Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Repurposing of Various Current Medicines as Radioprotective Agents

Author(s): Rajwinder Kaur*, Damanpreet Kaur Lang, Harwinder Singh, Arpita Arora, Nikhil Garg and Balraj Saini

Volume 23, Issue 10, 2023

Published on: 15 June, 2022

Page: [1104 - 1121] Pages: 18

DOI: 10.2174/1871520622666220404090049

Price: $65

Abstract

Background: The side effects of ionising radiation include skin changes, dry mouth, hair loss, low blood count, and the mutagenic effect on normal cells when utilized in radiotherapy for cancer treatment. These radiations can cause damage to the cell membrane, lipids, proteins, and DNA and generate free radicals. Evidence reports stated that radiotherapy accounts for 17-19% of secondary malignancies, labelling this treatment option a double-edged sword.

Objective: Radioprotective molecules are used for mitigating radiotherapy's side effects. These agents show free radical scavenging, antioxidant, collagen synthesis inhibition, protease inhibition, immune stimulation, increased cytokine production, electron transfer, and toxicity reduction properties. The most frequently used amifostine has an array of cancer applications, showing multitarget action as nephroprotective to cisplatin and reducing the chances of xerostomia. Many other agents, such as metformin, edaravone, mercaptopropionylglycine, in specific diseases, such as diabetes, cerebral infarction, cystinuria, have shown radioprotective action. This article will discuss potentially repurposed radioprotectors that can be used in the clinical setting, along with a brief discussion on specific synthetic agents like amifostine and PrC-210.

Methods: Rigorous literature search using various electronic databases, such as PubMed, ScienceDirect, Scopus, EMBASE, Bentham Science, Cochrane Library, etc., was made. Peer-review research and review papers were selected, studied, reviewed, and analysed.

Conclusion: Safety and risk-free treatment can be guaranteed with the repurposed agents. Agents like metformin, captopril, nifedipine, simvastatin, and various others have shown potent radioprotective action in various studies. This review compiled repurposed synthetic radioprotective agents.

Keywords: Repurposed drugs, radioprotective agents, radiotherapy, radiation, free radicals, PrC-210.

Graphical Abstract

[1]
Zhou, R.; Si, J.; Zhang, H.; Wang, Z.; Li, J.; Zhou, X.; Gan, L.; Liu, Y. The effects of X-ray radiation on the eye development of zebrafish. Hum. Exp. Toxicol., 2014, 33(10), 1040-1050.
[http://dx.doi.org/10.1177/0960327114522278] [PMID: 24522107]
[2]
Holley, A.K.; Miao, L.; St Clair, D.K.; St Clair, W.H. Redox-modulated phenomena and radiation therapy: The central role of superoxide dismutases. Antioxid. Redox Signal., 2014, 20(10), 1567-1589.
[http://dx.doi.org/10.1089/ars.2012.5000] [PMID: 24094070]
[3]
Zakariya, N.I.; Kahn, M.T. Benefits and biological effects of ionizing radiation. Sch. Acad. J. Biosci., 2014, 2(9), 583-591.
[4]
Koukourakis, M.I. Radiation damage and radioprotectants: New concepts in the era of molecular medicine. Br. J. Radiol., 2012, 85(1012), 313-330.
[http://dx.doi.org/10.1259/bjr/16386034] [PMID: 22294702]
[5]
Roychoudhuri, R.; Evans, H.; Robinson, D.; Møller, H. Radiation-induced malignancies following radiotherapy for breast cancer. Br. J. Cancer, 2004, 91(5), 868-872.
[http://dx.doi.org/10.1038/sj.bjc.6602084] [PMID: 15292931]
[6]
Favier, O.; Heutte, N.; Stamatoullas-Bastard, A.; Carde, P.; Van’t Veer, M.B.; Aleman, B.M.; Noordijk, E.M.; Thomas, J.; Fermé, C.; Henry-Amar, M. European Organization for Research and Treatment of Cancer (EORTC) Lymphoma Group and the Groupe d’Etudes des Lymphomes de l’Adulte (GELA). Survival after Hodgkin lymphoma: Causes of death and excess mortality in patients treated in 8 consecutive trials. Cancer, 2009, 115(8), 1680-1691.
[http://dx.doi.org/10.1002/cncr.24178] [PMID: 19208428]
[7]
Travis, L.B.; Rabkin, C.S.; Brown, L.M.; Allan, J.M.; Alter, B.P.; Ambrosone, C.B.; Begg, C.B.; Caporaso, N.; Chanock, S.; DeMichele, A.; Figg, W.D.; Gospodarowicz, M.K.; Hall, E.J.; Hisada, M.; Inskip, P.; Kleinerman, R.; Little, J.B.; Malkin, D.; Ng, A.K.; Offit, K.; Pui, C.H.; Robison, L.L.; Rothman, N.; Shields, P.G.; Strong, L.; Taniguchi, T.; Tucker, M.A.; Greene, M.H. Cancer survivorship-genetic susceptibility and second primary cancers: Research strategies and recommendations. J. Natl. Cancer Inst., 2006, 98(1), 15-25.
[http://dx.doi.org/10.1093/jnci/djj001] [PMID: 16391368]
[8]
Fowler, J.F. Review: Total doses in fractionated radiotherapy--implications of new radiobiological data. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1984, 46(2), 103-120.
[http://dx.doi.org/10.1080/09553008414551181] [PMID: 6381354]
[9]
Boerma, M.; van der Wees, C.G.; Vrieling, H.; Svensson, J.P.; Wondergem, J.; van der Laarse, A.; Mullenders, L.H.; van Zeeland, A.A. Microarray analysis of gene expression profiles of cardiac myocytes and fibroblasts after mechanical stress, ionising or ultraviolet radiation. BMC Genomics, 2005, 6(1), 6.
[http://dx.doi.org/10.1186/1471-2164-6-6] [PMID: 15656902]
[10]
Tsoutsou, P.G.; Koukourakis, M.I. Radiation pneumonitis and fibrosis: Mechanisms underlying its pathogenesis and implications for future research. Int. J. Radiat. Oncol. Biol. Phys., 2006, 66(5), 1281-1293.
[http://dx.doi.org/10.1016/j.ijrobp.2006.08.058] [PMID: 17126203]
[11]
Ilnytskyy, Y.; Koturbash, I.; Kovalchuk, O. Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner. Environ. Mol. Mutagen., 2009, 50(2), 105-113.
[http://dx.doi.org/10.1002/em.20440] [PMID: 19107897]
[12]
Hall, E.J.; Hei, T.K. Genomic instability and bystander effects induced by high-LET radiation. Oncogene, 2003, 22(45), 7034-7042.
[http://dx.doi.org/10.1038/sj.onc.1206900] [PMID: 14557808]
[13]
Nosengo, N. Can you teach old drugs new tricks? Nature, 2016, 534(7607), 314-316.
[http://dx.doi.org/10.1038/534314a] [PMID: 27306171]
[14]
Hernandez, J.J.; Pryszlak, M.; Smith, L.; Yanchus, C.; Kurji, N.; Shahani, V.M.; Molinski, S.V. Giving drugs a second chance: Overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Front. Oncol., 2017, 7, 273.
[http://dx.doi.org/10.3389/fonc.2017.00273] [PMID: 29184849]
[15]
Ondetti, M.A.; Rubin, B.; Cushman, D.W. Design of specific inhibitors of angiotensin-converting enzyme: New class of orally active antihypertensive agents. Science, 1977, 196(4288), 441-444.
[http://dx.doi.org/10.1126/science.191908] [PMID: 191908]
[16]
Williams, G.H. Converting-enzyme inhibitors in the treatment of hypertension. N. Engl. J. Med., 1988, 319(23), 1517-1525.
[http://dx.doi.org/10.1056/NEJM198812083192305] [PMID: 3054561]
[17]
Martin, M.F.; Surrall, K.E.; McKenna, F.; Dixon, J.S.; Bird, H.A.; Wright, V. Captopril: A new treatment for rheumatoid arthritis? Lancet, 1984, 1(8390), 1325-1328.
[http://dx.doi.org/10.1016/S0140-6736(84)91821-X] [PMID: 6145028]
[18]
Przyklenk, K; Kloner, RA Relationships between structure and effects of ACE inhibitors: Comparative effects in myocardial ischaemic/reperfusion injury. Br. J. Clin. Pharmacol., 1989, 28(Suppl. 2), 167S-175S.
[19]
Parving, H.H.; Hommel, E.; Smidt, U.M. Protection of kidney function and decrease in albuminuria by captopril in insulin dependent diabetics with nephropathy. BMJ, 1988, 297(6656), 1086-1091.
[http://dx.doi.org/10.1136/bmj.297.6656.1086] [PMID: 3143437]
[20]
Cohen, E.P.; Fish, B.L.; Moulder, J.E. Treatment of radiation nephropathy with captopril. Radiat. Res., 1992, 132(3), 346-350.
[http://dx.doi.org/10.2307/3578243] [PMID: 1475357]
[21]
Aruoma, O.I.; Akanmu, D.; Cecchini, R.; Halliwell, B. Evaluation of the ability of the angiotensin-converting enzyme inhibitor captopril to scavenge reactive oxygen species. Chem. Biol. Interact., 1991, 77(3), 303-314.
[http://dx.doi.org/10.1016/0009-2797(91)90039-A] [PMID: 1849048]
[22]
Yoon, S.C.; Park, J.M.; Jang, H.S.; Shinn, K.S.; Bahk, Y.W. Radioprotective effect of captopril on the mouse jejunal mucosa. Int. J. Radiat. Oncol. Biol. Phys., 1994, 30(4), 873-878.
[http://dx.doi.org/10.1016/0360-3016(94)90363-8] [PMID: 7960990]
[23]
Fantone, J.C.; Schrier, D.; Weingarten, B. Inhibition of vascular permeability changes in rats by captopril. J. Clin. Invest., 1982, 69(6), 1207-1211.
[http://dx.doi.org/10.1172/JCI110559] [PMID: 6282931]
[24]
Phillips, T.L. Sensitizers and protectors in clinical oncology. Semin. Oncol., 1981, 8(1), 65-82.
[PMID: 6264627]
[25]
Moulder, J.E.; Fish, B.L. Age dependence of radiation nephropathy in the rat. Radiat. Res., 1997, 147(3), 349-353.
[http://dx.doi.org/10.2307/3579343] [PMID: 9052682]
[26]
Cohen, E.P.; Fish, B.L.; Moulder, J.E. Successful brief captopril treatment in experimental radiation nephropathy. J. Lab. Clin. Med., 1997, 129(5), 536-547.
[http://dx.doi.org/10.1016/S0022-2143(97)90008-1] [PMID: 9142050]
[27]
Ward, W.F.; Molteni, A.; Ts’ao, C.H.; Hinz, J.M. Captopril reduces collagen and mast cell accumulation in irradiated rat lung. Int. J. Radiat. Oncol. Biol. Phys., 1990, 19(6), 1405-1409.
[http://dx.doi.org/10.1016/0360-3016(90)90351-J] [PMID: 2262365]
[28]
Mukherjee, S.K.; Goel, H.C.; Pant, K.; Jain, V. Preventation of radiation induced taste aversion in rats. Indian J. Exp. Biol., 1997, 35, 233-235.
[29]
Griffin, K.A.; Picken, M.M.; Bakris, G.L.; Bidani, A.K. Class differences in the effects of calcium channel blockers in the rat remnant kidney model. Kidney Int., 1999, 55(5), 1849-1860.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00434.x] [PMID: 10231447]
[30]
Muruganandham, M.; Kasiviswanathan, A.; Jagannathan, N.R.; Raghunathan, P.; Jain, P.C.; Jain, V. Diltiazem enhances tumor blood flow: MRI study in a murine tumor. Int. J. Radiat. Oncol. Biol. Phys., 1999, 43(2), 413-421.
[http://dx.doi.org/10.1016/S0360-3016(98)00403-9] [PMID: 10030270]
[31]
Floersheim, G.L. Calcium antagonists protect mice against lethal doses of ionizing radiation. Br. J. Radiol., 1992, 65(779), 1025-1029.
[http://dx.doi.org/10.1259/0007-1285-65-779-1025] [PMID: 1450817]
[32]
Floersheim, G.L. Radioprotective effects of calcium antagonists used alone or with other types of radioprotectors. Radiat. Res., 1993, 133(1), 80-87.
[http://dx.doi.org/10.2307/3578260] [PMID: 8434117]
[33]
Floersheim, G.L.; Racine, C. Calcium antagonist radioprotectors do not reduce radiotherapy efficacy in three human tumor xenografts. Stranhlentheroncol., 1995, 171(7), 403-407.
[34]
Bolli, R.; Triana, F.; Jeroudi, M.O. Postischemic mechanical and vascular dysfunction (myocardial “stunning” and microvascular “stunning”) and the effects of calcium-channel blockers on ischemia/reperfusion injury. Clin. Cardiol., 1989, 12(7)(Suppl. 3), III16-III25.
[PMID: 2691139]
[35]
Opie, L.H. Reperfusion injury and its pharmacologic modification. Circulation, 1989, 80(4), 1049-1062.
[http://dx.doi.org/10.1161/01.CIR.80.4.1049] [PMID: 2571429]
[36]
Ip, J.H.; Levin, R.I. Myocardial preservation during ischemia and reperfusion. Am. Heart J., 1988, 115(5), 1094-1104.
[http://dx.doi.org/10.1016/0002-8703(88)90082-8] [PMID: 3284312]
[37]
Janero, D.R.; Burghardt, B.; Lopez, R. Protection of cardiac membrane phospholipid against oxidative injury by calcium antagonists. Biochem. Pharmacol., 1988, 37(21), 4197-4203.
[http://dx.doi.org/10.1016/0006-2952(88)90116-5] [PMID: 3190757]
[38]
Nayler, W.G.; Liu, J.J.; Panagiotopoulos, S. Nifedipine and experimental cardioprotection. Cardiovasc. Drugs Ther., 1990, 4(S5)(Suppl. 5), 879-885.
[http://dx.doi.org/10.1007/BF02018286] [PMID: 2076394]
[39]
Watts, J.A.; Norris, T.A.; London, R.E.; Steenbergen, C.; Murphy, E. Effects of diltiazem on lactate, ATP, and cytosolic free calcium levels in ischemic hearts. J. Cardiovasc. Pharmacol., 1990, 15(1), 44-49.
[http://dx.doi.org/10.1097/00005344-199001000-00007] [PMID: 1688981]
[40]
Koller, P.T.; Bergmann, S.R. Reduction of lipid peroxidation in reperfused isolated rabbit hearts by diltiazem. Circ. Res., 1989, 65(3), 838-846.
[http://dx.doi.org/10.1161/01.RES.65.3.838] [PMID: 2766494]
[41]
Nunia, V.; Sancheti, G.; Goyal, P.K. Protection of Swiss albino mice against whole-body gamma irradiation by diltiazem. Br. J. Radiol., 2007, 80(950), 77-84.
[http://dx.doi.org/10.1259/bjr/41714035] [PMID: 17068014]
[42]
Bailey, C.J.; Turner, R.C. Metformin. N. Engl. J. Med., 1996, 334(9), 574-579.
[http://dx.doi.org/10.1056/NEJM199602293340906] [PMID: 8569826]
[43]
Najafi, M.; Cheki, M.; Rezapoor, S.; Geraily, G.; Motevaseli, E.; Carnovale, C.; Clementi, E.; Shirazi, A. Metformin: Prevention of genomic instability and cancer: A review. Mutat. Res., 2018, 827, 1-8.
[http://dx.doi.org/10.1016/j.mrgentox.2018.01.007] [PMID: 29502733]
[44]
Yang, Y.; Li, B.; Liu, C.; Chuai, Y.; Lei, J.; Gao, F.; Cui, J.; Sun, D.; Cheng, Y.; Zhou, C.; Cai, J. Hydrogen-rich saline protects immunocytes from radiation-induced apoptosis. Med. Sci. Monit., 2012, 18(4), BR144-BR148.
[http://dx.doi.org/10.12659/MSM.882616] [PMID: 22460088]
[45]
Chuai, Y.; Qian, L.; Sun, X.; Cai, J. Molecular hydrogen and radiation protection. Free Radic. Res., 2012, 46(9), 1061-1067.
[http://dx.doi.org/10.3109/10715762.2012.689429] [PMID: 22537465]
[46]
Gómez-García, A.; Martínez Torres, G.; Ortega-Pierres, L.E.; Rodríguez-Ayala, E.; Álvarez-Aguilar, C. Rosuvastatin and metformin decrease inflammation and oxidative stress in patients with hypertension and dyslipidemia. Rev. Esp. Cardiol., 2007, 60(12), 1242-1249.
[PMID: 18082089]
[47]
Shin, H.S.; Ko, J.; Kim, D.A.; Ryu, E.S.; Ryu, H.M.; Park, S.H.; Kim, Y.L.; Oh, E.S.; Kang, D.H. Metformin ameliorates the phenotype transition of peritoneal mesothelial cells and peritoneal fibrosis via a modulation of oxidative stress. Sci. Rep., 2017, 7(1), 5690.
[http://dx.doi.org/10.1038/s41598-017-05836-6] [PMID: 28720775]
[48]
Bułdak, Ł.; Łabuzek, K.; Bułdak, R.J.; Kozłowski, M.; Machnik, G.; Liber, S.; Suchy, D.; Duława-Bułdak, A.; Okopień, B. Metformin affects macrophages’ phenotype and improves the activity of glutathione peroxidase, superoxide dismutase, catalase and decreases malondialdehyde concentration in a partially AMPK-independent manner in LPS-stimulated human monocytes/macrophages. Pharmacol. Rep., 2014, 66(3), 418-429.
[http://dx.doi.org/10.1016/j.pharep.2013.11.008] [PMID: 24905518]
[49]
Bikas, A.; Van Nostrand, D.; Jensen, K.; Desale, S.; Mete, M.; Patel, A.; Wartofsky, L.; Vasko, V.; Burman, K.D. Metformin attenuates 131I-induced decrease in peripheral blood cells in patients with differentiated thyroid cancer. Thyroid, 2016, 26(2), 280-286.
[http://dx.doi.org/10.1089/thy.2015.0413] [PMID: 26649977]
[50]
Cohen, E.P.; Fish, B.L.; Irving, A.A.; Rajapurkar, M.M.; Shah, S.V.; Moulder, J.E. Radiation nephropathy is not mitigated by antagonists of oxidative stress. Radiat. Res., 2009, 172(2), 260-264.
[http://dx.doi.org/10.1667/RR1739] [PMID: 19630531]
[51]
Gauter-Fleckenstein, B.; Fleckenstein, K.; Owzar, K.; Jiang, C.; Rebouças, J.S.; Batinic-Haberle, I.; Vujaskovic, Z. Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage. Free Radic. Biol. Med., 2010, 48(8), 1034-1043.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.01.020] [PMID: 20096348]
[52]
Jiang, J.; Belikova, N.A.; Hoye, A.T.; Zhao, Q.; Epperly, M.W.; Greenberger, J.S.; Wipf, P.; Kagan, V.E. A mitochondria-targeted nitroxide/hemigramicidin S conjugate protects mouse embryonic cells against gamma irradiation. Int. J. Radiat. Oncol. Biol. Phys., 2008, 70(3), 816-825.
[http://dx.doi.org/10.1016/j.ijrobp.2007.10.047] [PMID: 18262096]
[53]
Mahmood, J.; Jelveh, S.; Calveley, V.; Zaidi, A.; Doctrow, S.R.; Hill, R.P. Mitigation of lung injury after accidental exposure to radiation. Radiat. Res., 2011, 176(6), 770-780.
[http://dx.doi.org/10.1667/RR2562.1] [PMID: 22013884]
[54]
Mahmood, J.; Jelveh, S.; Zaidi, A.; Doctrow, S.R.; Medhora, M.; Hill, R.P. Targeting the renin-angiotensin system combined with an antioxidant is highly effective in mitigating radiation-induced lung damage. Int. J. Radiat. Oncol. Biol. Phys., 2014, 89(4), 722-728.
[http://dx.doi.org/10.1016/j.ijrobp.2014.03.048] [PMID: 24867538]
[55]
Mahmood, J.; Jelveh, S.; Zaidi, A.; Doctrow, S.R.; Hill, R.P. Mitigation of radiation-induced lung injury with EUK-207 and genistein: Effects in adolescent rats. Radiat. Res., 2013, 179(2), 125-134.
[http://dx.doi.org/10.1667/RR2954.1] [PMID: 23237541]
[56]
Wang, J.; Wang, Y.; Han, J.; Mei, H.; Yu, D.; Ding, Q.; Zhang, T.; Wu, G.; Peng, G.; Lin, Z. Metformin attenuates radiation-induced pulmonary fibrosis in a murine model. Radiat. Res., 2017, 188(1), 105-113.
[http://dx.doi.org/10.1667/RR14708.1] [PMID: 28437189]
[57]
Medhora, M.; Gao, F.; Jacobs, E.R.; Moulder, J.E. Radiation damage to the lung: Mitigation by angiotensin-converting enzyme (ACE) inhibitors. Respirology, 2012, 17(1), 66-71.
[http://dx.doi.org/10.1111/j.1440-1843.2011.02092.x] [PMID: 22023053]
[58]
Kim, J.M.; Yoo, H.; Kim, J.Y.; Oh, S.H.; Kang, J.W.; Yoo, B.R.; Han, S.Y.; Kim, C.S.; Choi, W.H.; Lee, E.J.; Byeon, H.J.; Lee, W.J.; Lee, Y.S.; Cho, J. Metformin alleviates radiation-induced skin fibrosis via the down regulation of FOXO3. Cell. Physiol. Biochem., 2018, 48(3), 959-970.
[http://dx.doi.org/10.1159/000491964] [PMID: 30036874]
[59]
Cheki, M.; Shirazi, A.; Mahmoudzadeh, A.; Bazzaz, J.T.; Hosseinimehr, S.J. The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes. Mutat. Res., 2016, 809, 24-32.
[http://dx.doi.org/10.1016/j.mrgentox.2016.09.001] [PMID: 27692296]
[60]
Bagheri, H.; Rezapoor, S.; Najafi, M.; Safar, H.; Shabeeb, D.; Cheki, M.; Shekarchi, B.; Motevaseli, E. Metformin protects the rat small intestine against radiation enteritis. Jundishapur J. Nat. Pharm. Prod., 2019, 14(4)e67352
[http://dx.doi.org/10.5812/jjnpp.67352]
[61]
Hockerman, G.H.; Peterson, B.Z.; Johnson, B.D.; Catterall, W.A. Molecular determinants of drug binding and action on L-type calcium channels. Annu. Rev. Pharmacol. Toxicol., 1997, 37, 361-396.
[http://dx.doi.org/10.1146/annurev.pharmtox.37.1.361] [PMID: 9131258]
[62]
Shridi, F.; Robak, J. The influence of calcium channel blockers on superoxide anions. Pharmacol. Res. Commun., 1988, 20(1), 13-21.
[http://dx.doi.org/10.1016/S0031-6989(88)80603-9] [PMID: 2836871]
[63]
Ondrias, K.; Misík, V.; Gergel, D.; Stasko, A. Lipid peroxidation of phosphatidylcholine liposomes depressed by the calcium channel blockers nifedipine and verapamil and by the antiarrhythmic-antihypoxic drug stobadine. Biochim. Biophys. Acta, 1989, 1003(3), 238-245.
[http://dx.doi.org/10.1016/0005-2760(89)90228-2] [PMID: 2545261]
[64]
Finkelstein, E. Nifedipine for radiation oesophagitis. Lancet, 1986, 1(8491), 1205-1206.
[http://dx.doi.org/10.1016/S0140-6736(86)91178-5] [PMID: 2871434]
[65]
Carlson, A.P.; Hänggi, D.; Macdonald, R.L.; Shuttleworth, C.W. Nimodipine reappraised: An old drug with a future. Curr. Neuropharmacol., 2020, 18(1), 65-82.
[http://dx.doi.org/10.2174/1570159X17666190927113021] [PMID: 31560289]
[66]
Agnoli, A. The classification of calcium antagonists by the WHO expert committee: Relevance in neurology. Cephalalgia, 1988, 8(8_suppl)(Suppl. 8), 7-10.
[http://dx.doi.org/10.1177/03331024880080S802] [PMID: 3180202]
[67]
Monzani, D.; Genovese, E.; Pini, L.A.; Di Berardino, F.; Alicandri Ciufelli, M.; Galeazzi, G.M.; Presutti, L. Nimodipine in otolaryngology: From past evidence to clinical perspectives. Acta Otorhinolaryngol. Ital., 2015, 35(3), 135-145.
[PMID: 26246657]
[68]
Hydman, J.; Björck, G.; Persson, J.K.; Zedenius, J.; Mattsson, P. Diagnosis and prognosis of iatrogenic injury of the recurrent laryngeal nerve. Ann. Otol. Rhinol. Laryngol., 2009, 118(7), 506-511.
[http://dx.doi.org/10.1177/000348940911800709] [PMID: 19708490]
[69]
Guntinas-Lichius, O.; Martinez-Portillo, F.; Lebek, J.; Angelov, D.N.; Stennert, E.; Neiss, W.F. Floersheim. J. Neurocytol., 1997, 26(4), 241-248.
[http://dx.doi.org/10.1023/A:1018592215557] [PMID: 9192289]
[70]
Nègre-Salvayre, A.; Fitoussi, G.; Troly, M.; Salvayre, R. Comparative cytoprotective effect of dihydropyridine calcium channel blockers against the toxicity of oxidized low density lipoprotein for cultured lymphoid cells. Biochem. Pharmacol., 1992, 44(12), 2379-2386.
[http://dx.doi.org/10.1016/0006-2952(92)90683-A] [PMID: 1472103]
[71]
Tong, J.; Li, J.; Zhang, Q.S.; Yang, J.K.; Zhang, L.; Liu, H.Y.; Liu, Y.Z.; Yuan, J.W.; Su, X.M.; Zhang, X.X.; Jiao, B.H. Delayed cognitive deficits can be alleviated by calcium antagonist nimodipine by downregulation of apoptosis following whole brain radiotherapy. Oncol. Lett., 2018, 16(2), 2525-2532.
[http://dx.doi.org/10.3892/ol.2018.8968] [PMID: 30013647]
[72]
Bitto, A.; Minutoli, L.; Altavilla, D.; Polito, F.; Fiumara, T.; Marini, H.; Galeano, M.; Calò, M.; Lo Cascio, P.; Bonaiuto, M.; Migliorato, A.; Caputi, A.P.; Squadrito, F. Simvastatin enhances VEGF production and ameliorates impaired wound healing in experimental diabetes. Pharmacol. Res., 2008, 57(2), 159-169.
[http://dx.doi.org/10.1016/j.phrs.2008.01.005] [PMID: 18316203]
[73]
Nielsen, S.F.; Nordestgaard, B.G.; Bojesen, S.E. Statin use and reduced cancer-related mortality. N. Engl. J. Med., 2012, 367(19), 1792-1802.
[http://dx.doi.org/10.1056/NEJMoa1201735] [PMID: 23134381]
[74]
Ludman, A.; Venugopal, V.; Yellon, D.M.; Hausenloy, D.J. Statins and cardioprotection-more than just lipid lowering? Pharmacol. Ther., 2009, 122(1), 30-43.
[http://dx.doi.org/10.1016/j.pharmthera.2009.01.002] [PMID: 19318042]
[75]
Zhou, Q.; Liao, J.K. Pleiotropic effects of statins. - Basic research and clinical perspectives -. Circ. J., 2010, 74(5), 818-826.
[http://dx.doi.org/10.1253/circj.CJ-10-0110] [PMID: 20424337]
[76]
Fritz, G. Targeting the mevalonate pathway for improved anticancer therapy. Curr. Cancer Drug Targets, 2009, 9(5), 626-638.
[http://dx.doi.org/10.2174/156800909789057033] [PMID: 19508172]
[77]
Wang, C.Y.; Liu, P.Y.; Liao, J.K. Pleiotropic effects of statin therapy: Molecular mechanisms and clinical results. Trends Mol. Med., 2008, 14(1), 37-44.
[http://dx.doi.org/10.1016/j.molmed.2007.11.004] [PMID: 18068482]
[78]
Hallahan, D.; Kuchibhotla, J.; Wyble, C. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Res., 1996, 56(22), 5150-5155.
[PMID: 8912850]
[79]
Quist-Paulsen, P. Statins and inflammation: An update. Curr. Opin. Cardiol., 2010, 25(4), 399-405.
[http://dx.doi.org/10.1097/HCO.0b013e3283398e53] [PMID: 20421792]
[80]
Zhao, H.; Liao, Y.; Minamino, T.; Asano, Y.; Asakura, M.; Kim, J.; Asanuma, H.; Takashima, S.; Hori, M.; Kitakaze, M. Inhibition of cardiac remodeling by pravastatin is associated with amelioration of endoplasmic reticulum stress. Hypertens. Res., 2008, 31(10), 1977-1987.
[http://dx.doi.org/10.1291/hypres.31.1977] [PMID: 19015605]
[81]
Fitzgerald, J.P.; Chou, S.Y.; Franco, I.; Mooppan, U.M.; Kim, H.; Saini, R.; Gulmi, F.A. Atorvastatin ameliorates tubulointerstitial fibrosis and protects renal function in chronic partial ureteral obstruction cases. J. Urol., 2009, 182(4)(Suppl.), 1860-1868.
[http://dx.doi.org/10.1016/j.juro.2009.04.086] [PMID: 19692013]
[82]
Mahmoudi, M.; Gorenne, I.; Mercer, J.; Figg, N.; Littlewood, T.; Bennett, M. Statins use a novel Nijmegen breakage syndrome-1-dependent pathway to accelerate DNA repair in vascular smooth muscle cells. Circ. Res., 2008, 103(7), 717-725.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.182899] [PMID: 18723444]
[83]
Mathew, B.; Huang, Y.; Jacobson, J.R.; Berdyshev, E.; Gerhold, L.M.; Wang, T.; Moreno-Vinasco, L.; Lang, G.; Zhao, Y.; Chen, C.T.; LaRiviere, P.J.; Mauceri, H.; Sammani, S.; Husain, A.N.; Dudek, S.M.; Natarajan, V.; Lussier, Y.A.; Weichselbaum, R.R.; Garcia, J.G. Simvastatin attenuates radiation-induced murine lung injury and dysregulated lung gene expression. Am. J. Respir. Cell Mol. Biol., 2011, 44(3), 415-422.
[http://dx.doi.org/10.1165/rcmb.2010-0122OC] [PMID: 20508068]
[84]
Hahn, S.M.; Tochner, Z.; Krishna, C.M.; Glass, J.; Wilson, L.; Samuni, A.; Sprague, M.; Venzon, D.; Glatstein, E.; Mitchell, J.B. Tempol, a stable free radical, is a novel murine radiation protector. Cancer Res., 1992, 52(7), 1750-1753.
[PMID: 1551104]
[85]
Mitchell, J.B.; DeGraff, W.; Kaufman, D.; Krishna, M.C.; Samuni, A.; Finkelstein, E.; Ahn, M.S.; Hahn, S.M.; Gamson, J.; Russo, A. Inhibition of oxygen-dependent radiation-induced damage by the nitroxide superoxide dismutase mimic, tempol. Arch. Biochem. Biophys., 1991, 289(1), 62-70.
[http://dx.doi.org/10.1016/0003-9861(91)90442-L] [PMID: 1654848]
[86]
Mitchell, J.B.; Russo, A.; Kuppusamy, P.; Krishna, M.C. Radiation, radicals, and images. Ann. N. Y. Acad. Sci., 2000, 899(1), 28-43.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06174.x] [PMID: 10863527]
[87]
Xavier, S.; Yamada, K.; Samuni, A.M.; Samuni, A.; DeGraff, W.; Krishna, M.C.; Mitchell, J.B. Differential protection by nitroxides and hydroxylamines to radiation-induced and metal ion-catalyzed oxidative damage. Biochim. Biophys. Acta, 2002, 1573(2), 109-120.
[http://dx.doi.org/10.1016/S0304-4165(02)00339-2] [PMID: 12399020]
[88]
Goffman, T.; Cuscela, D.; Glass, J.; Hahn, S.; Krishna, C.M.; Lupton, G.; Mitchell, J.B. Topical application of nitroxide protects radiation-induced alopecia in guinea pigs. Int. J. Radiat. Oncol. Biol. Phys., 1992, 22(4), 803-806.
[http://dx.doi.org/10.1016/0360-3016(92)90528-P] [PMID: 1544853]
[89]
Hahn, S.M.; Krishna, M.C.; DeLuca, A.M.; Coffin, D.; Mitchell, J.B. Evaluation of the hydroxylamine tempol-H as an in vivo radioprotector. Free Radic. Biol. Med., 2000, 28(6), 953-958.
[http://dx.doi.org/10.1016/S0891-5849(00)00176-3] [PMID: 10802227]
[90]
Mitchell, J.B.; Samuni, A.; Krishna, M.C.; DeGraff, W.G.; Ahn, M.S.; Samuni, U.; Russo, A. Biologically active metal-independent superoxide dismutase mimics. Biochemistry, 1990, 29(11), 2802-2807.
[http://dx.doi.org/10.1021/bi00463a024] [PMID: 2161256]
[91]
DeGraff, W.G.; Krishna, M.C.; Kaufman, D.; Mitchell, J.B. Nitroxide-mediated protection against x-ray- and neocarzinostatin-induced DNA damage. Free Radic. Biol. Med., 1992, 13(5), 479-487.
[http://dx.doi.org/10.1016/0891-5849(92)90142-4] [PMID: 1459474]
[92]
Vitolo, J.M.; Cotrim, A.P.; Sowers, A.L.; Russo, A.; Wellner, R.B.; Pillemer, S.R.; Mitchell, J.B.; Baum, B.J. The stable nitroxide tempol facilitates salivary gland protection during head and neck irradiation in a mouse model. Clin. Cancer Res., 2004, 10(5), 1807-1812.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0194] [PMID: 15014035]
[93]
Guo, X.; Chen, S.; Zhang, Z.; Dobrovolsky, V.N.; Dial, S.L.; Guo, L.; Mei, N. Reactive oxygen species and c-Jun N-terminal kinases contribute to TEMPO-induced apoptosis in L5178Y cells. Chem. Biol. Interact., 2015, 235, 27-36.
[http://dx.doi.org/10.1016/j.cbi.2015.04.009] [PMID: 25882087]
[94]
Yang, S.G.; Park, H.J.; Kim, J.W.; Jung, J.M.; Kim, M.J.; Jegal, H.G.; Kim, I.S.; Kang, M.J.; Wee, G.; Yang, H.Y.; Lee, Y.H.; Seo, J.H.; Kim, S.U.; Koo, D.B. Mito-TEMPO improves development competence by reducing superoxide in preimplantation porcine embryos. Sci. Rep., 2018, 8(1), 10130.
[http://dx.doi.org/10.1038/s41598-018-28497-5] [PMID: 29973637]
[95]
Michalowski, A.S. On radiation damage to normal tissues and its treatment. II. Anti-inflammatory drugs. Acta Oncol., 1994, 33(2), 139-157.
[http://dx.doi.org/10.3109/02841869409098397] [PMID: 8204269]
[96]
Laube, M.; Kniess, T.; Pietzsch, J. Development of antioxidant COX-2 inhibitors as radioprotective agents for radiation therapy-A hypothesis-driven review. Antioxidants, 2016, 5(2), 14.
[http://dx.doi.org/10.3390/antiox5020014] [PMID: 27104573]
[97]
Saha, D.; Choy, H. Potential for combined modality therapy of cyclooxygenase inhibitors and radiation. Prog. Exp. Tumor Res., 2003, 37, 193-209.
[http://dx.doi.org/10.1159/000071374] [PMID: 12795056]
[98]
Furuta, Y.; Hunter, N.; Barkley, T., Jr; Hall, E.; Milas, L. Increase in radioresponse of murine tumors by treatment with indomethacin. Cancer Res., 1988, 48(11), 3008-3013.
[PMID: 3365690]
[99]
Nicolopoulos, N.; Mantidis, A.; Stathopoulos, E.; Papaodysseas, S.; Kouvaris, J.; Varveris, H.; Papavasiliou, C. Prophylactic administration of indomethacin for irradiation esophagitis. Radiother. Oncol., 1985, 3(1), 23-25.
[http://dx.doi.org/10.1016/S0167-8140(85)80005-0] [PMID: 3883441]
[100]
Pillsbury, H.C., III; Webster, W.P.; Rosenman, J. Prostaglandin inhibitor and radiotherapy in advanced head and neck cancers. Arch. Otolaryngol. Head Neck Surg., 1986, 112(5), 552-553.
[http://dx.doi.org/10.1001/archotol.1986.03780050076013] [PMID: 3513801]
[101]
Lee, T.K.; Stupans, I. Radioprotection: The non-steroidal anti-inflammatory drugs (NSAIDs) and prostaglandins. J. Pharm. Pharmacol., 2002, 54(11), 1435-1445.
[http://dx.doi.org/10.1211/00223570254] [PMID: 12495545]
[102]
Hofer, M.; Pospíšil, M.; Hoferová, Z.; Weiterová, L.; Komůrková, D. Stimulatory action of cyclooxygenase inhibitors on hematopoiesis: A review. Molecules, 2012, 17(5), 5615-5625.
[http://dx.doi.org/10.3390/molecules17055615] [PMID: 22576231]
[103]
Tochner, Z.; Barnes, M.; Mitchell, J.B.; Orr, K.; Glatstein, E.; Russo, A. Protection by indomethacin against acute radiation esophagitis. Digestion, 1990, 47(2), 81-87.
[http://dx.doi.org/10.1159/000200480] [PMID: 2292356]
[104]
Rose, P.G.; Halter, S.A.; Su, C.M. The effect of indomethacin on acute radiation induced gastrointestinal injury: A morphologic study. J. Surg. Oncol., 1992, 49(4), 231-238.
[http://dx.doi.org/10.1002/jso.2930490406] [PMID: 1556867]
[105]
Mitchell, J.A.; Warner, T.D. Cyclo-oxygenase-2: Pharmacology, physiology, biochemistry and relevance to NSAID therapy. Br. J. Pharmacol., 1999, 128(6), 1121-1132.
[http://dx.doi.org/10.1038/sj.bjp.0702897] [PMID: 10578123]
[106]
Akarca, U.S. Gastrointestinal effects of selective and non-selective non-steroidal anti-inflammatory drugs. Curr. Pharm. Des., 2005, 11(14), 1779-1793.
[http://dx.doi.org/10.2174/1381612053764904] [PMID: 15892675]
[107]
Liu, L.; Song, J. Voltammetric determination of mefenamic acid at lanthanum hydroxide nanowires modified carbon paste electrodes. Anal. Biochem., 2006, 354(1), 22-27.
[http://dx.doi.org/10.1016/j.ab.2006.04.015] [PMID: 16707085]
[108]
Moghaddam, A.B.; Mohammadi, A.; Fathabadi, M. Application of carbon nanotube-graphite mixture for the determination of diclofenac sodium in pharmaceutical and biological samples. Pharm. Anal. Acta, 2012, 3(5), 1-6.
[http://dx.doi.org/10.4172/2153-2435.1000161]
[109]
Maffei Facino, R.; Carini, M.; Aldini, G.; Saibene, L.; Macciocchi, A. Antioxidant profile of nimesulide, indomethacin and diclofenac in phosphatidylcholine liposomes (PCL) as membrane model. Int. J. Tissue React., 1993, 15(6), 225-234.
[PMID: 8088944]
[110]
Mouithys-Mickalad, A.M.; Zheng, S.X.; Deby-Dupont, G.P.; Deby, C.M.; Lamy, M.M.; Reginster, J.Y.; Henrotin, Y.E. In vitro study of the antioxidant properties of non steroidal anti-inflammatory drugs by chemiluminescence and electron spin resonance (ESR). Free Radic. Res., 2000, 33(5), 607-621.
[http://dx.doi.org/10.1080/10715760000301131] [PMID: 11200092]
[111]
Rojo, C.; Álvarez-Figueroa, M.J.; Soto, M.; Cañete, A.; Pessoa-Mahana, D.; López-Alarcón, C. Scavenging activity of diclofenac: Interaction with ABTS radical cation and peroxyl radicals. J. Chil. Chem. Soc., 2009, 54(1), 58-62.
[http://dx.doi.org/10.4067/S0717-97072009000100014]
[112]
Thanagari, B.S.; Fefar, D.T.; Prajapati, K.S.; Jivani, B.M.; Thakor, K.B.; Patel, J.H.; Ghodasara, D.; Joshi, B.; Undhad, V. Haemato-biochemical alterations induced by diclofenac sodium toxicity in Swiss Albino mice. Vet. World, 2012, 5(7), 417-419.
[http://dx.doi.org/10.5455/vetworld.2012.417-419]
[113]
Labenz, J.; Blum, A.L.; Bolten, W.W.; Dragosics, B.; Rösch, W.; Stolte, M.; Koelz, H.R. Primary prevention of diclofenac associated ulcers and dyspepsia by omeprazole or triple therapy in Helicobacter pylori positive patients: A randomised, double blind, placebo controlled, clinical trial. Gut, 2002, 51(3), 329-335.
[http://dx.doi.org/10.1136/gut.51.3.329] [PMID: 12171952]
[114]
Bojanowska-Czajka, A.; Kciuk, G.; Gumiela, M.; Borowiecka, S.; Nałęcz-Jawecki, G.; Koc, A.; Garcia-Reyes, J.F.; Ozbay, D.S.; Trojanowicz, M. Analytical, toxicological and kinetic investigation of decomposition of the drug diclofenac in waters and wastes using gamma radiation. Environ. Sci. Pollut. Res. Int., 2015, 22(24), 20255-20270.
[http://dx.doi.org/10.1007/s11356-015-5236-6] [PMID: 26308920]
[115]
Schmidt, M.; Sørensen, H.T.; Pedersen, L. Diclofenac use and cardiovascular risks: Series of nationwide cohort studies. BMJ, 2018, 362, k3426.
[http://dx.doi.org/10.1136/bmj.k3426] [PMID: 30181258]
[116]
Alok, A.; Agrawala, P.K. Repurposing sodium diclofenac as a radiation countermeasure agent: A cytogenetic study in human peripheral blood lymphocytes. Mutat. Res., 2020, 856-857503220
[http://dx.doi.org/10.1016/j.mrgentox.2020.503220] [PMID: 32928367]
[117]
Nagata, H.; Sugahara, T.; Tanaka, T. Radiation protection by 2-mercaptopropionylglycine in mice. J. Radiat. Res. (Tokyo), 1972, 13(3), 163-166.
[http://dx.doi.org/10.1269/jrr.13.163] [PMID: 4643890]
[118]
Hikita, M.; Horikawa, M.; Mori, T. Analyses of radioprotective action and cytotoxicity of various sulfhydryl compounds in cultured mouse L cells. J. Radiat. Res. (Tokyo), 1975, 16(3), 162-172.
[http://dx.doi.org/10.1269/jrr.16.162] [PMID: 1195186]
[119]
Kawasaki, S. Protective effect of various thiol compounds on radiation-induced mitotic delay in cultured mammalian cells (L-5). Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1977, 32(6), 577-581.
[http://dx.doi.org/10.1080/09553007714551361] [PMID: 304050]
[120]
Saharan, B.R.; Devi, P.U. Radiation protection of mouse testes with 2-mercaptopropionylglycine. J. Radiat. Res. (Tokyo), 1977, 18(4), 308-316.
[http://dx.doi.org/10.1269/jrr.18.308] [PMID: 609062]
[121]
Saini, M.R.; Saharan, B.R.; Bhartiya, H.C.; Devi, P.U. Radiation protection of mouse liver by 2-mercaptopropionylglycine. J. Radiat. Res. (Tokyo), 1977, 18(3), 206-210.
[http://dx.doi.org/10.1269/jrr.18.206] [PMID: 926066]
[122]
Saini, M.R.; Devi, P.U.; Yadav, S.S. Radiation protection of bone marrow lymphocytes by 2-mercaptopropionylglycine (MPG). Experientia, 1978, 34(12), 1627-1628.
[http://dx.doi.org/10.1007/BF02034716] [PMID: 729737]
[123]
Saini, M.R.; Devi, P.U. Modification of radiation-induced spleen weight changes in mice by 2-mercaptopropionylglycine. Experientia, 1979, 35(12), 1628-1629.
[http://dx.doi.org/10.1007/BF01953233] [PMID: 520478]
[124]
Devi, P.U.; Saharan, B.R. Chemical protection of mouse spermatocytes against gamma-rays with 2-mercaptopropionylglycine. Experientia, 1978, 34(1), 91-92.
[http://dx.doi.org/10.1007/BF01921922] [PMID: 620750]
[125]
Devi, P.U.; Saini, M.R. Protection of mouse thymus against cobalt-60 radiation by 2-mercaptopropionylglycine (MPG). J. Radiat. Res. (Tokyo), 1977, 18(3), 211-224.
[http://dx.doi.org/10.1269/jrr.18.211] [PMID: 926067]
[126]
Ayene, S.I.; Srivastava, P.N. Radioprotective effect of 2-mercaptopropionylglycine on radiation-induced microsomal lipid peroxidation. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1985, 48(2), 197-205.
[http://dx.doi.org/10.1080/09553008514551191] [PMID: 3926681]
[127]
Geist, J.R.; Kafrawy, A.H.; Shupe, R.E. The effect of MPG on radiation-induced odontogenic tissue metaplasia. Oral Surg. Oral Med. Oral Pathol., 1988, 65(1), 109-113.
[http://dx.doi.org/10.1016/0030-4220(88)90202-2] [PMID: 3422391]
[128]
Hochstein, P.; Nordenbrand, K.; Ernster, L. Evidence for the involvement of iron in the ADP-activated peroxidation of lipids in microsomes and mitochondria. Biochem. Biophys. Res. Commun., 1964, 14(4), 323-328.
[http://dx.doi.org/10.1016/S0006-291X(64)80004-8] [PMID: 4378683]
[129]
Motohashi, N.; Mori, I.; Sugiura, Y.; Tanaka, H. Modification of gamma-irradiation-induced change in myoglobin by alpha-mercaptopropionylglycine and its related compounds and the formation of sulfmyoglobin. Radiat. Res., 1981, 86(3), 479-487.
[http://dx.doi.org/10.2307/3575464] [PMID: 7244123]
[130]
Sugiura, Y.; Tanaka, H. Iron-sulfide chelates of some sulfur-containing peptides as model complex of non-heme iron proteins. Biochem. Biophys. Res. Commun., 1972, 46(2), 335-340.
[http://dx.doi.org/10.1016/S0006-291X(72)80143-8] [PMID: 5057878]
[131]
Kumar, A.; Uma Devi, P. MPG modification of the gamma ray sensitivity or ovarian follicles of mice. Radiobiol. Radiother. (Berl.), 1983, 24(2), 227-230.
[PMID: 6867302]
[132]
Mathur, S.; Bhartiya, H.C.; Routh, J. Nandchahal, Depletion of ovarian oocytes in sublethally exposed mice to gamma radiation and its modification by 2-mercaptopropionylglycine (MPG). Indian J. Exp. Biol., 1991, 29(1), 83-85.
[PMID: 1864626]
[133]
Abe, S.; Kirima, K.; Tsuchiya, K.; Okamoto, M.; Hasegawa, T.; Houchi, H.; Yoshizumi, M.; Tamaki, T. The reaction rate of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186)) with hydroxyl radical. Chem. Pharm. Bull. (Tokyo), 2004, 52(2), 186-191.
[http://dx.doi.org/10.1248/cpb.52.186] [PMID: 14758002]
[134]
Sasano, N.; Enomoto, A.; Hosoi, Y.; Katsumura, Y.; Matsumoto, Y.; Shiraishi, K.; Miyagawa, K.; Igaki, H.; Nakagawa, K. Free radical scavenger edaravone suppresses X-ray-induced apoptosis through p53 inhibition in MOLT-4 cells. J. Radiat. Res. (Tokyo), 2007, 48(6), 495-503.
[http://dx.doi.org/10.1269/jrr.07061] [PMID: 17965547]
[135]
Jin, Q.; Cai, Y.; Li, S.; Liu, H.; Zhou, X.; Lu, C.; Gao, X.; Qian, J.; Zhang, J.; Ju, S.; Li, C. Edaravone-encapsulated agonistic micelles rescue ischemic brain tissue by tuning blood-brain barrier permeability. Theranostics, 2017, 7(4), 884-898.
[http://dx.doi.org/10.7150/thno.18219] [PMID: 28382161]
[136]
Akaiwa, K.; Namekata, K.; Azuchi, Y.; Guo, X.; Kimura, A.; Harada, C.; Mitamura, Y.; Harada, T. Edaravone suppresses retinal ganglion cell death in a mouse model of normal tension glaucoma. Cell Death Dis., 2017, 8(7)e2934
[http://dx.doi.org/10.1038/cddis.2017.341] [PMID: 28703795]
[137]
Toyota, E.; Miyamoto, Y.; Imai, K.; Neishi, Y.; Kawamoto, T.; Okura, H.; Yoshida, K. Development of cardiac dysfunction induced by repetitive transient myocardial ischemia is inhibited by edaravone in conscious rats. Clin. Exp. Pharmacol. Physiol., 2009, 36(9), e20-e25.
[http://dx.doi.org/10.1111/j.1440-1681.2009.05178.x] [PMID: 19473343]
[138]
Zhang, W.W.; Bai, F.; Wang, J.; Zheng, R.H.; Yang, L.W.; James, E.A.; Zhao, Z.Q. Edaravone inhibits pressure overload-induced cardiac fibrosis and dysfunction by reducing expression of angiotensin II AT1 receptor. Drug Des. Devel. Ther., 2017, 11, 3019-3033.
[http://dx.doi.org/10.2147/DDDT.S144807] [PMID: 29081650]
[139]
Kikuchi, K.; Takeshige, N.; Miura, N.; Morimoto, Y.; Ito, T.; Tancharoen, S.; Miyata, K.; Kikuchi, C.; Iida, N.; Uchikado, H.; Miyagi, N.; Shiomi, N.; Kuramoto, T.; Maruyama, I.; Morioka, M.; Kawahara, K.I. Beyond free radical scavenging: Beneficial effects of edaravone (radicut) in various diseases (Review). Exp. Ther. Med., 2012, 3(1), 3-8.
[http://dx.doi.org/10.3892/etm.2011.352] [PMID: 22969835]
[140]
Zhang, M.; Teng, C.H.; Wu, F.F.; Ge, L.Y.; Xiao, J.; Zhang, H.Y.; Chen, D.Q. Edaravone attenuates traumatic brain injury through anti-inflammatory and anti-oxidative modulation. Exp. Ther. Med., 2019, 18(1), 467-474.
[http://dx.doi.org/10.3892/etm.2019.7632] [PMID: 31281440]
[141]
Anzai, K.; Furuse, M.; Yoshida, A.; Matsuyama, A.; Moritake, T.; Tsuboi, K.; Ikota, N. in vivo radioprotection of mice by 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone; radicut), a clinical drug. J. Radiat. Res. (Tokyo), 2004, 45(2), 319-323.
[http://dx.doi.org/10.1269/jrr.45.319] [PMID: 15304976]
[142]
Ishii, J.; Natsume, A.; Wakabayashi, T.; Takeuchi, H.; Hasegawa, H.; Kim, S.U.; Yoshida, J. The free-radical scavenger edaravone restores the differentiation of human neural precursor cells after radiation-induced oxidative stress. Neurosci. Lett., 2007, 423(3), 225-230.
[http://dx.doi.org/10.1016/j.neulet.2007.07.029] [PMID: 17709197]
[143]
Sasano, N.; Enomoto, A.; Hosoi, Y.; Katsumura, Y.; Matsumoto, Y.; Morita, A.; Shiraishi, K.; Miyagawa, K.; Igaki, H.; Nakagawa, K. Edaravone, a known free radical scavenger, enhances X-ray-induced apoptosis at low concentrations. Cancer Lett., 2010, 293(1), 52-57.
[http://dx.doi.org/10.1016/j.canlet.2009.12.020] [PMID: 20092938]
[144]
Wang, G.H.; Jiang, Z.L.; Li, Y.C.; Li, X.; Shi, H.; Gao, Y.Q.; Vosler, P.S.; Chen, J. Free-radical scavenger edaravone treatment confers neuroprotection against traumatic brain injury in rats. J. Neurotrauma, 2011, 28(10), 2123-2134.
[http://dx.doi.org/10.1089/neu.2011.1939] [PMID: 21732763]
[145]
Takizawa, Y.; Miyazawa, T.; Nonoyama, S.; Goto, Y.; Itoh, M. Edaravone inhibits DNA peroxidation and neuronal cell death in neonatal hypoxic-ischemic encephalopathy model rat. Pediatr. Res., 2009, 65(6), 636-641.
[http://dx.doi.org/10.1203/PDR.0b013e3181a16a9f] [PMID: 19247215]
[146]
Duntas, L.H. Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm. Metab. Res., 2009, 41(6), 443-447.
[http://dx.doi.org/10.1055/s-0029-1220724] [PMID: 19418416]
[147]
Rafferty, T.S.; McKenzie, R.C.; Hunter, J.A.A.; Howie, A.F.; Arthur, J.R.; Nicol, F.; Beckett, G.J. Differential expression of selenoproteins by human skin cells and protection by selenium from UVB-radiation-induced cell death. Biochem. J., 1998, 332(Pt 1), 231-236.
[http://dx.doi.org/10.1042/bj3320231] [PMID: 9576872]
[148]
Sill, R. Bedeutung von selen in pravention und komplementarer therapie. Pharm. Ztg., 1999, 144(32), 10-15.
[149]
Mücke, R.; Büntzel, J.; Schönekaes, K.G.; Micke, O. Selen in der onkologie. wirklich ein “noli nocere”? Internist (Berl.), 2003, 44(2), 227-229.
[http://dx.doi.org/10.1007/s00108-002-0837-9] [PMID: 12674743]
[150]
Micke, O.; Bruns, F.; Mücke, R.; Schäfer, U.; Glatzel, M.; DeVries, A.F.; Schönekaes, K.; Kisters, K.; Büntzel, J. Selenium in the treatment of radiation-associated secondary lymphedema. Int. J. Radiat. Oncol. Biol. Phys., 2003, 56(1), 40-49.
[http://dx.doi.org/10.1016/S0360-3016(02)04390-0] [PMID: 12694822]
[151]
Coppes, R.P.; Vissink, A.; Konings, A.W. Comparison of radiosensitivity of rat parotid and submandibular glands after different radiation schedules. Radiother. Oncol., 2002, 63(3), 321-328.
[http://dx.doi.org/10.1016/S0167-8140(02)00129-9] [PMID: 12142096]
[152]
Pontual, M.L.; Tuji, F.M.; Barros, S.P.; Bóscolo, F.N.; Novaes, P.D.; de Almeida, S.M. Ultrastructural evaluation of the radioprotective effect of sodium selenite on submandibular glands in rats. J. Appl. Oral Sci., 2007, 15(3), 162-168.
[http://dx.doi.org/10.1590/S1678-77572007000300003] [PMID: 19089124]
[153]
Peter, B.; Van Waarde, M.A.; Vissink, A.; 's-Gravenmade, E.J.; Konings, A.W. Radiation-induced cell proliferation in the parotid and submandibular glands of the rat. Radiat. Res., 1994, 140(2), 257-265.
[http://dx.doi.org/10.2307/3578910] [PMID: 7938475]
[154]
Lawrence, R.A.; Burk, R.F. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun., 1976, 71(4), 952-958.
[http://dx.doi.org/10.1016/0006-291X(76)90747-6] [PMID: 971321]
[155]
Sandström, B.E.; Grankvist, K.; Marklund, S.L. Selenite-induced increase in glutathione peroxidase activity protects human cells from hydrogen peroxide-induced DNA damage, but not from damage inflicted by ionizing radiation. Int. J. Radiat. Biol., 1989, 56(5), 837-841.
[http://dx.doi.org/10.1080/09553008914552121] [PMID: 2573683]
[156]
Leccia, M.T.; Richard, M.J.; Beani, J.C.; Faure, H.; Monjo, A.M.; Cadet, J.; Amblard, P.; Favier, A. Protective effect of selenium and zinc on UV-A damage in human skin fibroblasts. Photochem. Photobiol., 1993, 58(4), 548-553.
[http://dx.doi.org/10.1111/j.1751-1097.1993.tb04930.x] [PMID: 8248330]
[157]
Chow, C.K.; Tappel, A.L. Response of glutathione peroxidase to dietary selenium in rats. J. Nutr., 1974, 104(4), 444-451.
[http://dx.doi.org/10.1093/jn/104.4.444] [PMID: 4816929]
[158]
Hafeman, D.G.; Sunde, R.A.; Hoekstra, W.G. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J. Nutr., 1974, 104(5), 580-587.
[http://dx.doi.org/10.1093/jn/104.5.580] [PMID: 4823943]
[159]
Meirow, D.; Nugent, D. The effects of radiotherapy and chemotherapy on female reproduction. Hum. Reprod. Update, 2001, 7(6), 535-543.
[http://dx.doi.org/10.1093/humupd/7.6.535] [PMID: 11727861]
[160]
Sinha, P.; Kuruba, N. Premature ovarian failure. J. Obstet. Gynaecol., 2007, 27(1), 16-19.
[http://dx.doi.org/10.1080/01443610601016685] [PMID: 17365451]
[161]
Sudour, H.; Chastagner, P.; Claude, L.; Desandes, E.; Klein, M.; Carrie, C.; Bernier, V. Fertility and pregnancy outcome after abdominal irradiation that included or excluded the pelvis in childhood tumor survivors. Int. J. Radiat. Oncol. Biol. Phys., 2010, 76(3), 867-873.
[http://dx.doi.org/10.1016/j.ijrobp.2009.04.012] [PMID: 19632060]
[162]
Imam, S.Z.; Ali, S.F. Selenium, an antioxidant, attenuates methamphetamine-induced dopaminergic toxicity and peroxynitrite generation. Brain Res., 2000, 855(1), 186-191.
[http://dx.doi.org/10.1016/S0006-8993(99)02249-0] [PMID: 10650149]
[163]
Tsunoda, M.; Johnson, V.J.; Sharma, R.P. Increase in dopamine metabolites in murine striatum after oral exposure to inorganic but not organic form of selenium. Arch. Environ. Contam. Toxicol., 2000, 39(1), 32-37.
[http://dx.doi.org/10.1007/s002440010076] [PMID: 10790499]
[164]
Trombly, D.J.; Woodruff, T.K.; Mayo, K.E. Suppression of notch signaling in the neonatal mouse ovary decreases primordial follicle formation. Endocrinology, 2009, 150(2), 1014-1024.
[http://dx.doi.org/10.1210/en.2008-0213] [PMID: 18818300]
[165]
Allegra, M.; Reiter, R.J.; Tan, D.X.; Gentile, C.; Tesoriere, L.; Livrea, M.A. The chemistry of melatonin’s interaction with reactive species. J. Pineal Res., 2003, 34(1), 1-10.
[http://dx.doi.org/10.1034/j.1600-079X.2003.02112.x] [PMID: 12485365]
[166]
Brzezinski, A. Melatonin in humans. N. Engl. J. Med., 1997, 336(3), 186-195.
[http://dx.doi.org/10.1056/NEJM199701163360306] [PMID: 8988899]
[167]
Grant, S.G.; Melan, M.A.; Latimer, J.J.; Witt-Enderby, P.A. Melatonin and breast cancer: Cellular mechanisms, clinical studies and future perspectives. Expert Rev. Mol. Med., 2009, 11 e5
[http://dx.doi.org/10.1017/S1462399409000982] [PMID: 19193248]
[168]
Shabeeb, D.; Najafi, M.; Keshavarz, M.; Musa, A.E.; Hassanzadeh, G.; Hadian, M.R.; Shirazi, A. Recent finding in repair of the peripheral nerve lesions using pharmacological agents: Common methods for evaluating the repair process. Cent. Nerv. Syst. Agents Med. Chem., 2018, 18(3), 161-172.
[http://dx.doi.org/10.2174/1871524918666180830101953] [PMID: 30160219]
[169]
Ianăş, O.; Olinescu, R.; Bădescu, I. Melatonin involvement in oxidative processes. Endocrinologie, 1991, 29(3-4), 147-153.
[PMID: 1821072]
[170]
Undeger, U.; Giray, B.; Zorlu, A.F.; Oge, K.; Baçaran, N. Protective effects of melatonin on the ionizing radiation induced DNA damage in the rat brain. Exp. Toxicol. Pathol., 2004, 55(5), 379-384.
[http://dx.doi.org/10.1078/0940-2993-00332] [PMID: 15088639]
[171]
Roan, E.; Waters, C.M. What do we know about mechanical strain in lung alveoli? Am. J. Physiol. Lung Cell. Mol. Physiol., 2011, 301(5), L625-L635.
[http://dx.doi.org/10.1152/ajplung.00105.2011] [PMID: 21873445]
[172]
Brennan, C.P.; Hendricks, G.L., III; El-Sheikh, T.M.; Mashaly, M.M. Melatonin and the enhancement of immune responses in immature male chickens. Poult. Sci., 2002, 81(3), 371-375.
[http://dx.doi.org/10.1093/ps/81.3.371] [PMID: 11902414]
[173]
Mauriz, J.L.; Collado, P.S.; Veneroso, C.; Reiter, R.J.; González-Gallego, J. A review of the molecular aspects of melatonin’s anti-inflammatory actions: Recent insights and new perspectives. J. Pineal Res., 2013, 54(1), 1-14.
[http://dx.doi.org/10.1111/j.1600-079X.2012.01014.x] [PMID: 22725668]
[174]
Ben-David, M.A.; Elkayam, R.; Gelernter, I.; Pfeffer, R.M. Melatonin for prevention of breast radiation dermatitis: A phase ii, prospective, double-blind randomized trial. Isr. Med. Assoc. J., 2016, 18(3-4), 188-192.
[PMID: 27228641]
[175]
Elangovan, N.; Chiou, T.J.; Tzeng, W.F.; Chu, S.T. Cyclophosphamide treatment causes impairment of sperm and its fertilizing ability in mice. Toxicology, 2006, 222(1-2), 60-70.
[http://dx.doi.org/10.1016/j.tox.2006.01.027] [PMID: 16517039]
[176]
Hasinoff, B.B. Dexrazoxane use in the prevention of anthracycline extravasation injury. Future Oncol., 2006, 2(1), 15-20.
[http://dx.doi.org/10.2217/14796694.2.1.15] [PMID: 16556068]
[177]
Langstein, H.N.; Duman, H.; Seelig, D.; Butler, C.E.; Evans, G.R. Retrospective study of the management of chemotherapeutic extravasation injury. Ann. Plast. Surg., 2002, 49(4), 369-374.
[http://dx.doi.org/10.1097/00000637-200210000-00006] [PMID: 12370641]
[178]
Schrijvers, D.L. Extravasation: A dreaded complication of chemotherapy. Ann. Oncol., 2003, 14(Suppl. 3), iii26-iii30.
[http://dx.doi.org/10.1093/annonc/mdg744] [PMID: 12821535]
[179]
Kassner, E. Evaluation and treatment of chemotherapy extravasation injuries. J. Pediatr. Oncol. Nurs., 2000, 17(3), 135-148.
[http://dx.doi.org/10.1053/jpon.2000.8063] [PMID: 10944862]
[180]
Langer, S.W.; Sehested, M.; Jensen, P.B.; Buter, J.; Giaccone, G. Dexrazoxane in anthracycline extravasation. J. Clin. Oncol., 2000, 18(16), 3064.
[PMID: 10944144]
[181]
Swain, S.M.; Vici, P. The current and future role of dexrazoxane as a cardioprotectant in anthracycline treatment: Expert panel review. J. Cancer Res. Clin. Oncol., 2004, 130(1), 1-7.
[http://dx.doi.org/10.1007/s00432-003-0498-7] [PMID: 14564513]
[182]
Wiseman, L.R.; Spencer, C.M. Dexrazoxane. A review of its use as a cardioprotective agent in patients receiving anthracycline-based chemotherapy. Drugs, 1998, 56(3), 385-403.
[http://dx.doi.org/10.2165/00003495-199856030-00009] [PMID: 9777314]
[183]
Gewirtz, D.A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol., 1999, 57(7), 727-741.
[http://dx.doi.org/10.1016/S0006-2952(98)00307-4] [PMID: 10075079]
[184]
Hasinoff, B.B. Chemistry of dexrazoxane and analogues. Semin. Oncol., 1998, 25(4)(Suppl. 10), 3-9.
[PMID: 9768817]
[185]
Diop, N.K.; Vitellaro, L.K.; Arnold, P.; Shang, M.; Marusak, R.A. Iron complexes of the cardioprotective agent dexrazoxane (ICRF-187) and its desmethyl derivative, ICRF-154: Solid state structure, solution thermodynamics, and DNA cleavage activity. J. Inorg. Biochem., 2000, 78(3), 209-216.
[http://dx.doi.org/10.1016/S0162-0134(00)00013-1] [PMID: 10805177]
[186]
Hasinoff, B.B.; Schroeder, P.E.; Patel, D. The metabolites of the cardioprotective drug dexrazoxane do not protect myocytes from doxorubicin-induced cytotoxicity. Mol. Pharmacol., 2003, 64(3), 670-678.
[http://dx.doi.org/10.1124/mol.64.3.670] [PMID: 12920203]
[187]
Hasinoff, B.B. Dexrazoxane (ICRF-187) protects cardiac myocytes against hypoxia-reoxygenation damage. Cardiovasc. Toxicol., 2002, 2(2), 111-118.
[http://dx.doi.org/10.1385/CT:2:2:111] [PMID: 12271154]
[188]
Langer, S.W.; Thougaard, A.V.; Sehested, M.; Jensen, P.B. Treatment of anthracycline extravasation in mice with dexrazoxane with or without DMSO and hydrocortisone. Cancer Chemother. Pharmacol., 2006, 57(1), 125-128.
[http://dx.doi.org/10.1007/s00280-005-0022-7] [PMID: 16001176]
[189]
El-Saghir, N.; Otrock, Z.; Mufarrij, A.; Abou-Mourad, Y.; Salem, Z.; Shamseddine, A.; Abbas, J. Dexrazoxane for anthracycline extravasation and GM-CSF for skin ulceration and wound healing. Lancet Oncol., 2004, 5(5), 320-321.
[http://dx.doi.org/10.1016/S1470-2045(04)01470-6] [PMID: 15120669]
[190]
Jensen, J.N.; Lock-Andersen, J.; Langer, S.W.; Mejer, J. Dexrazoxane-a promising antidote in the treatment of accidental extravasation of anthracyclines. Scand. J. Plast. Reconstr. Surg. Hand Surg., 2003, 37(3), 174-175.
[http://dx.doi.org/10.1080/02844310310007791] [PMID: 12841619]
[191]
Bos, A.M.; van der Graaf, W.T.; Willemse, P.H. A new conservative approach to extravasation of anthracyclines with dimethylsulfoxide and dexrazoxane. Acta Oncol., 2001, 40(4), 541-542.
[http://dx.doi.org/10.1080/028418601750288299] [PMID: 11504316]
[192]
Andreassen, C.N.; Grau, C.; Lindegaard, J.C. Chemical radioprotection: A critical review of amifostine as a cytoprotector in radiotherapy. Semin. Radiat. Oncol., 2003, 13(1), 62-72.
[http://dx.doi.org/10.1053/srao.2003.50006] [PMID: 12520465]
[193]
Singh, V.K.; Seed, T.M. The efficacy and safety of amifostine for the acute radiation syndrome. Expert Opin. Drug Saf., 2019, 18(11), 1077-1090.
[http://dx.doi.org/10.1080/14740338.2019.1666104] [PMID: 31526195]
[194]
Brizel, D.M.; Wasserman, T.H.; Henke, M.; Strnad, V.; Rudat, V.; Monnier, A.; Eschwege, F.; Zhang, J.; Russell, L.; Oster, W.; Sauer, R. Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J. Clin. Oncol., 2000, 18(19), 3339-3345.
[http://dx.doi.org/10.1200/JCO.2000.18.19.3339] [PMID: 11013273]
[195]
Grdina, D.J.; Nagy, B.; Hill, C.K.; Wells, R.L.; Peraino, C. The radioprotector WR1065 reduces radiation-induced mutations at the hypoxanthine-guanine phosphoribosyl transferase locus in V79 cells. Carcinogenesis, 1985, 6(6), 929-931.
[http://dx.doi.org/10.1093/carcin/6.6.929] [PMID: 4006082]
[196]
Grdina, D.J.; Nagy, B.; Sigdestad, C.P. Radioprotectors in treatment therapy to reduce risk in secondary tumor induction. Pharmacol. Ther., 1988, 39(1-3), 21-25.
[http://dx.doi.org/10.1016/0163-7258(88)90035-6] [PMID: 2849125]
[197]
Srinivasan, V.; Pendergrass, J.A., Jr; Kumar, K.S.; Landauer, M.R.; Seed, T.M. Radioprotection, pharmacokinetic and behavioural studies in mouse implanted with biodegradable drug (amifostine) pellets. Int. J. Radiat. Biol., 2002, 78(6), 535-543.
[http://dx.doi.org/10.1080/095530002317577358] [PMID: 12065057]
[198]
Tchanque-Fossuo, C.N.; Donneys, A.; Razdolsky, E.R.; Monson, L.A.; Farberg, A.S.; Deshpande, S.S.; Sarhaddi, D.; Poushanchi, B.; Goldstein, S.A.; Buchman, S.R. Quantitative histologic evidence of amifostine-induced cytoprotection in an irradiated murine model of mandibular distraction osteogenesis. Plast. Reconstr. Surg., 2012, 130(6), 1199-1207.
[http://dx.doi.org/10.1097/PRS.0b013e31826d2201] [PMID: 22878481]
[199]
Kouvaris, J.R.; Kouloulias, V.E.; Vlahos, L.J. Amifostine: The first selective-target and broad-spectrum radioprotector. Oncologist, 2007, 12(6), 738-747.
[http://dx.doi.org/10.1634/theoncologist.12-6-738] [PMID: 17602063]
[200]
Tchanque-Fossuo, C.N.; Donneys, A.; Deshpande, S.S.; Sarhaddi, D.; Nelson, N.S.; Monson, L.A.; Dahle, S.E.; Goldstein, S.A.; Buchman, S.R. Radioprotection with amifostine enhances bone strength and regeneration and bony union in a rat model of mandibular distraction osteogenesis. Ann. Plast. Surg., 2018, 80(2), 176-180.
[http://dx.doi.org/10.1097/SAP.0000000000001209] [PMID: 28930778]
[201]
Peebles, D.D.; Soref, C.M.; Copp, R.R.; Thunberg, A.L.; Fahl, W.E. ROS-scavenger and radioprotective efficacy of the new PrC-210 aminothiol. Radiat. Res., 2012, 178(1), 57-68.
[http://dx.doi.org/10.1667/RR2806.1] [PMID: 22702647]
[202]
Copp, R.R.; Peebles, D.D.; Soref, C.M.; Fahl, W.E. Radioprotective efficacy and toxicity of a new family of aminothiol analogs. Int. J. Radiat. Biol., 2013, 89(7), 485-492.
[http://dx.doi.org/10.3109/09553002.2013.770579] [PMID: 23369131]
[203]
Soref, C.M.; Hacker, T.A.; Fahl, W.E. A new orally active, aminothiol radioprotector-free of nausea and hypotension side effects at its highest radioprotective doses. Int. J. Radiat. Oncol. Biol. Phys., 2012, 82(5), e701-e707.
[http://dx.doi.org/10.1016/j.ijrobp.2011.11.038] [PMID: 22330992]
[204]
Jermusek, F., Jr; Benedict, C.; Dreischmeier, E.; Brand, M.; Uder, M.; Jeffery, J.J.; Ranallo, F.N.; Fahl, W.E. Significant suppression of CT radiation-induced DNA damage in normal human cells by the PrC-210 radioprotector. Radiat. Res., 2018, 190(2), 133-141.
[http://dx.doi.org/10.1667/RR14928.1] [PMID: 29781766]
[205]
Bath, N.M.; Fahl, W.E.; Redfield, R.R. III Significant reduction of murine renal ischemia-reperfusion cell death using the immediate-acting PrC-210 reactive oxygen species scavenger. Transplant. Direct, 2019, 5(7)e469
[http://dx.doi.org/10.1097/TXD.0000000000000909] [PMID: 31334343]
[206]
Johnston, G.; Williams, R.L. 505 (b)(2) applications: History, science, and experience. Drug Inf. J., 2002, 36(2), 319-323.
[http://dx.doi.org/10.1177/009286150203600210]
[207]
Salminen, W.F.; Wiles, M.E.; Stevens, R.E. Streamlining nonclinical drug development using the FDA 505(b)(2) new drug application regulatory pathway. Drug Discov. Today, 2019, 24(1), 46-56.
[http://dx.doi.org/10.1016/j.drudis.2018.07.005] [PMID: 30041014]
[208]
Verbaanderd, C.; Rooman, I.; Meheus, L.; Huys, I. On-label or off-label? overcoming regulatory and financial barriers to bring repurposed medicines to cancer patients. Front. Pharmacol., 2020, 10, 1664.
[http://dx.doi.org/10.3389/fphar.2019.01664] [PMID: 32076405]
[209]
Man, S.; Yang, L.; Xiang, H.; Lu, G.; Wang, Y.; Liu, C.; Gao, W. Antihypertensive and renal protective effect of Shunaoxin pill combined with captopril on spontaneous hypertension rats. Biomed. Pharmacother., 2020, 125109977
[http://dx.doi.org/10.1016/j.biopha.2020.109977] [PMID: 32032892]
[210]
Krishan, B.V.; Rao, C.H.; Kishore, V.S. Design and development of pulsatile drug delivery of diltiazem hydrochloride. Res. J. Pharm. Technol., 2020, 13(5), 2315-2320.
[http://dx.doi.org/10.5958/0974-360X.2020.00417.5]
[211]
Sharma, M.; Alam, S.; Kute, V.; Mazumder, M.A.; Meshram, H.S. Role of diltiazem in short-term outcome of live related renal transplant hypertensive recipients with non-surgical delayed graft function. Transplantation, 2020, 104(S3), S344.
[http://dx.doi.org/10.1097/01.tp.0000700272.47403.27]
[212]
Jia, Z.Q.; Li, S.Q.; Qiao, W.Q.; Xu, W.Z.; Xing, J.W.; Liu, J.T.; Song, H.; Gao, Z.Y.; Xing, B.W.; He, X.J. Ebselen protects mitochondrial function and oxidative stress while inhibiting the mitochondrial apoptosis pathway after acute spinal cord injury. Neurosci. Lett., 2018, 678, 110-117.
[http://dx.doi.org/10.1016/j.neulet.2018.05.007] [PMID: 29733976]
[213]
Tankova, T. Current indications for metformin therapy. Rom. J. Intern. Med., 2003, 41(3), 215-225.
[PMID: 15526505]
[214]
Easterling, T.; Mundle, S.; Bracken, H.; Parvekar, S.; Mool, S.; Magee, L.A.; von Dadelszen, P.; Shochet, T.; Winikoff, B. Oral antihypertensive regimens (nifedipine retard, labetalol, and methyldopa) for management of severe hypertension in pregnancy: An open-label, randomised controlled trial. Lancet, 2019, 394(10203), 1011-1021.
[http://dx.doi.org/10.1016/S0140-6736(19)31282-6] [PMID: 31378394]
[215]
Maria, D.N.; Abd-Elgawad, A.H.; Soliman, O.A.; El-Dahan, M.S.; Jablonski, M.M. Nimodipine ophthalmic formulations for management of glaucoma. Pharm. Res., 2017, 34(4), 809-824.
[http://dx.doi.org/10.1007/s11095-017-2110-x] [PMID: 28155073]
[216]
Wolf, S.; Martin, H.; Landscheidt, J.F.; Rodiek, S.O.; Schürer, L.; Lumenta, C.B. Continuous selective intraarterial infusion of nimodipine for therapy of refractory cerebral vasospasm. Neurocrit. Care, 2010, 12(3), 346-351.
[http://dx.doi.org/10.1007/s12028-009-9317-6] [PMID: 20033353]
[217]
Mu, H.; Wang, L. Efficacy of nimodipine plus yufeng ningxin tablets for patients with frequent migraine. Pharmacology, 2018, 102(1-2), 53-57.
[http://dx.doi.org/10.1159/000489314] [PMID: 29879719]
[218]
Kastelein, J.J.; Akdim, F.; Stroes, E.S.; Zwinderman, A.H.; Bots, M.L.; Stalenhoef, A.F.; Visseren, F.L.; Sijbrands, E.J.; Trip, M.D.; Stein, E.A.; Gaudet, D.; Duivenvoorden, R.; Veltri, E.P.; Marais, A.D.; de Groot, E. Enhance Investigators. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N. Engl. J. Med., 2008, 358(14), 1431-1443.
[http://dx.doi.org/10.1056/NEJMoa0800742] [PMID: 18376000]
[219]
Ceriello, A.; Taboga, C.; Tonutti, L.; Quagliaro, L.; Piconi, L.; Bais, B.; Da Ros, R.; Motz, E. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: Effects of short- and long-term simvastatin treatment. Circulation, 2002, 106(10), 1211-1218.
[http://dx.doi.org/10.1161/01.CIR.0000027569.76671.A8] [PMID: 12208795]
[220]
Obrosov, A.; Shevalye, H.; Coppey, L.J.; Yorek, M.A. Effect of tempol on peripheral neuropathy in diet-induced obese and high-fat fed/low-dose streptozotocin-treated C57Bl6/J mice. Free Radic. Res., 2017, 51(4), 360-367.
[http://dx.doi.org/10.1080/10715762.2017.1315767] [PMID: 28376643]
[221]
Nagai, N.; Ito, Y.; Okamoto, N.; Shimomura, Y. A nanoparticle formulation reduces the corneal toxicity of indomethacin eye drops and enhances its corneal permeability. Toxicology, 2014, 319, 53-62.
[http://dx.doi.org/10.1016/j.tox.2014.02.012] [PMID: 24598350]
[222]
Lucas, S. The pharmacology of indomethacin. Headache, 2016, 56(2), 436-446.
[http://dx.doi.org/10.1111/head.12769] [PMID: 26865183]
[223]
Wiffen, P.J.; Xia, J. Systematic review of topical diclofenac for the treatment of acute and chronic musculoskeletal pain. Curr. Med. Res. Opin., 2020, 36(4), 637-650.
[http://dx.doi.org/10.1080/03007995.2020.1716703] [PMID: 31944135]
[224]
Pak, C.Y.; Fuller, C.; Sakhaee, K.; Zerwekh, J.E.; Adams, B.V. Management of cystine nephrolithiasis with alpha-mercaptopropionylglycine. J. Urol., 1986, 136(5), 1003-1008.
[http://dx.doi.org/10.1016/S0022-5347(17)45188-3] [PMID: 3534301]
[225]
Sawada, H. Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis. Expert Opin. Pharmacother., 2017, 18(7), 735-738.
[http://dx.doi.org/10.1080/14656566.2017.1319937] [PMID: 28406335]
[226]
Kieliszek, M.; Lipinski, B.; Błażejak, S. Application of sodium selenite in the prevention and treatment of cancers. Cells, 2017, 6(4), 39.
[http://dx.doi.org/10.3390/cells6040039] [PMID: 29064404]
[227]
Elmegeed, G.A.; Baiuomy, A.R.; Abdel-Salam, O.M. Evaluation of the anti-inflammatory and anti-nociceptive activities of novel synthesized melatonin analogues. Eur. J. Med. Chem., 2007, 42(10), 1285-1292.
[http://dx.doi.org/10.1016/j.ejmech.2007.01.027] [PMID: 17408809]
[228]
Cvetković, R.S.; Scott, L.J. Dexrazoxane: A review of its use for cardioprotection during anthracycline chemotherapy. Drugs, 2005, 65(7), 1005-1024.
[http://dx.doi.org/10.2165/00003495-200565070-00008] [PMID: 15892593]
[229]
Obrador, E.; Salvador, R.; Villaescusa, J.I.; Soriano, J.M.; Estrela, J.M.; Montoro, A. Radioprotection and radiomitigation: From the bench to clinical practice. Biomedicines, 2020, 8(11), 461.
[http://dx.doi.org/10.3390/biomedicines8110461] [PMID: 33142986]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy