may hamper dclk1's elimination during colon cancer development and progression. Oncotarget, 2019, 10(24), 2340-2354.
[http://dx.doi.org/10.18632/oncotarget.26684] [PMID: 31040926]
[210]
Al-Bari, M.A.A. Co-targeting of lysosome and mitophagy in cancer stem cells with chloroquine analogues and antibiotics. J. Cell. Mol. Med., 2020, 24(20), 11667-11679.
[http://dx.doi.org/10.1111/jcmm.15879] [PMID: 32935427]
[211]
Nazari, A.; Khorramdelazad, H.; Hassanshahi, G. Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer. Int. J. Clin. Oncol., 2017, 22(6), 991-1000.
[http://dx.doi.org/10.1007/s10147-017-1187-x] [PMID: 29022185]
[212]
Jung, M.J.; Rho, J.K.; Kim, Y.M.; Jung, J.E.; Jin, Y.B.; Ko, Y.G.; Lee, J.S.; Lee, S.J.; Lee, J.C.; Park, M.J. Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells. Oncogene, 2013, 32(2), 209-221.
[http://dx.doi.org/10.1038/onc.2012.37] [PMID: 22370645]
[213]
Saur, D.; Seidler, B.; Schneider, G.; Algül, H.; Beck, R.; Senekowitsch-Schmidtke, R.; Schwaiger, M.; Schmid, R.M. CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer. Gastroenterology, 2005, 129(4), 1237-1250.
[http://dx.doi.org/10.1053/j.gastro.2005.06.056] [PMID: 16230077]
[214]
Sun, X.; Cheng, G.; Hao, M.; Zheng, J.; Zhou, X.; Zhang, J.; Taichman, R.S.; Pienta, K.J.; Wang, J. CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev., 2010, 29(4), 709-722.
[http://dx.doi.org/10.1007/s10555-010-9256-x] [PMID: 20839032]
[215]
Wu, X.; Zhang, H.; Sui, Z.; Wang, Y.; Yu, Z. The biological role of the CXCL12/CXCR4 axis in esophageal squamous cell carcinoma. Cancer Biol. Med., 2021, 18(2), 401-410.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0140] [PMID: 33710803]
[216]
Wu, P.F.; Lu, Z.P.; Cai, B.B.; Tian, L.; Zou, C.; Jiang, K.R.; Miao, Y. Role of CXCL12/CXCR4 signaling axis in pancreatic cancer. Chin. Med. J., 2013, 126(17), 3371-3374.
[PMID: 24033967]
[217]
Würth, R.; Bajetto, A.; Harrison, J.K.; Barbieri, F.; Florio, T. CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment. Front. Cell. Neurosci., 2014, 8, 144.
[http://dx.doi.org/10.3389/fncel.2014.00144] [PMID: 24904289]
[218]
Zhang, J.; Liu, C.; Mo, X.; Shi, H.; Li, S. Mechanisms by which CXCR4/CXCL12 cause metastatic behavior in pancreatic cancer. Oncol. Lett., 2018, 15(2), 1771-1776.
[http://dx.doi.org/10.3892/ol.2017.7512] [PMID: 29434873]
[219]
Kim, J.; Yip, M.L.; Shen, X.; Li, H.; Hsin, L.Y.; Labarge, S.; Heinrich, E.L.; Lee, W.; Lu, J.; Vaidehi, N. Identification of anti-malarial compounds as novel antagonists to chemokine receptor CXCR4 in pancreatic cancer cells. PLoS One, 2012, 7(2), e31004.
[http://dx.doi.org/10.1371/journal.pone.0031004] [PMID: 22319600]
[220]
Xie, Y.; Wang, Y.; Li, J.; Hang, Y.; Oupický, D. Promise of chemokine network-targeted nanoparticles in combination nucleic acid therapies of metastatic cancer. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(2), e1528.
[http://dx.doi.org/10.1002/wnan.1528] [PMID: 29700990]
[221]
Yu, F.; Xie, Y.; Wang, Y.; Peng, Z.H.; Li, J.; Oupický, D. Chloroquine-containing HPMA copolymers as polymeric inhibitors of cancer cell migration mediated by the CXCR4/SDF-1 chemokine axis. ACS Macro Lett., 2016, 5(3), 342-345.
[http://dx.doi.org/10.1021/acsmacrolett.5b00857] [PMID: 27795873]
[222]
Yin, S.; Xia, C.; Wang, Y.; Wan, D.; Rao, J.; Tang, X.; Wei, J.; Wang, X.; Li, M.; Zhang, Z.; Liu, J.; He, Q. Dual receptor recognizing liposomes containing paclitaxel and hydroxychloroquine for primary and metastatic melanoma treatment via autophagy-dependent and independent pathways. J. Control. Release, 2018, 288, 148-160.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.015] [PMID: 30099017]
[223]
Alzahrani, B. The biology of toll-like receptor 9 and its role in cancer. Crit. Rev. Eukaryot. Gene Expr., 2020, 30(5), 457-474.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2020036214] [PMID: 33389882]
[224]
Zhou, Z.; Lin, L.; An, Y.; Zhan, M.; Chen, Y.; Cai, M.; Zhu, X.; Lu, L.; Zhu, K. The combination immunotherapy of TLR9 agonist and OX40 agonist via intratumoural injection for hepatocellular carcinoma. J. Hepatocell. Carcinoma, 2021, 8, 529-543.
[http://dx.doi.org/10.2147/JHC.S301375] [PMID: 34136421]
[225]
Ren, T.; Xu, L.; Jiao, S.; Wang, Y.; Cai, Y.; Liang, Y.; Zhou, Y.; Zhou, H.; Wen, Z. TLR9 signaling promotes tumor progression of human lung cancer cell in vivo. Pathol. Oncol. Res., 2009, 15(4), 623-630.
[http://dx.doi.org/10.1007/s12253-009-9162-0] [PMID: 19319670]
[226]
Gao, C.; Qiao, T.; Zhang, B.; Yuan, S.; Zhuang, X.; Luo, Y. TLR9 signaling activation at different stages in colorectal cancer and NF-kappaB expression. OncoTargets Ther., 2018, 11, 5963-5971.
[http://dx.doi.org/10.2147/OTT.S174274] [PMID: 30271180]
[227]
Luo, Q.; Zeng, L.; Tang, C.; Zhang, Z.; Chen, Y.; Zeng, C. TLR9 induces colitis-associated colorectal carcinogenesis by regulating NF-κB expression levels. Oncol. Lett., 2020, 20(4), 110.
[http://dx.doi.org/10.3892/ol.2020.11971] [PMID: 32863923]
[228]
Vlad, C.; Dina, C.; Kubelac, P.; Vlad, D.; Pop, B.; Achimas Cadariu, P. Expression of toll-like receptors in ovarian cancer. J. BUON, 2018, 23(6), 1725-1731.
[PMID: 30610800]
[229]
Schleimann, M.H.; Kobberø, M.L.; Vibholm, L.K.; Kjær, K.; Giron, L.B.; Busman-Sahay, K.; Chan, C.N.; Nekorchuk, M.; Schmidt, M.; Wittig, B.; Damsgaard, T.E.; Ahlburg, P.; Hellfritzsch, M.B.; Zuwala, K.; Rothemejer, F.H.; Olesen, R.; Schommers, P.; Klein, F.; Dweep, H.; Kossenkov, A.; Nyengaard, J.R.; Estes, J.D.; Abdel-Mohsen, M.; Østergaard, L.; Tolstrup, M.; Søgaard, O.S.; Denton, P.W. TLR9 agonist MGN1703 enhances B cell differentiation and function in lymph nodes. EBioMedicine, 2019, 45, 328-340.
[http://dx.doi.org/10.1016/j.ebiom.2019.07.005] [PMID: 31300344]
[230]
Schmoll, H.J.; Wittig, B.; Arnold, D.; Riera-Knorrenschild, J.; Nitsche, D.; Kroening, H.; Mayer, F.; Andel, J.; Ziebermayr, R.; Scheithauer, W. Maintenance treatment with the immunomodulator MGN1703, a Toll-like receptor 9 (TLR9) agonist, in patients with metastatic colorectal carcinoma and disease control after chemotherapy: A randomised, double-blind, placebo-controlled trial. J. Cancer Res. Clin. Oncol., 2014, 140(9), 1615-1624.
[http://dx.doi.org/10.1007/s00432-014-1682-7] [PMID: 24816725]
[231]
Weihrauch, M.R.; Richly, H.; von Bergwelt-Baildon, M.S.; Becker, H.J.; Schmidt, M.; Hacker, U.T.; Shimabukuro-Vornhagen, A.; Holtick, U.; Nokay, B.; Schroff, M.; Wittig, B.; Scheulen, M.E. Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur. J. Cancer, 2015, 51(2), 146-156.
[http://dx.doi.org/10.1016/j.ejca.2014.11.002] [PMID: 25480557]
[232]
Geboers, B.; Timmer, F.E.F.; Ruarus, A.H.; Pouw, J.E.E.; Schouten, E.A.C.; Bakker, J.; Puijk, R.S.; Nieuwenhuizen, S.; Dijkstra, M.; van den Tol, M.P.; de Vries, J.J.J.; Oprea-Lager, D.E. Menke-van der Houven van Oordt, C.W.; van der Vliet, H.J.; Wilmink, J.W.; Scheffer, H.J.; de Gruijl, T.D.; Meijerink, M.R. Irreversible electroporation and nivolumab combined with intratumoral administration of a toll-like receptor ligand, as a means of in vivo vaccination for metastatic pancreatic ductal adenocarcinoma (PANFIRE-III). A phase-I study protocol. Cancers, 2021, 13(15), 3902.
[http://dx.doi.org/10.3390/cancers13153902] [PMID: 34359801]
[233]
Kennedy, E.; Coulter, E.; Halliwell, E.; Profitos-Peleja, N.; Walsby, E.; Clark, B.; Phillips, E.H.; Burley, T.A.; Mitchell, S.; Devereux, S.; Fegan, C.D.; Jones, C.I.; Johnston, R.; Chevassut, T.; Schulz, R.; Seiffert, M.; Agathanggelou, A.; Oldreive, C.; Davies, N.; Stankovic, T.; Liloglou, T.; Pepper, C.; Pepper, A.G.S. TLR9 expression in chronic lymphocytic leukemia identifies a promigratory subpopulation and novel therapeutic target. Blood, 2021, 137(22), 3064-3078.
[http://dx.doi.org/10.1182/blood.2020005964] [PMID: 33512408]
[234]
Kim, Y.J.; Schiopu, E.; Dankó, K.; Mozaffar, T.; Chunduru, S.; Lees, K.; Goyal, N.A.; Sarazin, J.; Fiorentino, D.F.; Sarin, K.Y. A phase 2, double-blinded, placebo-controlled trial of toll-like receptor 7/8/9 antagonist, IMO-8400, in dermatomyositis. J. Am. Acad. Dermatol., 2021, 84(4), 1160-1162.
[http://dx.doi.org/10.1016/j.jaad.2020.07.122] [PMID: 32781178]
[235]
Kundu, B.; Raychaudhuri, D.; Mukherjee, A.; Sinha, B.P.; Sarkar, D.; Bandopadhyay, P.; Pal, S.; Das, N.; Dey, D.; Ramarao, K.; Nagireddy, K.; Ganguly, D.; Talukdar, A. Systematic optimization of potent and orally bioavailable purine scaffold as a dual inhibitor of toll-like receptors 7 and 9. J. Med. Chem., 2021, 64(13), 9279-9301.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00532] [PMID: 34142551]
[236]
Mohamed, F.E.Z.; Jalan, R.; Minogue, S.; Andreola, F.; Habtesion, A.; Hall, A.; Winstanley, A.; Damink, S.O.; Davies, N.; Luong, T.V.; Dhillon, A.; Mookerjee, R.; Dhar, D.; Al-Jehani, R.M. Inhibition of TLR7 and TLR9 reduces human cholangiocarcinoma cell proliferation and tumor development. Dig. Dis. Sci., 2021, 67(5), 1806-1821.
[http://dx.doi.org/10.1007/s10620-021-06973-9] [PMID: 33939146]
[237]
Talukdar, A.; Ganguly, D.; Roy, S.; Das, N.; Sarkar, D. Structural evolution and translational potential for agonists and antagonists of endosomal toll-like receptors. J. Med. Chem., 2021, 64(12), 8010-8041.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00300] [PMID: 34107682]
[238]
Jin, Y.; Zhuang, Y.; Dong, X.; Liu, M. Development of CpG oligodeoxynucleotide TLR9 agonists in anti-cancer therapy. Expert Rev. Anticancer Ther., 2021, 21(8), 841-851.
[http://dx.doi.org/10.1080/14737140.2021.1915136] [PMID: 33831324]
[239]
Karime, C.; Wang, J.; Woodhead, G.; Mody, K.; Hennemeyer, C.T.; Borad, M.J.; Mahadevan, D.; Chandana, S.R.; Babiker, H. Tilsotolimod: An investigational synthetic toll-like receptor 9 (TLR9) agonist for the treatment of refractory solid tumors and melanoma. Expert Opin. Investig. Drugs, 2022, 31(1), 1-13.
[http://dx.doi.org/10.1080/13543784.2022.2019706] [PMID: 34913781]
[240]
Zawit, M.; Swami, U.; Awada, H.; Arnouk, J.; Milhem, M.; Zakharia, Y. Current status of intralesional agents in treatment of malignant melanoma. Ann. Transl. Med., 2021, 9(12), 1038.
[http://dx.doi.org/10.21037/atm-21-491] [PMID: 34277838]
[241]
Zhang, Z.; Kuo, J.C.; Yao, S.; Zhang, C.; Khan, H.; Lee, R.J. CpG oligodeoxynucleotides for anticancer monotherapy from preclinical stages to clinical trials. Pharmaceutics, 2021, 14(1), 73.
[http://dx.doi.org/10.3390/pharmaceutics14010073] [PMID: 35056969]
[242]
Cheng, Y.; Lemke-Miltner, C.D.; Wongpattaraworakul, W.; Wang, Z.; Chan, C.H.F.; Salem, A.K.; Weiner, G.J.; Simons, A.L. In situ immunization of a TLR9 agonist virus-like particle enhances anti-PD1 therapy. J. Immunother. Cancer, 2020, 8(2), e000940.
[http://dx.doi.org/10.1136/jitc-2020-000940] [PMID: 33060147]
[243]
Chuang, Y.C.; Tseng, J.C.; Huang, L.R.; Huang, C.M.; Huang, C.F.; Chuang, T.H. Adjuvant effect of toll-like receptor 9 activation on cancer immunotherapy using checkpoint blockade. Front. Immunol., 2020, 11, 1075.
[http://dx.doi.org/10.3389/fimmu.2020.01075] [PMID: 32547560]
[244]
Cohen, E.E.W.; Nabell, L.; Wong, D.J.; Day, T.; Daniels, G.A.; Milhem, M.; Deva, S.; Jameson, M.; Guntinas-Lichius, O.; Almubarak, M.; Strother, M.; Whitman, E.; Chisamore, M.; Obiozor, C.; Bagulho, T.; Gomez-Romo, J.; Guiducci, C.; Janssen, R.; Gamelin, E.; Algazi, A.P. Intralesional SD-101 in combination with pembrolizumab in anti-PD-1 treatment-naïve head and neck squamous cell carcinoma: Results from a multicenter, phase II trial. Clin. Cancer Res., 2022, 28(6), 1157-1166.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-1411] [PMID: 34965944]
[245]
Garon, E.B.; Spira, A.I.; Johnson, M.; Bazhenova, L.; Leach, J.; Cummings, A.L.; Candia, A.; Coffman, R.L.; Janatpour, M.J.; Janssen, R.; Gamelin, E.; Chow, L.Q.M. A phase Ib open-label, multicenter study of inhaled DV281, a TLR9 agonist, in combination with nivolumab in patients with advanced or metastatic non-small cell lung cancer. Clin. Cancer Res., 2021, 27(16), 4566-4573.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-0263] [PMID: 34108179]
[246]
Haymaker, C.; Johnson, D.H.; Murthy, R.; Bentebibel, S.E.; Uemura, M.I.; Hudgens, C.W.; Safa, H.; James, M.; Andtbacka, R.H.I.; Johnson, D.B.; Shaheen, M.; Davies, M.A.; Rahimian, S.; Chunduru, S.K.; Milton, D.R.; Tetzlaff, M.T.; Overwijk, W.W.; Hwu, P.; Gabrail, N.; Agrawal, S.; Doolittle, G.; Puzanov, I.; Markowitz, J.; Bernatchez, C.; Diab, A. Tilsotolimod with ipilimumab drives tumor responses in anti-PD-1 refractory melanoma. Cancer Discov., 2021, 11(8), 1996-2013.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1546] [PMID: 33707233]
[247]
Kapp, K.; Volz, B.; Oswald, D.; Wittig, B.; Baumann, M.; Schmidt, M. Beneficial modulation of the tumor microenvironment and generation of anti-tumor responses by TLR9 agonist lefitolimod alone and in combination with checkpoint inhibitors. OncoImmunology, 2019, 8(12), e1659096.
[http://dx.doi.org/10.1080/2162402X.2019.1659096] [PMID: 31741757]
[248]
Ribas, A.; Medina, T.; Kirkwood, J.M.; Zakharia, Y.; Gonzalez, R.; Davar, D.; Chmielowski, B.; Campbell, K.M.; Bao, R.; Kelley, H.; Morris, A.; Mauro, D.; Wooldridge, J.E.; Luke, J.J.; Weiner, G.J.; Krieg, A.M.; Milhem, M.M. Overcoming PD-1 blockade resistance with CpG-A toll-like receptor 9 agonist vidutolimod in patients with metastatic melanoma. Cancer Discov., 2021, 11(12), 2998-3007.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0425] [PMID: 34326162]
[249]
Sato-Kaneko, F.; Yao, S.; Ahmadi, A.; Zhang, S.S.; Hosoya, T.; Kaneda, M.M.; Varner, J.A.; Pu, M.; Messer, K.S.; Guiducci, C.; Coffman, R.L.; Kitaura, K.; Matsutani, T.; Suzuki, R.; Carson, D.A.; Hayashi, T.; Cohen, E.E. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight, 2017, 2(18), e93397.
[http://dx.doi.org/10.1172/jci.insight.93397] [PMID: 28931759]
[250]
Li, T.; Hua, C.; Yue, W.; Wu, J.; Lv, X.; Wei, Q.; Zhu, S.; Zang, G.; Cui, J.; Liu, Y.J.; Chen, J. Discrepant antitumor efficacies of three CpG oligodeoxynucleotide classes in monotherapy and co-therapy with PD-1 blockade. Pharmacol. Res., 2020, 161, 105293.
[http://dx.doi.org/10.1016/j.phrs.2020.105293] [PMID: 33176206]
[251]
Reilley, M.J.; Morrow, B.; Ager, C.R.; Liu, A.; Hong, D.S.; Curran, M.A. TLR9 activation cooperates with T cell checkpoint blockade to regress poorly immunogenic melanoma. J. Immunother. Cancer, 2019, 7(1), 323.
[http://dx.doi.org/10.1186/s40425-019-0811-x] [PMID: 31771649]
[252]
Wang, D.; Jiang, W.; Zhu, F.; Mao, X.; Agrawal, S. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. Int. J. Oncol., 2018, 53(3), 1193-1203.
[http://dx.doi.org/10.3892/ijo.2018.4456] [PMID: 29956749]
[253]
Calles, A.; Aguado, G.; Sandoval, C.; Álvarez, R. The role of immunotherapy in small cell lung cancer. Clin. Transl. Oncol., 2019, 21(8), 961-976.
[http://dx.doi.org/10.1007/s12094-018-02011-9] [PMID: 30637710]
[254]
Schmidt, M.; Hagner, N.; Marco, A.; König-Merediz, S.A.; Schroff, M.; Wittig, B. Design and structural requirements of the potent and safe TLR-9 agonistic immunomodulator MGN1703. Nucleic Acid Ther., 2015, 25(3), 130-140.
[http://dx.doi.org/10.1089/nat.2015.0533] [PMID: 25826686]
[255]
Karapetyan, L.; Luke, J.J.; Davar, D. Toll-like receptor 9 agonists in cancer. OncoTargets Ther., 2020, 13, 10039-10060.
[http://dx.doi.org/10.2147/OTT.S247050] [PMID: 33116588]
[256]
Thomas, M.; Ponce-Aix, S.; Navarro, A.; Riera-Knorrenschild, J.; Schmidt, M.; Wiegert, E.; Kapp, K.; Wittig, B.; Mauri, C.; Dómine Gómez, M.; Kollmeier, J.; Sadjadian, P.; Fröhling, K.P.; Huber, R.M.; Wolf, M.; Pall, G.; Surmont, V.; Bosquee, L.; Germonpré, P.; Brückl, W.; Grah, C.; Herzmann, C.; Leistner, R.; Meyer, A.; Müller, L.; Schmalz, O.; Scholz, C.; Schröder, M.; Serke, M.; Wesseler, C.; Brandts, C.; Kopp, H-G.; Blau, W.; Griesinger, F.; Campelo, M.R.G.; Garcia, Y.G.; Perez, J.M.T. Immunotherapeutic maintenance treatment with toll-like receptor 9 agonist lefitolimod in patients with extensive-stage small-cell lung cancer: Results from the exploratory, controlled, randomized, international phase II IMPULSE study. Ann. Oncol., 2018, 29(10), 2076-2084.
[http://dx.doi.org/10.1093/annonc/mdy326] [PMID: 30137193]
[257]
Moreira, D.; Zhang, Q.; Hossain, D.M.; Nechaev, S.; Li, H.; Kowolik, C.M.; D’Apuzzo, M.; Forman, S.; Jones, J.; Pal, S.K.; Kortylewski, M. TLR9 signaling through NF-κB/RELA and STAT3 promotes tumor-propagating potential of prostate cancer cells. Oncotarget, 2015, 6(19), 17302-17313.
[http://dx.doi.org/10.18632/oncotarget.4029] [PMID: 26046794]
[258]
Qian, J.; Meng, H.; Lv, B.; Wang, J.; Lu, Y.; Li, W.; Zhao, S. TLR9 expression is associated with PD-L1 expression and indicates a poor prognosis in patients with peripheral T-cell lymphomas. Pathol. Res. Pract., 2020, 216(3), 152703.
[http://dx.doi.org/10.1016/j.prp.2019.152703] [PMID: 31879046]
[259]
Zhang, Y.; Wang, Q.; Ma, A.; Li, Y.; Li, R.; Wang, Y. Functional expression of TLR9 in esophageal cancer. Oncol. Rep., 2014, 31(5), 2298-2304.
[http://dx.doi.org/10.3892/or.2014.3095] [PMID: 24647486]
[260]
Di, J.M.; Pang, J.; Sun, Q.P.; Zhang, Y.; Fang, Y.Q.; Liu, X.P.; Zhou, J.H.; Ruan, X.X.; Gao, X. Toll-like receptor 9 agonists up-regulates the expression of cyclooxygenase-2 via activation of NF-kappaB in prostate cancer cells. Mol. Biol. Rep., 2010, 37(4), 1849-1855.
[http://dx.doi.org/10.1007/s11033-009-9620-5] [PMID: 19618291]
[261]
Kuznik, A.; Bencina, M.; Svajger, U.; Jeras, M.; Rozman, B.; Jerala, R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J. Immunol., 2011, 186(8), 4794-4804.
[http://dx.doi.org/10.4049/jimmunol.1000702] [PMID: 21398612]
[262]
Schrezenmeier, E.; Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat. Rev. Rheumatol., 2020, 16(3), 155-166.
[http://dx.doi.org/10.1038/s41584-020-0372-x] [PMID: 32034323]
[263]
Di, J.M.; Pang, J.; Pu, X.Y.; Zhang, Y.; Liu, X.P.; Fang, Y.Q.; Ruan, X.X.; Gao, X. Toll-like receptor 9 agonists promote IL-8 and TGF-beta1 production via activation of nuclear factor kappaB in PC-3 cells. Cancer Genet. Cytogenet., 2009, 192(2), 60-67.
[http://dx.doi.org/10.1016/j.cancergencyto.2009.03.006] [PMID: 19596255]
[264]
Zhang, Y.; Li, Y.; Li, Y.; Li, R.; Ma, Y.; Wang, H.; Wang, Y. Chloroquine inhibits MGC803 gastric cancer cell migration via the Toll-like receptor 9/nuclear factor kappa B signaling pathway. Mol. Med. Rep., 2015, 11(2), 1366-1371.
[http://dx.doi.org/10.3892/mmr.2014.2839] [PMID: 25369757]
[265]
Mohamed, F.E.; Al-Jehani, R.M.; Minogue, S.S.; Andreola, F.; Winstanley, A.; Olde Damink, S.W.; Habtesion, A.; Malagó, M.; Davies, N.; Luong, T.V.; Dhillon, A.P.; Mookerjee, R.P.; Dhar, D.K.; Jalan, R. Effect of toll-like receptor 7 and 9 targeted therapy to prevent the development of hepatocellular carcinoma. Liver Int., 2015, 35(3), 1063-1076.
[http://dx.doi.org/10.1111/liv.12626] [PMID: 24990399]
[266]
Sandholm, J.; Tuomela, J.; Kauppila, J.H.; Harris, K.W.; Graves, D.; Selander, K.S. Hypoxia regulates toll-like receptor-9 expression and invasive function in human brain cancer cells in vitro. Oncol. Lett., 2014, 8(1), 266-274.
[http://dx.doi.org/10.3892/ol.2014.2095] [PMID: 24959259]
[267]
Amésquita, L.; Cruz-Briceño, M.N.; Prieto, Z. Damage to human lymphocyte DNA from chloroquine effect. Rev. Peru. Med. Exp. Salud Publica, 2018, 35(3), 471-475.
[http://dx.doi.org/10.17843/rpmesp.2018.353.3166] [PMID: 30517508]
[268]
Kwakye-Berko, F.; Meshnick, S.R. Binding of chloroquine to DNA. Mol. Biochem. Parasitol., 1989, 35(1), 51-55.
[http://dx.doi.org/10.1016/0166-6851(89)90141-2] [PMID: 2761572]
[269]
Sternglanz, H.; Yielding, K.L.; Pruitt, K.M. Nuclear magnetic resonance studies of the interaction of chloroquine diphosphate with adenosine 5′-phosphate and other nucleotides. Mol. Pharmacol., 1969, 5(4), 376-381.
[PMID: 5803387]
[270]
Chen, Y.; Wang, T.; Xie, P.; Song, Y.; Wang, J.; Cai, Z. Mass spectrometry imaging revealed alterations of lipid metabolites in multicellular tumor spheroids in response to hydroxychloroquine. Anal. Chim. Acta, 2021, 1184, 339011.
[http://dx.doi.org/10.1016/j.aca.2021.339011] [PMID: 34625248]
[271]
King, M.A.; Ganley, I.G.; Flemington, V. Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells. Oncogene, 2016, 35(34), 4518-4528.
[http://dx.doi.org/10.1038/onc.2015.511] [PMID: 26853465]
[272]
Cotton, D.W.; Sutorius, A.H. Inhibiting effect of some antimalarial substances on glucose-6-phosphate dehydrogenase. Nature, 1971, 233(5316), 197.
[http://dx.doi.org/10.1038/233197a0] [PMID: 4939179]
[273]
Choi, M.M.; Kim, E.A.; Choi, S.Y.; Kim, T.U.; Cho, S.W.; Yang, S.J. Inhibitory properties of nerve-specific human glutamate dehydrogenase isozyme by chloroquine. J. Biochem. Mol. Biol., 2007, 40(6), 1077-1082.
[http://dx.doi.org/10.5483/BMBRep.2007.40.6.1077] [PMID: 18047806]
[274]
Jarzyna, R.; Kiersztan, A.; Lisowa, O.; Bryła, J. The inhibition of gluconeogenesis by chloroquine contributes to its hypoglycaemic action. Eur. J. Pharmacol., 2001, 428(3), 381-388.
[http://dx.doi.org/10.1016/S0014-2999(01)01221-3] [PMID: 11689198]
[275]
Peterse, E.F.P.; Niessen, B.; Addie, R.D.; de Jong, Y.; Cleven, A.H.G.; Kruisselbrink, A.B.; van den Akker, B.E.W.M.; Molenaar, R.J.; Cleton-Jansen, A.M.; Bovée, J.V.M.G. Targeting glutaminolysis in chondrosarcoma in context of the IDH1/2 mutation. Br. J. Cancer, 2018, 118(8), 1074-1083.
[http://dx.doi.org/10.1038/s41416-018-0050-9] [PMID: 29576625]
[276]
Liu-Kreyche, P.; Shen, H.; Marino, A.M.; Iyer, R.A.; Humphreys, W.G.; Lai, Y. Lysosomal P-gp-MDR1 confers drug resistance of brentuximab vedotin and its cytotoxic payload monomethyl auristatin E in tumor cells. Front. Pharmacol., 2019, 10, 749.
[http://dx.doi.org/10.3389/fphar.2019.00749] [PMID: 31379564]
[277]
Li, W.; Zhang, H.; Assaraf, Y.G.; Zhao, K.; Xu, X.; Xie, J.; Yang, D.H.; Chen, Z.S. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist. Updat., 2016, 27, 14-29.
[http://dx.doi.org/10.1016/j.drup.2016.05.001] [PMID: 27449595]
[278]
Mohammad, I.S.; He, W.; Yin, L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed. Pharmacother., 2018, 100, 335-348.
[http://dx.doi.org/10.1016/j.biopha.2018.02.038] [PMID: 29453043]
[279]
Rijpma, S.R.; van den Heuvel, J.J.; van der Velden, M.; Sauerwein, R.W.; Russel, F.G.; Koenderink, J.B. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity. Malar. J., 2014, 13(1), 359.
[http://dx.doi.org/10.1186/1475-2875-13-359] [PMID: 25218605]
[280]
Vezmar, M.; Georges, E. Direct binding of chloroquine to the multidrug resistance protein (MRP): Possible role for MRP in chloroquine drug transport and resistance in tumor cells. Biochem. Pharmacol., 1998, 56(6), 733-742.
[http://dx.doi.org/10.1016/S0006-2952(98)00217-2] [PMID: 9751078]
[281]
Gao, M.; Xu, Y.; Qiu, L. Sensitization of multidrug-resistant malignant cells by liposomes co-encapsulating doxorubicin and chloroquine through autophagic inhibition. J. Liposome Res., 2017, 27(2), 151-160.
[http://dx.doi.org/10.1080/08982104.2016.1185731] [PMID: 27250110]
[282]
Kim, J.H.; Choi, A.R.; Kim, Y.K.; Yoon, S. Co-treatment with the anti-malarial drugs mefloquine and primaquine highly sensitizes drug-resistant cancer cells by increasing P-gp inhibition. Biochem. Biophys. Res. Commun., 2013, 441(3), 655-660.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.095] [PMID: 24284282]
[283]
Telbisz, Á.; Ambrus, C.; Mózner, O.; Szabó, E.; Várady, G.; Bakos, É.; Sarkadi, B.; Özvegy-Laczka, C. Interactions of potential anti-COVID-19 compounds with multispecific ABC and OATP drug transporters. Pharmaceutics, 2021, 13(1), 81.
[http://dx.doi.org/10.3390/pharmaceutics13010081] [PMID: 33435273]
[284]
Vezmar, M.; Georges, E. Reversal of MRP-mediated doxorubicin resistance with quinoline-based drugs. Biochem. Pharmacol., 2000, 59(10), 1245-1252.
[http://dx.doi.org/10.1016/S0006-2952(00)00270-7] [PMID: 10736425]
[285]
Wang, F.; Zhang, Z.; Leung, W.T.; Chen, J.; Yi, J.; Ying, C.; Yuan, M.; Wang, M.; Zhang, N.; Qiu, X.; Wang, L.; Wei, H. Hydroxychloroquine reverses the drug resistance of leukemic K562/ADM cells by inhibiting autophagy. Mol. Med. Rep., 2019, 20(4), 3883-3892.
[http://dx.doi.org/10.3892/mmr.2019.10621] [PMID: 31485616]
[286]
Yin, W.; Xu, J.; Mao, Y. Synergistic effects of autophagy inhibitors combined with cisplatin against cisplatin-resistant nasopharyngeal cancer cells. Biochem. Cell Biol., 2021, 99(3), 322-329.
[http://dx.doi.org/10.1139/bcb-2020-0283] [PMID: 34038188]
[287]
Irvine, D.J.; Dane, E.L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol., 2020, 20(5), 321-334.
[http://dx.doi.org/10.1038/s41577-019-0269-6] [PMID: 32005979]
[288]
Liu, L.; Ren, J.; He, Z.; Men, K.; Mao, Y.; Ye, T.; Chen, H.; Li, L.; Xu, B.; Wei, Y.; Wei, X. Cholesterol-modified hydroxychloroquine-loaded nanocarriers in bleomycin-induced pulmonary fibrosis. Sci. Rep., 2017, 7(1), 10737.
[http://dx.doi.org/10.1038/s41598-017-11450-3] [PMID: 28878315]
[289]
Gao, A.; Hu, X.L.; Saeed, M.; Chen, B.F.; Li, Y.P.; Yu, H.J. Overview of recent advances in liposomal nanoparticle-based cancer immunotherapy. Acta Pharmacol. Sin., 2019, 40(9), 1129-1137.
[http://dx.doi.org/10.1038/s41401-019-0281-1] [PMID: 31371782]
[290]
Kotcherlakota, R.; Rahaman, S.T.; Patra, C.R. Nanomedicine for cancer therapy using autophagy: An overview. Curr. Top. Med. Chem., 2018, 18(30), 2599-2613.
[http://dx.doi.org/10.2174/1568026619666181224104838] [PMID: 30582477]
[291]
Jing, M.; Li, Y.; Wang, M.; Zhang, H.; Wei, P.; Zhou, Y.; Ishimwe, N.; Huang, X.; Wang, L.; Wen, L.; Wang, W.; Zhang, Y. Photoresponsive PAMAM-assembled nanocarrier loaded with autophagy inhibitor for synergistic cancer therapy. Small, 2021, 17(38), e2102295.
[http://dx.doi.org/10.1002/smll.202102295] [PMID: 34365730]
[292]
Stevens, D.M.; Crist, R.M.; Stern, S.T. Nanomedicine reformulation of chloroquine and hydroxychloroquine. Molecules, 2020, 26(1), 175.
[http://dx.doi.org/10.3390/molecules26010175] [PMID: 33396545]
[293]
Allemailem, K.S.; Almatroudi, A.; Alrumaihi, F.; Almatroodi, S.A.; Alkurbi, M.O.; Basfar, G.T.; Rahmani, A.H.; Khan, A.A. Novel approaches of dysregulating lysosome functions in cancer cells by specific drugs and its nanoformulations: A smart approach of modern therapeutics. Int. J. Nanomedicine, 2021, 16, 5065-5098.
[http://dx.doi.org/10.2147/IJN.S321343] [PMID: 34345172]
[294]
Tavakol, S.; Ashrafizadeh, M.; Deng, S.; Azarian, M.; Abdoli, A.; Motavaf, M.; Poormoghadam, D.; Khanbabaei, H.; Afshar, E.G.; Mandegary, A.; Pardakhty, A.; Yap, C.T.; Mohammadinejad, R.; Kumar, A.P. Autophagy modulators: Mechanistic aspects and drug delivery systems. Biomolecules, 2019, 9(10), 530.
[http://dx.doi.org/10.3390/biom9100530] [PMID: 31557936]
[295]
Yang, B.; Shi, J. Developing new cancer nanomedicines by repurposing old drugs. Angew. Chem. Int. Ed. Engl., 2020, 59(49), 21829-21838.
[http://dx.doi.org/10.1002/anie.202004317] [PMID: 32270570]
[296]
Yang, Y.; Guo, T.; Xu, J.; Xiong, Y.; Cui, X.; Ke, Y.; Wang, C. Micelle nanovehicles for co-delivery of Lepidium meyenii Walp. (maca) polysaccharide and chloroquine to tumor-associated macrophages for synergistic cancer immunotherapy. Int. J. Biol. Macromol., 2021, 189, 577-589.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.155] [PMID: 34450149]
[297]
Min, X.; Fang, M.; Huang, Z.; Liu, Y.; Huang, Y.; Wen, R.; Qian, T.; Wu, X. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage. Sci. Rep., 2015, 5(1), 12964.
[http://dx.doi.org/10.1038/srep12964] [PMID: 26261089]
[298]
Pelt, J.; Busatto, S.; Ferrari, M.; Thompson, E.A.; Mody, K.; Wolfram, J. Chloroquine and nanoparticle drug delivery: A promising combination. Pharmacol. Ther., 2018, 191, 43-49.
[http://dx.doi.org/10.1016/j.pharmthera.2018.06.007] [PMID: 29932886]
[299]
Wolfram, J.; Nizzero, S.; Liu, H.; Li, F.; Zhang, G.; Li, Z.; Shen, H.; Blanco, E.; Ferrari, M. A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Sci. Rep., 2017, 7(1), 13738.
[http://dx.doi.org/10.1038/s41598-017-14221-2] [PMID: 29062065]
[300]
Dos Reis, S.B.; de Oliveira Silva, J.; Garcia-Fossa, F.; Leite, E.A.; Malachias, A.; Pound-Lana, G.; Mosqueira, V.C.F.; Oliveira, M.C.; de Barros, A.L.B.; de Jesus, M.B. Mechanistic insights into the intracellular release of doxorubicin from pH-sensitive liposomes. Biomed. Pharmacother., 2021, 134, 110952.
[http://dx.doi.org/10.1016/j.biopha.2020.110952] [PMID: 33348307]
[301]
Panagiotaki, K.N.; Sideratou, Z.; Vlahopoulos, S.A.; Paravatou-Petsotas, M.; Zachariadis, M.; Khoury, N.; Zoumpourlis, V.; Tsiourvas, D. A triphenylphosphonium-functionalized mitochondriotropic nanocarrier for efficient co-delivery of doxorubicin and chloroquine and enhanced antineoplastic activity. Pharmaceuticals, 2017, 10(4), 91.
[http://dx.doi.org/10.3390/ph10040091] [PMID: 29160846]
[302]
Sun, J.H.; Ye, C.; Bai, E.H.; Zhang, L.L.; Huo, S.J.; Yu, H.H.; Xiang, S.Y.; Yu, S.Q. Co-delivery nanoparticles of doxorubicin and chloroquine for improving the anti-cancer effect in vitro. Nanotechnology, 2019, 30(8), 085101.
[http://dx.doi.org/10.1088/1361-6528/aaf51b] [PMID: 30523865]
[303]
Shao, M.; Zhu, W.; Lv, X.; Yang, Q.; Liu, X.; Xie, Y.; Tang, P.; Sun, L. Encapsulation of chloroquine and doxorubicin by MPEG-PLA to enhance anticancer effects by lysosomes inhibition in ovarian cancer. Int. J. Nanomedicine, 2018, 13, 8231-8245.
[http://dx.doi.org/10.2147/IJN.S174300] [PMID: 30584297]
[304]
Xu, S.; Zhong, Y.; Nie, C.; Pan, Y.; Adeli, M.; Haag, R. Co-delivery of doxorubicin and chloroquine by polyglycerol functionalized MoS2 nanosheets for efficient multidrug-resistant cancer therapy. Macromol. Biosci., 2021, 21(11), e2100233.
[http://dx.doi.org/10.1002/mabi.202100233] [PMID: 34411417]
[305]
Matsumoto, S.; Nakata, K.; Sagara, A.; Guan, W.; Ikenaga, N.; Ohuchida, K.; Nakamura, M. Efficient pre-treatment for pancreatic cancer using chloroquine-loaded nanoparticles targeting pancreatic stellate cells. Oncol. Lett., 2021, 22(2), 633.
[http://dx.doi.org/10.3892/ol.2021.12894] [PMID: 34267825]
[306]
Maghsoudnia, N.; Eftekhari, R.B.; Sohi, A.N.; Dorkoosh, F.A. Chloroquine assisted delivery of microRNA Mimic Let-7b to NSCLC cell line by PAMAM (G5) - HA nano-carrier. Curr. Drug Deliv., 2021, 18(1), 31-43.
[http://dx.doi.org/10.2174/1567201817666200804105017] [PMID: 32753014]
[307]
Chen, M.; Yang, D.; Sun, Y.; Liu, T.; Wang, W.; Fu, J.; Wang, Q.; Bai, X.; Quan, G.; Pan, X.; Wu, C. In situ self-assembly nanomicelle microneedles for enhanced photoimmunotherapy via autophagy regulation strategy. ACS Nano, 2021, 15(2), 3387-3401.
[http://dx.doi.org/10.1021/acsnano.0c10396] [PMID: 33576607]
[308]
González-Pastor, R.; Lancelot, A.; Morcuende-Ventura, V.; San Anselmo, M.; Sierra, T.; Serrano, J.L.; Martin-Duque, P. Combination chemotherapy with cisplatin and chloroquine: Effect of encapsulation in micelles formed by self-assembling hybrid dendritic-linear-dendritic block copolymers. Int. J. Mol. Sci., 2021, 22(10), 5223.
[http://dx.doi.org/10.3390/ijms22105223] [PMID: 34069278]
[309]
Arya, B.D.; Mittal, S.; Joshi, P.; Pandey, A.K.; Ramirez-Vick, J.E.; Singh, S.P. Graphene oxide-chloroquine nanoconjugate induce necroptotic death in A549 cancer cells through autophagy modulation. Nanomedicine, 2018, 13(18), 2261-2282.
[http://dx.doi.org/10.2217/nnm-2018-0086] [PMID: 30284495]
[310]
Ji, Y.; Liu, X.; Li, J.; Xie, X.; Huang, M.; Jiang, J.; Liao, Y.P.; Donahue, T.; Meng, H. Use of ratiometrically designed nanocarrier targeting CDK4/6 and autophagy pathways for effective pancreatic cancer treatment. Nat. Commun., 2020, 11(1), 4249.
[http://dx.doi.org/10.1038/s41467-020-17996-7] [PMID: 32843618]
[311]
Zarei, H.; Kazemi Oskuee, R.; Hanafi-Bojd, M.Y.; Gholami, L.; Ansari, L.; Malaekeh-Nikouei, B. Enhanced gene delivery by polyethyleneimine coated mesoporous silica nanoparticles. Pharm. Dev. Technol., 2019, 24(1), 127-132.
[http://dx.doi.org/10.1080/10837450.2018.1431930] [PMID: 29357725]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy