Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Choosing the Right Protocol to Establish MCF-7 Tumor Xenograft in Nude Mice

Author(s): Ramezan Behzadi, Sajjad Ahmadpour, Fereshteh Talebpour Amiri, Saeid Kavosian, Mohsen Asori and Seyed Jalal Hosseinimehr*

Volume 23, Issue 2, 2023

Published on: 20 August, 2022

Page: [222 - 226] Pages: 5

DOI: 10.2174/1871520622666220517090735

Price: $65

Abstract

Background: Xenografts of various human cancers in nude mice provide a helpful model in cancer research. This study aimed to develop a xenograft mouse model of MCF-7 breast cancer using injectable estradiol valerate.

Methods: Thirty healthy female C57 nu/nu mice were engrafted with three protocols to establish an MCF-7 tumor. Injectable estradiol valerate (10 mg/ml) was used as a substitute for estradiol pellets. The development of tumors was recorded daily, and data were statistically analyzed. Histology of bladder, kidney, and tumors was used to estimate tumor establishment and probable urinary adverse effects.

Results: According to the findings, the duration of MCF-7 tumor growth was the lowest for protocol B (tumor tissue). Also, this protocol had the highest xenograft yield within the shortest time duration (37 days for protocol B vs. 73 days for protocol A) without causing urinary adverse effects.

Conclusion: Our findings revealed that estradiol valerate, which is way less expensive than estradiol pellets, can be used as a tumor proliferator to establish MCF-7 tumors with the highest yield when MCF-7 tumors have been used for xenograft.

Keywords: MCF-7, breast cancer, nude mice, xenograft, estradiol valerate, urinary adverse effects.

Graphical Abstract

[1]
Li, Y.; Mi, C.; Wu, Y.Z.; Yang, S.F.; Yang, Z.Q. The effects of genistein on epidermal growth factor receptor mediated signal transduction pathway in human ovarian carcinoma cells lines SKOV3 and its xenograft in nude mice. Chin. J. Pathol., 2004, 33(6), 546-549.
[PMID: 15634453]
[2]
Fulzele, S.V.; Chatterjee, A.; Shaik, M.S.; Jackson, T.; Ichite, N.; Singh, M. 15-Deoxy-Delta12,14-prostaglandin J2 enhanc-es docetaxel anti-tumor activity against A549 and H460 non-small-cell lung cancer cell lines and xenograft tumors. Anticancer Drugs, 2007, 18(1), 65-78.
[PMID: 17159504]
[3]
Fleming, J.M.; Miller, T.C.; Meyer, M.J.; Ginsburg, E.; Vonderhaar, B.K. Local regulation of human breast xenograft models. J. Cell. Physiol., 2010, 224(3), 795-806.
[http://dx.doi.org/10.1002/jcp.22190] [PMID: 20578247]
[4]
Jung, J. Human tumor xenograft models for preclinical as-sessment of anticancer drug development. Toxicol. Res., 2014, 30(1), 1-5.
[http://dx.doi.org/10.5487/TR.2014.30.1.001] [PMID: 24795792]
[5]
Holliday, D.L.; Speirs, V. Choosing the right cell line for breast cancer research. Breast Cancer Res., 2011, 13(4), 215.
[http://dx.doi.org/10.1186/bcr2889] [PMID: 21884641]
[6]
Kang, J.S.; Kang, M.R.; Han, S.B.; Yoon, W.K.; Kim, J.H.; Lee, T.C.; Lee, C.W.; Lee, K.H.; Lee, K.; Park, S.K.; Kim, H.M. Low dose estrogen supplementation reduces mortality of mice in estrogen-dependent human tumor xenograft model. Biol. Pharm. Bull., 2009, 32(1), 150-152.
[http://dx.doi.org/10.1248/bpb.32.150] [PMID: 19122299]
[7]
Behzadi, R. Injectable estradiol valerate, as a substitute for estradiol pellets in breast cancer animal model. Int. Biol. Biomed. J., 2015, 1(1), 35-38.
[8]
Dall, G.; Vieusseux, J.; Unsworth, A.; Anderson, R.; Britt, K. Low dose, low cost estradiol pellets can support MCF-7 tu-mour growth in nude mice without bladder symptoms. J. Cancer, 2015, 6(12), 1331-1336.
[http://dx.doi.org/10.7150/jca.10890] [PMID: 26640593]
[9]
Euhus, D.M.; Hudd, C.; LaRegina, M.C.; Johnson, F.E. Tu-mor measurement in the nude mouse. J. Surg. Oncol., 1986, 31(4), 229-234.
[http://dx.doi.org/10.1002/jso.2930310402] [PMID: 3724177]
[10]
Tomayko, M.M.; Reynolds, C.P. Determination of subcutane-ous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol., 1989, 24(3), 148-154.
[http://dx.doi.org/10.1007/BF00300234] [PMID: 2544306]
[11]
Hassan, B.B.; Altstadt, L.A.; Dirksen, W.P.; Elshafae, S.M.; Rosol, T.J. Canine thyroid cancer: Molecular characterization and cell line growth in nude mice. Vet. Pathol., 2020, 57(2), 227-240.
[http://dx.doi.org/10.1177/0300985819901120] [PMID: 32081094]
[12]
Zhan, Q.; Zhao, S.C.; Xu, Z. Antitumor activity of cytotropic heterogeneous molecular lipids (CHML) on human breast cancer xenograft in nude mice. Anticancer Res., 2001, 21(4A), 2477-2482.
[PMID: 11724310]
[13]
Lasfargues, E.Y.; Ozzello, L. Cultivation of human breast carcinomas. J. Natl. Cancer Inst., 1958, 21(6), 1131-1147.
[PMID: 13611537]
[14]
Soule, H.D.; Vazguez, J.; Long, A.; Albert, S.; Brennan, M. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst., 1973, 51(5), 1409-1416.
[http://dx.doi.org/10.1093/jnci/51.5.1409] [PMID: 4357757]
[15]
Gierthy, J.F.; Bennett, J.A.; Bradley, L.M.; Cutler, D.S. Corre-lation of in vitro and in vivo growth suppression of MCF-7 human breast cancer by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Cancer Res., 1993, 53(13), 3149-3153.
[PMID: 8319224]
[16]
Morton, C.L.; Houghton, P.J. Establishment of human tumor xenografts in immunodeficient mice. Nat. Protoc., 2007, 2(2), 247-250.
[http://dx.doi.org/10.1038/nprot.2007.25] [PMID: 17406581]
[17]
Clarke, R. Human breast cancer cell line xenografts as models of breast cancer. The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Res. Treat., 1996, 39(1), 69-86.
[http://dx.doi.org/10.1007/BF01806079] [PMID: 8738607]
[18]
Gierthy, J.F.; Lincoln, D.W., II; Roth, K.E.; Bowser, S.S.; Bennett, J.A.; Bradley, L.; Dickerman, H.W. Estrogen-stimulation of postconfluent cell accumulation and foci for-mation of human MCF-7 breast cancer cells. J. Cell. Biochem., 1991, 45(2), 177-187.
[http://dx.doi.org/10.1002/jcb.240450209] [PMID: 2055945]
[19]
Chew, G.L.; Huo, C.W.; Huang, D.; Blick, T.; Hill, P.; Caw-son, J.; Frazer, H.; Southey, M.C.; Hopper, J.L.; Britt, K.; Henderson, M.A.; Haviv, I.; Thompson, E.W. Effects of Ta-moxifen and oestrogen on histology and radiographic density in high and low mammographic density human breast tissues maintained in murine tissue engineering chambers. Breast Cancer Res. Treat., 2014, 148(2), 303-314.
[http://dx.doi.org/10.1007/s10549-014-3169-2] [PMID: 25332094]
[20]
Gakhar, G. Hydronephrosis and urine retention in estrogen-implanted athymic nude mice; SAGE Publications Sage CA: Los Angeles, CA, 2009.
[http://dx.doi.org/10.1354/vp.08-VP-0180-N-BC]
[21]
Pearse, G.; Frith, J.; Randall, K.J.; Klinowska, T. Urinary retention and cystitis associated with subcutaneous estradiol pellets in female nude mice. Toxicol. Pathol., 2009, 37(2), 227-234.
[http://dx.doi.org/10.1177/0192623308329281] [PMID: 19181629]
[22]
Ahmadpour, S.; Noaparast, Z.; Abedi, S.M.; Hosseinimehr, S.J. 99mTc-HYNIC-(tricine/EDDA)-FROP peptide for MCF-7 breast tumor targeting and imaging. J. Biomed. Sci., 2018, 25(1), 17.
[http://dx.doi.org/10.1186/s12929-018-0420-x] [PMID: 29455647]
[23]
Ahmadpour, S. 99mTc-(tricine)-HYNIC-Lys-FROP peptide for breast tumor targeting. Anticancer. Agents Med. Chem., 2018, 18(9), 1295-1302.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy