Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

The Glutaminase Inhibitor Compound 968 Exhibits Potent In vitro and In vivo Anti-tumor Effects in Endometrial Cancer

Author(s): Hui Guo, Wanhu Li, Guoyou Pan, Cong Wang, Dapeng Li, Naifu Liu, Xiugui Sheng* and Lingqin Yuan*

Volume 23, Issue 2, 2023

Published on: 20 August, 2022

Page: [210 - 221] Pages: 12

DOI: 10.2174/1871520622666220513163341

Price: $65

Abstract

Background: Glutamine is one of the primary nutrients utilized by cancer cells for energy production and biosynthesis. Hence, interfering with glutamine metabolism may impose anti-tumor effects.

Objective: In this study, we assessed the anti-tumorigenic effects of glutaminase-1 enzyme (GLS1) inhibition in endometrial cancer in vitro and in vivo.

Methods: The human endometrial cancer cell lines Ishikawa and HEC-1B were used. The effects of compound 968 on cell proliferation, cell cycle, apoptosis, cellular stress, and AKT/mTOR pathway inhibition were assessed. The synergistic effects of compound 968 and paclitaxel were also analyzed. The in vivo effect of compound 968 was evaluated using tumor xenografts.

Results: We found that the GLS1-targeting compound 968 was able to reduce cancer cell proliferation in a dose- and time-dependent manner. Compound 968 combined with a low concentration of paclitaxel showed stronger inhibitory effects. Further analyses indicated that compound 968 induced cell cycle arrest at the G1 phase, as well as increased the production of cellular reactive oxygen species (ROS) and promoted cellular stress and cancer cell apoptosis. Additionally, the treatment of endometrial cancer with compound 968 downregulated the expression of GLS1 and cyclin D1 and upregulated the expression of P21 and E-cadherin. Moreover, the treatment of endometrial cancer cells with compound 968 significantly reduced the levels of phospho-S6 ribosomal protein and phospho-AKT (Ser473), indicative of AKT/mTOR/S6 signaling pathway inhibition. In xenograft mouse models of endometrial cancer, compound 968 significantly suppressed tumor growth. In addition, western blotting analysis indicated that GLS1 expression was upregulated in human endometrial cancer tissues.

Conclusion: Compound 968 may be a promising approach for the management of human endometrial cancer.

Keywords: Endometrial cancer, Compound 968, Glutaminase-1 enzyme (GLS1), Glutamine, Inhibitor, phospho-S6

Graphical Abstract

[1]
Lortet-Tieulent, J.; Ferlay, J.; Bray, F.; Jemal, A. International patterns and trends in endometrial cancer incidence, 1978-2013. J. Natl. Cancer Inst., 2018, 110(4), 354-361.
[http://dx.doi.org/10.1093/jnci/djx214] [PMID: 29045681]
[2]
Matés, J.M.; Di Paola, F.J.; Campos-Sandoval, J.A.; Mazurek, S.; Márquez, J. Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer. Semin. Cell Dev. Biol., 2020, 98, 34-43.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.012] [PMID: 31100352]
[3]
Yang, L.; Venneti, S.; Nagrath, D. Glutaminolysis: A hallmark of cancer metabolism. Annu. Rev. Biomed. Eng., 2017, 19(1), 163-194.
[http://dx.doi.org/10.1146/annurev-bioeng-071516-044546] [PMID: 28301735]
[4]
Li, T.; Le, A. Glutamine metabolism in cancer. Adv. Exp. Med. Biol., 2018, 1063, 13-32.
[http://dx.doi.org/10.1007/978-3-319-77736-8_2] [PMID: 29946773]
[5]
Durán, R.V.; Oppliger, W.; Robitaille, A.M.; Heiserich, L.; Skendaj, R.; Gottlieb, E.; Hall, M.N. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell, 2012, 47(3), 349-358.
[http://dx.doi.org/10.1016/j.molcel.2012.05.043] [PMID: 22749528]
[6]
Yuan, L.; Sheng, X.; Willson, A.K.; Roque, D.R.; Stine, J.E.; Guo, H.; Jones, H.M.; Zhou, C.; Bae-Jump, V.L. Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway. Endocr. Relat. Cancer, 2015, 22(4), 577-591.
[http://dx.doi.org/10.1530/ERC-15-0192] [PMID: 26045471]
[7]
Matés, J.M.; Segura, J.A.; Martín-Rufián, M.; Campos-Sandoval, J.A.; Alonso, F.J.; Márquez, J. Glutaminase isoen-zymes as key regulators in metabolic and oxidative stress against cancer. Curr. Mol. Med., 2013, 13(4), 514-534.
[http://dx.doi.org/10.2174/1566524011313040005]
[8]
Thangavelu, K.; Pan, C.Q.; Karlberg, T.; Balaji, G.; Uttam-chandani, M.; Suresh, V.; Schüler, H.; Low, B.C.; Sivaraman, J. Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proc. Natl. Acad. Sci., 2012, 109(20), 7705-7710.
[http://dx.doi.org/10.1073/pnas.1116573109] [PMID: 22538822]
[9]
Altman, B.J.; Stine, Z.E.; Dang, C.V. From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat. Rev. Cancer, 2016, 16(10), 619-634.
[http://dx.doi.org/10.1038/nrc.2016.71] [PMID: 27492215]
[10]
Dang, C.V. MYC, microRNAs and glutamine addiction in cancers. Cell Cycle, 2009, 8(20), 3243-3245.
[http://dx.doi.org/10.4161/cc.8.20.9522] [PMID: 19806017]
[11]
Zhao, L.; Huang, Y.; Tian, C.; Taylor, L.; Curthoys, N.; Wang, Y.; Vernon, H.; Zheng, J. Interferon-α regulates glutaminase 1 promoter through STAT1 phosphorylation: Relevance to HIV-1 associated neurocognitive disorders. PLoS One, 2012, 7(3), e32995.
[http://dx.doi.org/10.1371/journal.pone.0032995] [PMID: 22479354]
[12]
Akins, N.S.; Nielson, T.C.; Le, H.V. Inhibition of glycolysis and glutaminolysis: An emerging drug discovery approach to combat cancer. Curr. Top. Med. Chem., 2018, 18(6), 494-504.
[http://dx.doi.org/10.2174/1568026618666180523111351] [PMID: 29788892]
[13]
Szeliga, M.; Bogacińska-Karaś, M.; Różycka, A.; Hilgier, W.; Marquez, J.; Albrecht, J. Silencing of GLS and overexpression of GLS2 genes cooperate in decreasing the proliferation and viability of glioblastoma cells. Tumour Biol., 2014, 35(3), 1855-1862.
[http://dx.doi.org/10.1007/s13277-013-1247-4] [PMID: 24096582]
[14]
Yu, D.; Shi, X.; Meng, G.; Chen, J.; Yan, C.; Jiang, Y.; Wei, J.; Ding, Y. Kidney-type glutaminase (GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carci-noma. Oncotarget, 2015, 6(10), 7619-7631.
[http://dx.doi.org/10.18632/oncotarget.3196] [PMID: 25844758]
[15]
Wang, J.B.; Erickson, J.W.; Fuji, R.; Ramachandran, S.; Gao, P.; Dinavahi, R.; Wilson, K.F.; Ambrosio, A.L.; Dias, S.M.; Dang, C.V.; Cerione, R.A. Targeting mitochondrial glutami-nase activity inhibits oncogenic transformation. Cancer Cell, 2010, 18(3), 207-219.
[http://dx.doi.org/10.1016/j.ccr.2010.08.009] [PMID: 20832749]
[16]
Yuan, L.; Sheng, X.; Clark, L.H.; Zhang, L.; Guo, H.; Jones, H.M.; Willson, A.K.; Gehrig, P.A.; Zhou, C.; Bae-Jump, V.L. Glutaminase inhibitor compound 968 inhibits cell prolifera-tion and sensitizes paclitaxel in ovarian cancer. Am. J. Transl. Res., 2016, 8(10), 4265-4277.
[PMID: 27830010]
[17]
Katt, W.P.; Antonyak, M.A.; Cerione, R.A. Simultaneously targeting tissue transglutaminase and kidney type glutaminase sensitizes cancer cells to acid toxicity and offers new oppor-tunities for therapeutic intervention. Mol. Pharm., 2015, 12(1), 46-55.
[http://dx.doi.org/10.1021/mp500405h] [PMID: 25426679]
[18]
Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or en-zyme inhibitors. Adv. Enzyme Regul., 1984, 22, 27-55.
[http://dx.doi.org/10.1016/0065-2571(84)90007-4] [PMID: 6382953]
[19]
Halama, A.; Kulinski, M.; Dib, S.S.; Zaghlool, S.B.; Siveen, K.S.; Iskandarani, A.; Zierer, J.; Prabhu, K.S.; Satheesh, N.J.; Bhagwat, A.M.; Uddin, S.; Kastenmüller, G.; Elemento, O.; Gross, S.S.; Suhre, K. Accelerated lipid catabolism and au-tophagy are cancer survival mechanisms under inhibited glu-taminolysis. Cancer Lett., 2018, 430, 133-147.
[http://dx.doi.org/10.1016/j.canlet.2018.05.017] [PMID: 29777783]
[20]
Moncada, S.; Higgs, E.A.; Colombo, S.L. Fulfilling the meta-bolic requirements for cell proliferation. Biochem. J., 2012, 446(1), 1-7.
[http://dx.doi.org/10.1042/BJ20120427] [PMID: 22835215]
[21]
Lheureux, S.; Oza, A.M. Endometrial cancer-targeted thera-pies myth or reality? Review of current targeted treatments. Eur. J. Cancer, 2016, 59, 99-108.
[http://dx.doi.org/10.1016/j.ejca.2016.02.016] [PMID: 27017291]
[22]
Jacque, N.; Ronchetti, A.M.; Larrue, C.; Meunier, G.; Birsen, R.; Willems, L.; Saland, E.; Decroocq, J.; Maciel, T.T.; Lam-bert, M.; Poulain, L.; Hospital, M.A.; Sujobert, P.; Joseph, L.; Chapuis, N.; Lacombe, C.; Moura, I.C.; Demo, S.; Sarry, J.E.; Recher, C.; Mayeux, P.; Tamburini, J.; Bouscary, D. Targeting glutaminolysis has antileukemic activity in acute myeloid leu-kemia and synergizes with BCL-2 inhibition. Blood, 2015, 126(11), 1346-1356.
[http://dx.doi.org/10.1182/blood-2015-01-621870] [PMID: 26186940]
[23]
Simpson, N.E.; Tryndyak, V.P.; Pogribna, M.; Beland, F.A.; Pogribny, I.P. Modifying metabolically sensitive histone marks by inhibiting glutamine metabolism affects gene ex-pression and alters cancer cell phenotype. Epigenetics, 2012, 7(12), 1413-1420.
[http://dx.doi.org/10.4161/epi.22713] [PMID: 23117580]
[24]
Gius, D.; Spitz, D.R. Redox signaling in cancer biology. Antioxid. Redox Signal., 2006, 8(7-8), 1249-1252.
[http://dx.doi.org/10.1089/ars.2006.8.1249] [PMID: 16910772]
[25]
Turgeon, M.O.; Perry, N.J.S.; Poulogiannis, G. DNA Damage, Repair, and Cancer Metabolism. Front. Oncol., 2018, 8, 15.
[http://dx.doi.org/10.3389/fonc.2018.00015] [PMID: 29459886]
[26]
Yang, L.; Moss, T.; Mangala, L.S.; Marini, J.; Zhao, H.; Wahlig, S.; Armaiz-Pena, G.; Jiang, D.; Achreja, A.; Win, J.; Roopaimoole, R.; Rodriguez-Aguayo, C.; Mercado-Uribe, I.; Lopez-Berestein, G.; Liu, J.; Tsukamoto, T.; Sood, A.K.; Ram, P.T.; Nagrath, D. Metabolic shifts toward glutamine reg-ulate tumor growth, invasion and bioenergetics in ovarian cancer. Mol. Syst. Biol., 2014, 10(5), 728.
[http://dx.doi.org/10.1002/msb.20134892] [PMID: 24799285]
[27]
Martín-Rufián, M.; Nascimento-Gomes, R.; Higuero, A.; Crisma, A.R.; Campos-Sandoval, J.A.; Gómez-García, M.C.; Cardona, C.; Cheng, T.; Lobo, C.; Segura, J.A.; Alonso, F.J.; Szeliga, M.; Albrecht, J.; Curi, R.; Márquez, J.; Colquhoun, A.; Deberardinis, R.J.; Matés, J.M. Both GLS silencing and GLS2 overexpression synergize with oxidative stress against prolif-eration of glioma cells. J. Mol. Med. (Berl.), 2014, 92(3), 277-290.
[http://dx.doi.org/10.1007/s00109-013-1105-2] [PMID: 24276018]
[28]
Abu Aboud, O.; Habib, S.L.; Trott, J.; Stewart, B.; Liang, S.; Chaudhari, A.J.; Sutcliffe, J.; Weiss, R.H. Glutamine addiction in kidney cancer suppresses oxidative stress and can be ex-ploited for real-time imaging. Cancer Res., 2017, 77(23), 6746-6758.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0930] [PMID: 29021138]
[29]
Ulanet, D.B.; Couto, K.; Jha, A.; Choe, S.; Wang, A.; Woo, H.K.; Steadman, M.; DeLaBarre, B.; Gross, S.; Driggers, E.; Dorsch, M.; Hurov, J.B. Mesenchymal phenotype predispos-es lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition. PLoS One, 2014, 9(12), e115144.
[http://dx.doi.org/10.1371/journal.pone.0115144] [PMID: 25502225]
[30]
Puisieux, A.; Brabletz, T.; Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol., 2014, 16(6), 488-494.
[http://dx.doi.org/10.1038/ncb2976] [PMID: 24875735]
[31]
Lee, S.Y.; Jeon, H.M.; Ju, M.K.; Jeong, E.K.; Kim, C.H.; Park, H.G.; Han, S.I.; Kang, H.S. Dlx-2 and glutaminase upregulate epithelial-mesenchymal transition and glycolytic switch. Oncotarget, 2016, 7(7), 7925-7939.
[http://dx.doi.org/10.18632/oncotarget.6879] [PMID: 26771232]
[32]
Lampa, M.; Arlt, H.; He, T.; Ospina, B.; Reeves, J.; Zhang, B.; Murtie, J.; Deng, G.; Barberis, C.; Hoffmann, D.; Cheng, H.; Pollard, J.; Winter, C.; Richon, V.; Garcia-Escheverria, C.; Adrian, F.; Wiederschain, D.; Srinivasan, L. Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition. PLoS One, 2017, 12(9), e0185092.
[http://dx.doi.org/10.1371/journal.pone.0185092] [PMID: 28950000]
[33]
Ahluwalia, G.S.; Grem, J.L.; Hao, Z.; Cooney, D.A. Metabo-lism and action of amino acid analog anti-cancer agents. Pharmacol. Ther., 1990, 46(2), 243-271.
[http://dx.doi.org/10.1016/0163-7258(90)90094-I] [PMID: 2108451]
[34]
Fu, A.; Yu, Z.; Song, Y.; Zhang, E. Silencing of glutaminase 1 resensitizes Taxol-resistant breast cancer cells to Taxol. Mol. Med. Rep., 2015, 11(6), 4727-4733.
[http://dx.doi.org/10.3892/mmr.2015.3261] [PMID: 25625774]
[35]
Yang, R.; Guo, Z.; Zhao, Y.; Ma, L.; Li, B.; Yang, C. Com-pound 968 reverses adriamycin resistance in breast cancer MCF-7ADR cells via inhibiting P-glycoprotein function inde-pendently of glutaminase. Cell Death Discov., 2021, 7(1), 204.
[http://dx.doi.org/10.1038/s41420-021-00590-1] [PMID: 34354052]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy