Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Molecular Docking Simulation-based Pharmacophore Modeling to Design Translation Inhibitors Targeting c-di-GMP Riboswitch of Vibrio cholera

Author(s): Somdutt Mujwar* and Kamalraj Pardasani

Volume 20, Issue 6, 2023

Published on: 23 August, 2022

Page: [745 - 754] Pages: 10

DOI: 10.2174/1570180819666220516123249

Price: $65

Abstract

Background: Vibrio cholera is a facultative pathogenic bacterium that causes cholera pandemics, primarily in nations with hot and humid climates and large bodies of water containing a large quantity of organic debris. Consumption of V. cholera contaminated water or food causes acute diarrheal illness, followed by severe dehydration and mortality. Cholera is a highly infectious illness, with over 4 million cases recorded globally each year, and over a hundred thousand deaths.

Objective: The only known therapy for cholera infection is oral rehydration solution along with antibiotics. Excessive antibiotic use causes pathogens to acquire antimicrobial drug resistance, resulting in a loss of efficacy. Furthermore, antibiotics are accompanied by a plethora of unfavorable side effects, restricting their usage.

Methods: A riboswitch is a non-homologous proteinaceous therapeutic target that plays a regulatory role in the crucial process of bacterial translation. As a result, the bacterial riboswitch was investigated as a surrogate target for developing a therapeutic medication against V. cholera.

Results: In silico screening with 24407 ligands was performed against the bacterial riboswitch to identify potential lead candidates, followed by pharmacophore modeling and bioisosteric lead modifications to design potential leads having an antagonistic impact on the pathogenic bacterial riboswitch.

Conclusion: The riboswitch-based innovative therapy was anticipated to be devoid of the issues connected with the development of antimicrobial drug resistance as well as the unwanted side effects associated with antibiotic usage.

Keywords: Riboswitch, pharmacophore, cholera, bioisosteric replacement, lead modification, bioterrorism.

Graphical Abstract

[1]
Nelson, E.J.; Chowdhury, A.; Flynn, J.; Schild, S.; Bourassa, L.; Shao, Y.; LaRocque, R.C.; Calderwood, S.B.; Qadri, F.; Camilli, A. Transmission of Vibrio cholerae is antagonized by lytic phage and entry into the aquatic environment. PLoS Pathog., 2008, 4(10)e1000187
[http://dx.doi.org/10.1371/journal.ppat.1000187] [PMID: 18949027]
[2]
Deen, J.; Mengel, M. A.; Clemens, J. D. J. V. Epidemiology of cholera.2020, 38, A31-A40.
[http://dx.doi.org/10.1016/j.vaccine.2019.07.078]
[3]
Ramamurthy, T.; Bhattacharya, S. Epidemiological and molecular aspects on cholera; Springer Science & Business Media, 2010.
[4]
Ambrus, A.; Field, E.; Gonzalez, R. J. A. E. R. Loss in the time of cholera: Long-run impact of a disease epidemic on the urban landscape.2020, 110(2), 475-525.
[5]
Meszaros, V. A.; Miller-Dickson, M. D.; Baffour-Awuah, F.; Almagro-Moreno, S.; Ogbunugafor, C. B. J. P. o. Direct transmission via households informs models of disease and intervention dynamics in cholera., 2020, 15, . (3)e0229837
[http://dx.doi.org/10.1371/journal.pone.0229837]
[6]
Kanungo, S.; Sah, B.K.; Lopez, A.L.; Sung, J.S.; Paisley, A.M.; Sur, D.; Clemens, J.D.; Nair, G.B. Cholera in India: An analysis of reports, 1997-2006. Bull. World Health Organ., 2010, 88(3), 185-191.
[http://dx.doi.org/10.2471/BLT.09.073460] [PMID: 20428385]
[7]
Constantin de Magny, G.; Murtugudde, R.; Sapiano, M.R.; Nizam, A.; Brown, C.W.; Busalacchi, A.J.; Yunus, M.; Nair, G.B.; Gil, A.I.; Lanata, C.F.; Calkins, J.; Manna, B.; Rajendran, K.; Bhattacharya, M.K.; Huq, A.; Sack, R.B.; Colwell, R.R. Environmental signatures associated with cholera epidemics. Proc. Natl. Acad. Sci. USA, 2008, 105(46), 17676-17681.
[http://dx.doi.org/10.1073/pnas.0809654105] [PMID: 19001267]
[8]
Batabyal, P.; Mookerjee, S.; Palit, A. Occurrence of toxigenic Vibrio cholerae in accessible water sources of cholera endemic foci in India. Jpn. J. Infect. Dis., 2012, 65(4), 358-360.
[http://dx.doi.org/10.7883/yoken.65.358] [PMID: 22814165]
[9]
Mashe, T.; Domman, D.; Tarupiwa, A.; Manangazira, P.; Phiri, I.; Masunda, K.; Chonzi, P.; Njamkepo, E.; Ramudzulu, M.; Mtapuri-Zinyowera, S. J. N. E. J. o. M. Highly resistant cholera outbreak strain in Zimbabwe. 2020, 383(7), 687-689.
[http://dx.doi.org/10.1056/NEJMc2004773]
[10]
Tischler, A.D.; Camilli, A. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol. Microbiol., 2004, 53(3), 857-869.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04155.x] [PMID: 15255898]
[11]
Panchal, V.; Brenk, R. Riboswitches as drug targets for antibiotics. Antibiotics (Basel), 2021, 10(1), 45.
[http://dx.doi.org/10.3390/antibiotics10010045] [PMID: 33466288]
[12]
Kaur, A.; Mujwar, S.; Adlakha, N. In silico analysis of riboswitch of Nocardia farcinica for design of its inhibitors and pharmacophores. Int. J. Comput. Biol. Drug Des., 2016, 9(3), 261-276.
[http://dx.doi.org/10.1504/IJCBDD.2016.078278]
[13]
Pradhan, P.; Soni, N.K.; Chaudhary, L.; Mujwar, S.; Pardasani, K.R. In silico prediction of riboswitches and design of their potent inhibitors for H1N1, H2N2 and H3N2 strains of influenza virus. Biosci. Biotechnol. Res. Asia, 2015, 12(3), 2173-2186.
[http://dx.doi.org/10.13005/bbra/1889]
[14]
Deigan, K.E.; Ferré-D’Amaré, A.R. Riboswitches: Discovery of drugs that target bacterial gene-regulatory RNAs. Acc. Chem. Res., 2011, 44(12), 1329-1338.
[http://dx.doi.org/10.1021/ar200039b] [PMID: 21615107]
[15]
Micura, R.; Höbartner, C.J.C.S.R. Fundamental studies of functional nucleic acids: Aptamers, riboswitches, ribozymes and DNAzymes. Chem. Soc. Rev., 2020, 49, 7331-7353.
[http://dx.doi.org/10.1039/D0CS00617C]
[16]
Mujwar, S.P.K.; Pardasani, K.R. Prediction of riboswitch as a potential drug target and design of its optimal inhibitors for Mycobacterium tuberculosis. Int. J. Comput. Biol. Drug Des., 2015, 8(4), 326-347.
[http://dx.doi.org/10.1504/IJCBDD.2015.073671]
[17]
Mujwar, S.; Pardasani, K.R. Prediction of Riboswitch as a potential drug target for infectious diseases: An Insilico case study of anthrax. J. Med. Imaging Health Inform., 2015, 5(1), 7-16.
[http://dx.doi.org/10.1166/jmihi.2015.1358]
[18]
Smith, K.D.; Shanahan, C.A.; Moore, E.L.; Simon, A.C.; Strobel, S.A. Structural basis of differential ligand recognition by two classes of bis-(3′-5′)-cyclic dimeric guanosine monophosphate-binding riboswitches. Proc. Natl. Acad. Sci. USA, 2011, 108(19), 7757-7762.
[http://dx.doi.org/10.1073/pnas.1018857108] [PMID: 21518891]
[19]
Reyes-Darias, J.A.; Krell, T. Riboswitches as potential targets for the development of anti-biofilm drugs. Curr. Top. Med. Chem., 2017, 17(17), 1945-1953.
[http://dx.doi.org/10.2174/1568026617666170407163517] [PMID: 28403796]
[20]
Cho, K.H.; Tryon, R.G.; Kim, J.H. Screening for diguanylate cyclase (DGC) inhibitors mitigating bacterial biofilm formation. Front Chem., 2020, 8, 264.
[http://dx.doi.org/10.3389/fchem.2020.00264] [PMID: 32373581]
[21]
Opoku-Temeng, C.; Sintim, H.O. Targeting c-di-GMP Signaling, Biofilm Formation, and Bacterial Motility with Small Molecules. Methods Mol. Biol., 2017, 1657, 419-430.
[http://dx.doi.org/10.1007/978-1-4939-7240-1_31] [PMID: 28889311]
[22]
Pursley, B.R.; Fernandez, N.L.; Severin, G.B.; Waters, C.M. The Vc2 cyclic di-GMP-dependent riboswitch of Vibrio cholerae regulates expression of an upstream putative small RNA by controlling RNA stability. J. Bacteriol., 2019, 201(21), e00293-e19.
[http://dx.doi.org/10.1128/JB.00293-19] [PMID: 31405916]
[23]
Ellinger, E.; Chauvier, A.; Porta, J.; Deb, I.; Frank, A.T.; Ohi, M.D.; Walter, N.G.J.B.J. Structural insights into the riboswitch-mediated regulation of transcription termination. Nucleic Acids Res., 2021, 120(3), 312a-313a.
[24]
Qvortrup, K.; Hultqvist, L.D.; Nilsson, M.; Jakobsen, T.H.; Jansen, C.U.; Uhd, J.; Andersen, J.B.; Nielsen, T.E.; Givskov, M.; Tolker-Nielsen, T. Small molecule anti-biofilm agents developed on the basis of mechanistic understanding of biofilm formation. Front Chem., 2019, 7, 742.
[http://dx.doi.org/10.3389/fchem.2019.00742] [PMID: 31737611]
[25]
Kumari, P.; Pratap Singh, S.; Som, A. J. I. J. o. B. Biophysics, Insights into the dynamics of cyclic diguanosine monophosphate I riboswitch using molecular dynamics simulation. 2021, 58(3), 208-218.
[26]
Topp, S.; Reynoso, C.M.; Seeliger, J.C.; Goldlust, I.S.; Desai, S.K.; Murat, D.; Shen, A.; Puri, A.W.; Komeili, A.; Bertozzi, C.R.; Scott, J.R.; Gallivan, J.P. Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl. Environ. Microbiol., 2010, 76(23), 7881-7884.
[http://dx.doi.org/10.1128/AEM.01537-10] [PMID: 20935124]
[27]
Somdutt, M.; Kamal, R. J. O. J. B. Riboswitch as a target for Streptococcus pneumoniae. 2012, 13(2), 285-313.
[28]
Rekand, I.H.; Brenk, R. Ligand design for riboswitches, an emerging target class for novel antibiotics. Future Med. Chem., 2017, 9(14), 1649-1663.
[http://dx.doi.org/10.4155/fmc-2017-0063] [PMID: 28925284]
[29]
Mujwar, S.; Tripathi, A. Repurposing benzbromarone as antifolate to develop novel antifungal therapy for Candida albicans. J. Mol. Model., 2022, 28, 193.
[http://dx.doi.org/10.21203/rs.3.rs-1057044/v1]
[30]
Matthews, B.W. Structural and genetic analysis of protein stability. Annu. Rev. Biochem., 1993, 62(1), 139-160.
[http://dx.doi.org/10.1146/annurev.bi.62.070193.001035] [PMID: 8352587]
[31]
Morris, G. M.; Huey, R.; Olson, A. Using autodock for ligandreceptor docking. Current Protocols in Bioinformatics, 2008, 24(1), 8-14.
[http://dx.doi.org/10.1002/0471250953.bi0814s24]
[32]
Mujwar, S. Computational repurposing of tamibarotene against triple mutant variant of SARS-CoV-2. Comput. Biol. Med., 2021, 136, 104748.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104748] [PMID: 34388463]
[33]
Sander, T.; Freyss, J.; von Korff, M.; Reich, J.R.; Rufener, C. OSIRIS, an entirely in-house developed drug discovery informatics system. J. Chem. Inf. Model., 2009, 49(2), 232-246.
[http://dx.doi.org/10.1021/ci800305f] [PMID: 19434825]
[34]
Smith, K.D.; Lipchock, S.V.; Ames, T.D.; Wang, J.; Breaker, R.R.; Strobel, S.A. Structural basis of ligand binding by a c-di-GMP riboswitch. Nat. Struct. Mol. Biol., 2009, 16(12), 1218-1223.
[http://dx.doi.org/10.1038/nsmb.1702] [PMID: 19898477]
[35]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E.J.N.r. Theprotein data bank, 2000, 28(1), 235-242.
[36]
Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol., 1990, 215(3), 403-410.
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[37]
DeLano, W. L. J. C. N. o. p. c. Pymol: An open-source molecular graphics tool. 2002, 40(1), 82-92.
[38]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[39]
Mujwar, S.; Deshmukh, R.; Harwansh, R.K.; Gupta, J.K.; Gour, A. Drug Repurposing Approach for Developing Novel Therapy Against Mupirocin-Resistant Staphylococcus aureus. Assay Drug Dev. Technol., 2019, 17(7), 298-309.
[http://dx.doi.org/10.1089/adt.2019.944] [PMID: 31634019]
[40]
Mujwar, S.; Kumar, V. Computational Drug Repurposing Approach to Identify Potential Fatty Acid-Binding Protein-4 Inhibitors to Develop Novel Antiobesity Therapy. Assay Drug Dev. Technol., 2020, 18(7), 318-327.
[http://dx.doi.org/10.1089/adt.2020.976] [PMID: 32799554]
[41]
Minaz, N.; Razdan, R.; Hammock, B.D.; Mujwar, S.; Goswami, S.K. Impact of diabetes on male sexual function in streptozotocin-induced diabetic rats: Protective role of soluble epoxide hydrolase inhibitor. Biomedecine & Pharmacotherapie, 2019, 115, 108897.
[42]
Mishra, I.; Mishra, R.; Mujwar, S.; Chandra, P.; Sachan, N. A retrospect on antimicrobial potential of thiazole scaffold. J. Heterocycl. Chem., 2020, 57(6), 2304-2329.
[http://dx.doi.org/10.1002/jhet.3970]
[43]
Mujwar, S. Computational bioprospecting of andrographolide derivatives as potent cyclooxygenase-2 inhibitors. Biomed. Biotechnol. Res. J., 2021, 5(4), 446.
[http://dx.doi.org/10.4103/bbrj.bbrj_56_21]
[44]
Mujwar, S.; Shah, K.; Gupta, J.K.; Gour, A. Docking based screening of curcumin derivatives: A novel approach in the inhibition of tubercular DHFR. Int. J. Comput. Biol. Drug Des., 2021, 14(4), 297-314.
[http://dx.doi.org/10.1504/IJCBDD.2021.118830]
[45]
Mujwar, S.; Tomer, I.; Gour, A. Molecular docking simulation based virtual screening for the design of potential inhibitors of heme oxygenase of corney bacterium diphtheria. International J. Rec. Technol. Eng., 2019, 8(2), 1086-1091.
[46]
Shah, K.; Mujwar, S.; Gupta, J.K.; Shrivastava, S.K.; Mishra, P. Molecular docking and in silico cogitation validate mefenamic acid prodrugs as human cyclooxygenase-2 inhibitor. Assay Drug Dev. Technol., 2019, 17(6), 285-291.
[http://dx.doi.org/10.1089/adt.2019.943] [PMID: 31532713]
[47]
Shah, K.; Mujwar, S.; Krishna, G.; Gupta, J.K. Computational design and biological depiction of novel naproxen derivative. Assay Drug Dev. Technol., 2020, 18(7), 308-317.
[http://dx.doi.org/10.1089/adt.2020.977] [PMID: 32749851]
[48]
Sharma, K.K.; Singh, B.; Mujwar, S.; Bisen, P.S. Molecular docking based analysis to elucidate the DNA topoisomerase IIβ as the potential target for the ganoderic acid; A natural therapeutic agent in cancer therapy. Curr. Computeraided Drug Des., 2020, 16(2), 176-189.
[http://dx.doi.org/10.2174/1573409915666190820144759] [PMID: 31429692]
[49]
Agrawal, N.U.P.; Mujwar, S.; Mishra, P. Analgesic, anti-inflammatory activity and docking study of 2-(substituted phenyl)-3-(naphthalen1-yl)thiazolidin-4-ones. J. Indian Chem. Soc., 2020, 97, 39-46.
[50]
Soni, N.; Pardasani, K.R.; Mujwar, S. Insilico analysis of dietary agents as anticancer inhibitors of insulin like growth factor 1 receptor (IGF1R). J. Pharm. Pharm. Sci., 2015, 7(9), 191-196.
[51]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11(5), 905-919.
[http://dx.doi.org/10.1038/nprot.2016.051] [PMID: 27077332]
[52]
Schneidman-Duhovny, D.; Dror, O.; Inbar, Y.; Nussinov, R.; Wolfson, H. J. PharmaGist: A webserver for ligand-based pharmacophore detection. Nucleic Acids Res,, 2008, 36((Web Server issue)), W223-W228.
[http://dx.doi.org/10.1093/nar/gkn187]
[53]
Schneidman-Duhovny, D.; Dror, O.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. Deterministic pharmacophore detection via multiple flexible alignment of drug-like molecules. J. Comput. Biol., 2008, 15(7), 737-754.
[http://dx.doi.org/10.1089/cmb.2007.0130] [PMID: 18662104]
[54]
Dror, O.; Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. Novel approach for efficient pharmacophore-based virtual screening: Method and applications. J. Chem. Inf. Model., 2009, 49(10), 2333-2343.
[http://dx.doi.org/10.1021/ci900263d] [PMID: 19803502]
[55]
Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. J. J. o. c. i. Modeling, DataWarrior: An open-source program for chemistry aware data visualization and analysis. 2015, 55(2), 460-473.
[56]
Jain, R.; Mujwar, S. J. S. C. Repurposing metocurine as main protease inhibitor to develop novel antiviral therapy for COVID-19. 2020, 31(6), 2487-2499.
[http://dx.doi.org/10.1007/s11224-020-01605-w]

© 2024 Bentham Science Publishers | Privacy Policy