Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Fabrication and Self-cleaning Performance of RGO/(Si, Mo)-codoped TiO2 Thin Films for Architecture Environment Decontamination Application

Author(s): W. Dang and H.-Y. He*

Volume 12, Issue 5, 2022

Published on: 03 September, 2022

Article ID: e190522205004 Pages: 9

DOI: 10.2174/2210681212666220519091624

Price: $65

Abstract

Background: Self-cleaning is a potential technique in architecture environmental decontamination.

Objective: The fabrication and self-cleaning property enhancement of the TiO2 hybridizing reduced graphene oxide (RGO) and codoping Si and Mo are reported.

Methods: The films were deposited by a sol-gel dip-coating process. The self-cleaning properties were characterized by photocatalytic activity, photoinduced super hydrophilicity, and conductivity.

Results: Incorporating RGO provided an efficient interface-induced effect, and doping Si and Mo enhanced this effect.

Conclusion: Thus, the hybrid films showed remarkably enhanced self-cleaning performances. The films also show high transparency when RGO was added in the doping Si and an appropriate amount of Mo.

Keywords: nanohybrid films, codoping, self-cleaning, synergistic effect, interface effect, architecture environment decontamination, mechanism

Graphical Abstract

[1]
Sakthivel, S.; Neppolian, B.; Shankar, M.V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater. Sol. Cells, 2003, 77(1), 65-82.
[http://dx.doi.org/10.1016/S0927-0248(02)00255-6]
[2]
Fa, W.; Guo, L.; Wang, J.; Guo, R.; Zheng, Z.; Yang, F. Solid-phase photocatalytic degradation of polystyrene with TiO2/Fe(St)3 as catalyst. J. Appl. Polym. Sci., 2013, 128(5), 2618-2622.
[http://dx.doi.org/10.1002/app.37751]
[3]
Liang, Y.; Shao, M.; Cui, W.; Liu, L.; McEvoy, J.G. Photocatalytic degradation of Rhodamine B by CdS-loaded K4Nb6O17 nanohybrids prepared via reverse microemulsion. J. Mol. Catal. Chem., 2013, 370, 87-94.
[http://dx.doi.org/10.1016/j.molcata.2013.01.004]
[4]
Eshaghi, A.; Eshaghi, A. Optical and hydrophilic properties of Cr-doped TiO2–SiO2 nanostructure thin film. Appl. Surf. Sci., 2012, 258(7), 2464-2467.
[http://dx.doi.org/10.1016/j.apsusc.2011.10.073]
[5]
Lu, Z.; Jiang, X.; Zhou, B.; Wu, X.; Lu, L. Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si-doped TiO2 thin films deposited by electron beam evaporation. Appl. Surf. Sci., 2011, 257(24), 10715-10720.
[http://dx.doi.org/10.1016/j.apsusc.2011.07.085]
[6]
Eshaghi, A.; Pakshir, M.; Mozaffarinia, R. Preparation, and photo-induced superhydrophilicity of composite TiO2–SiO2–In2O3 thin film. Appl. Surf. Sci., 2010, 256(23), 7062-7066.
[http://dx.doi.org/10.1016/j.apsusc.2010.05.026]
[7]
Zhang, N.; Zhang, Y.; Xu, Y.J. Recent progress on graphene-based photocatalysts: Current status and future perspectives. Nanoscale, 2012, 4(19), 5792-5813.
[http://dx.doi.org/10.1039/c2nr31480k] [PMID: 22907128]
[8]
Zhang, N.; Zhang, Y.; Yang, M.Q.; Tang, Z.R.; Xu, Y.J. A critical and benchmark comparison on graphene-, carbon nanotube-, and fullerene-semiconductor nanocomposites as visible light photocatalysts for selective oxidation. J. Catal., 2013, 299, 210-221.
[http://dx.doi.org/10.1016/j.jcat.2012.11.021]
[9]
Zhang, N.; Zhang, Y.; Pan, X.; Yang, M.Q.; Xu, Y.J. Constructing ternary CdS– graphene–TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation. J. Phys. Chem. C, 2012, 116(34), 18023-18031.
[http://dx.doi.org/10.1021/jp303503c]
[10]
Wang, P.; Wang, J.; Ming, T.; Wang, X.; Yu, H.; Yu, J.; Wang, Y.; Lei, M. Dye-sensitization-induced visible-light reduction of graphene oxide for the enhanced TiO2 photocatalytic performance. ACS Appl. Mater. Interfaces, 2013, 5(8), 2924-2929.
[http://dx.doi.org/10.1021/am4008566] [PMID: 23534830]
[11]
György, E.; Pérez del Pino, A.; Logofatu, C.; Cazan, C.; Duta, A. Simultaneous laser-induced reduction and nitrogen doping of graphene oxide in titanium oxide/graphene oxide composites. J. Am. Ceram. Soc., 2014, 97(9), 2718-2724.
[http://dx.doi.org/10.1111/jace.13013]
[12]
Yu, H.; Tian, J.; Chen, F.; Wang, P.; Wang, X. Synergistic effect of dual electron-cocatalysts for enhanced photocatalytic activity: rGO as electron-transfer mediator and Fe(III) as oxygen-reduction active site. Sci. Rep., 2015, 5(5), 13083.
[http://dx.doi.org/10.1038/srep13083] [PMID: 26272870]
[13]
Adel, A.; Ismail, R.A.; Geioushy, R.A.; Bouzid, H.; Saleh Al-Sayari, A.; Al-Hajry, Ali; Bahnemann Detlef, W TiO2 decoration of graphene layers for highly efficient photocatalyst: Impact of calcination at different gas atmosphere on photocatalytic efficiency. Appl. Catal. B, 2013, 129, 62-70.
[http://dx.doi.org/10.1016/j.apcatb.2012.09.024]
[14]
He, H.-Y.; Fei, J.; Lu, J. High photocatalytic and photo-Fenton-like activities of ZnO-reduced graphene oxide nanocomposites in the degradation of malachite green in a water. Micro Nano Lett., 2015, 10(8), 394.
[http://dx.doi.org/10.1049/mnl.2014.0551]
[15]
He, H.-Y. Highly photocatalytic activities of magnetically separable reduced graphene oxide-CoFe2O4 hybrid nanostructures in dye photodegradation. Sep. Purif. Tech., 2017, 172, 374-38.
[16]
He, H.-Y. Efficient interface-induced effect of novel reduced graphene oxide-CoS hetero nanostructures in enhancing photocatalytic activities. Applied Surface Science, 2017, 421(NOV.1), 260-267.
[17]
He, H.-Y. Photocatalytic activity of reduced graphene oxide-SnSe nanohybrids with efficiency interface effect. Nano, 2017, 12(3), 1750032.
[http://dx.doi.org/10.1142/S1793292017500321]
[18]
He, H.-Y. Photocatalysis of novel reduced graphene oxide-CoSe nanocomposites with efficient interface-induced effect. Compos. Interfaces, 2017, 24(1), 85-97.
[19]
Piispanen, M.; Kronberg, T.; Areva, S.; Hupa, L. Effect of mechanical and chemical wear on soil attachment and cleanability of sanitary ware with additional coatings. J. Am. Ceram. Soc., 2011, 94(3), 951-958.
[http://dx.doi.org/10.1111/j.1551-2916.2010.04120.x]
[20]
Piispanen, M.; Hupa, L. Comparison of self-cleaning properties of three titania coatings on float glass. Appl. Surf. Sci., 2011, 258(3), 1126-1131.
[http://dx.doi.org/10.1016/j.apsusc.2011.09.048]
[21]
Manga, K.K.; Zhou, Y.; Yan, Y.; Loh, K.P. Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties. Adv. Funct. Mater., 2009, 19(22), 638-3643.
[http://dx.doi.org/10.1002/adfm.200900891]
[22]
Lee, J.S.; You, K.H.; Park, C.B. Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater., 2012, 24(8), 1084-1088.
[http://dx.doi.org/10.1002/adma.201104110] [PMID: 22271246]
[23]
Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R.C.; Wang, C.; Zhang, J.Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett., 2011, 11(7), 3026-3033.
[http://dx.doi.org/10.1021/nl201766h] [PMID: 21710974]
[24]
Chen, J.L.; Chen, D.; He, J.J.; Zhang, S.Y.; Chen, Z.H. The microstructure, optical, and electrical properties of sol–gel-derived Sc-doped and Al–Sc co-doped ZnO thin films. Appl. Surf. Sci., 2009, 255(23), 9413-9419.
[http://dx.doi.org/10.1016/j.apsusc.2009.07.044]
[25]
Pathan, H.M.; Desai, J.D.; Lokhande, C.D. Modified chemical deposition and physico-chemical properties of copper sulphide (Cu2S) thin films. Appl. Surf. Sci., 2002, 202(1-2), 47-56.
[http://dx.doi.org/10.1016/S0169-4332(02)00843-7]
[26]
He, H-Y. Photocatalytic Degradations of Dyes on Magnetically Separable Ni1-xCoxFe2O4 Nanoparticles Synthesized by a Hydrothermal Process. Particul. Sci. Technol., 2016, 340(2), 143-151.
[http://dx.doi.org/10.1080/02726351.2015.1054970]
[27]
He, H.-Y. Facile synthesis of ultrafine CuS nanocrystalline/TiO2: Fe nanotubes hybrids and their photocatalytic and Fenton-like photocatalytic activities in the dye degradation. Microporous Mesoporous Mater., 2016, 227, 31-38.
[http://dx.doi.org/10.1016/j.micromeso.2016.02.038]
[28]
Butler, M.A.; Ginley, D.S. Prediction of flatband potentials at semiconductor- electrolyte interfaces from atomic electronegativities. J. Electrochem. Soc., 1978, 125(2), 228-232.
[http://dx.doi.org/10.1149/1.2131419]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy