Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Electroacupuncture Pretreatment Alleviates Cerebral Ischemia-reperfusion Injury by Down-regulating Mir-155-5p

Author(s): Xuejing Li, Ying Wang, Xiang Zhou, Hui Wang and Jiang Xu*

Volume 20, Issue 4, 2023

Published on: 06 October, 2023

Page: [480 - 492] Pages: 13

DOI: 10.2174/1567202620666230828092916

Price: $65

Abstract

Background: Increasing evidence shows that electroacupuncture pretreatment (EP) plays a crucial role in cerebral ischemia-reperfusion (I/R) injury, and cerebral I/R injury is the most serious complication of ischemic stroke treatment. The role of miR-155-5p in cerebral I/R injury has been studied, but the regulation of EP on miR-155-5p has not been reported.

Methods: The middle cerebral artery occlusion (MCAO) mice were used to investigate the role of EP in cerebral I/R injury. Longa and modified neurological severity scores (mNSS) were used to evaluate neurological impairment. HE staining and TUNEL staining were used to evaluate brain injury. The expressions of miR-155-5p, Yin Yang 1 (YY1) and p53 were detected by qRT-PCR. The expressions of related proteins were detected by western blot. The binding of YY1 to miR- 155-5p was verified by dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. Mice brain microvascular endothelial cells (BMECs) were isolated and cultured for in vitro experiments. Oxygen-glucose deprivation/reoxygenation (OGD/R) was used to verify the role of YY1, p53 and miR-155-5p in cerebral I/R injury in vitro.

Results: MCAO modeling induced brain injury, apoptosis, and increased levels of miR-155-5p, YY1, and p53. EP markedly alleviated brain injury and reduced levels of miR-155-5p, p53, and YY1. miR-155 agomir markedly increased the expression of miR-155-5p and p53. miR-155 antagomir decreased the levels of miR-155-5p and p53. Dual-luciferase reporter and ChIP assay verified that YY1 regulated miR-155-5p expression. YY1 shNRA greatly decreased miR-155-5p and p53. Inhibition of p53 decreased miR-155-5p expression. Both miR-155-5p inhibitor and YY1 shRNA promoted proliferation, inhibited apoptosis, and decreased levels of ICAM-1 and Eselectin of OGD/R-treated BMECs. Inhibition of p53 strengthened the effect of miR-155-5p inhibitor and YY1 shNRA on BMECs.

Conclusion: Electroacupuncture pretreatment alleviates cerebral ischemia-reperfusion injury by regulating the YY1/p53/miR-155-5p axis.

[1]
Wang W, Jiang B, Sun H. et al.Prevalence, incidence, and mortality of stroke in China. Circulation 2017; 135(8): 759-71.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.025250] [PMID: 28052979]
[2]
Huang KS, Ding-Xiu H, Qianlan T. et al.Changes in the incidence and prevalence of ischemic stroke and associations with natural disasters: An ecological study in 193 countries. Sci Rep 2022; 12(1): 1808.
[http://dx.doi.org/10.1038/s41598-022-05288-7 ] [PMID: 35110569]
[3]
Virani SS, Alonso A, Benjamin EJ. et al.Heart disease and stroke statistics-2020 update: A report from the american heart association. Circulation 2020; 141(9): e139-596.
[http://dx.doi.org/10.1161/CIR.0000000000000757] [PMID: 31992061]
[4]
Campbell BCV, De Silva Deidre A, Malcolm RM. et al.Ischaemic stroke. Nat Rev Dis Primers 2019; 5(1): 70.
[http://dx.doi.org/10.1038/s41572-019-0118-8 ] [PMID: 31601801]
[5]
Wang P, Yanmei C, Qianqian R. et al.Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis 2021; 12(5): 021-03725.
[http://dx.doi.org/10.1038/s41419-021-03725-5] [PMID: 33953171]
[6]
Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 2013; 47(1): 9-23.
[http://dx.doi.org/10.1007/s12035-012-8344-z] [PMID: 23011809]
[7]
Bulygin KV, Beeraka NM, Saitgareeva AR. et al.Can miRNAs be considered as diagnostic and therapeutic molecules in ischemic stroke pathogenesis?—current status. Int J Mol Sci 2020; 21(18): 6728.
[http://dx.doi.org/10.3390/ijms21186728] [PMID: 32937836]
[8]
Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 2019; 20(1): 21-37.
[http://dx.doi.org/10.1038/s41580-018-0045-7] [PMID: 30108335]
[9]
Mao L, Zuo ML, Wang AP. et al.Low expression of miR 532 3p contributes to cerebral ischemia/reperfusion oxidative stress injury by directly targeting NOX2. Mol Med Rep 2020; 22(3): 2415-23.
[http://dx.doi.org/10.3892/mmr.2020.11325] [PMID: 32705253]
[10]
Li C, Wu L, Liu P. et al.The C/D box small nucleolar RNA SNORD52 regulated by Upf1 facilitates Hepatocarcinogenesis by stabilizing CDK1. Theranostics 2020; 10(20): 9348-63.
[http://dx.doi.org/10.7150/thno.47677] [PMID: 32802196]
[11]
Zhao XR, Zhang Z, Gao M. et al.MicroRNA-27a-3p aggravates renal ischemia/reperfusion injury by promoting oxidative stress via targeting growth factor receptor-bound protein 2. Pharmacol Res 2020; 155(104718): 104718.
[http://dx.doi.org/10.1016/j.phrs.2020.104718] [PMID: 32084559]
[12]
Huang Y, Tang J, Li X, Long X, Huang Y, Zhang X. miR-92b-3p exerts neuroprotective effects on ischemia/reperfusion-induced cerebral injury via targeting NOX4 in a rat model. Oxid Med Cell Longev 2022; 2022(3494262): 1-16.
[http://dx.doi.org/10.1155/2022/3494262] [PMID: 35401931]
[13]
Liu W, Miao Y, Zhang L, Xu X, Luan Q. MiR-211 protects cerebral ischemia/reperfusion injury by inhibiting cell apoptosis. Bioengineered 2020; 11(1): 189-200.
[http://dx.doi.org/10.1080/21655979.2020.1729322] [PMID: 32050841]
[14]
Greco R, Demartini C, Zanaboni AM, Blandini F, Amantea D, Tassorelli C. Endothelial nitric oxide synthase inhibition triggers inflammatory responses in the brain of male rats exposed to ischemia-reperfusion injury. J Neurosci Res 2018; 96(1): 151-9.
[http://dx.doi.org/10.1002/jnr.24101] [PMID: 28609584]
[15]
Henry RJ, Doran SJ, Barrett JP. et al.Inhibition of miR-155 limits neuroinflammation and improves functional recovery after experimental traumatic brain injury in mice. Neurotherapeutics 2019; 16(1): 216-30.
[http://dx.doi.org/10.1007/s13311-018-0665-9] [PMID: 30225790]
[16]
Shi Y, Li Z, Li K, Xu K. miR-155-5p accelerates cerebral ischemia-reperfusion inflammation injury and cell pyroptosis via DUSP14/TXNIP/NLRP3 pathway. Acta Biochim Pol 2022; 69(4): 787-93.
[http://dx.doi.org/10.18388/abp.2020_6095] [PMID: 36441582]
[17]
Wang J, Wan Y. Acupuncture mechanisms: Anesthesia, analgesia and protection on organ functions. World J Tradit Chin Med 2015; 1(1): 59-66.
[http://dx.doi.org/10.15806/j.issn.2311-8571.2014.0012]
[18]
Yang XY, Shi GX, Li QQ, Zhang ZH, Xu Q, Liu CZ. Characterization of deqi sensation and acupuncture effect. Evid Based Complement Alternat Med 2013; 2013(10): 1-7.
[http://dx.doi.org/10.1155/2013/319734] [PMID: 23864884]
[19]
Chi L, Du K, Liu D, Bo Y, Li W. Electroacupuncture brain protection during ischemic stroke: A role for the parasympathetic nervous system. J Cereb Blood Flow Metab 2018; 38(3): 479-91.
[http://dx.doi.org/10.1177/0271678X17697988] [PMID: 28281385]
[20]
Jia Y, Xuezhu Z, Jianchun Y. et al.Acupuncture for patients with mild to moderate Alzheimer’s disease: A randomized controlled trial. BMC Complement Altern Med 2017; 17(1): 556.
[http://dx.doi.org/10.1186/s12906-017-2064-x ] [PMID: 29284465]
[21]
Zheng X, Lin W, Jiang Y. et al.Electroacupuncture ameliorates beta-amyloid pathology and cognitive impairment in Alzheimer disease via a novel mechanism involving activation of TFEB (transcription factor EB). Autophagy 2021; 17(11): 3833-47.
[http://dx.doi.org/10.1080/15548627.2021.1886720] [PMID: 33622188]
[22]
Feng R, Zhang F. The neuroprotective effect of electro-acupuncture against ischemic stroke in animal model: a review. Afr J Tradit Complement Altern Med 2014; 11(3): 25-9.
[http://dx.doi.org/10.4314/ajtcam.v11i3.5] [PMID: 25371560]
[23]
Mei ZG, Huang YG, Feng ZT. et al.Electroacupuncture ameliorates cerebral ischemia/reperfusion injury by suppressing autophagy via the SIRT1-FOXO1 signaling pathway. Aging 2020; 12(13): 13187-205.
[http://dx.doi.org/10.18632/aging.103420] [PMID: 32620714]
[24]
Zhang XC, Gu AP, Zheng CY. et al.YY1/LncRNA GAS5 complex aggravates cerebral ischemia/reperfusion injury through enhancing neuronal glycolysis. Neuropharmacology 2019; 158: 107682.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107682] [PMID: 31278927]
[25]
Liu H, Sun S, Liu B. Smurf2 exerts neuroprotective effects on cerebral ischemic injury. J Biol Chem 2021; 297(2): 100537.
[http://dx.doi.org/10.1016/j.jbc.2021.100537] [PMID: 33722608]
[26]
Furlong EEM, Rein T, Martin F. YY1 and NF1 both activate the human p53 promoter by alternatively binding to a composite element, and YY1 and E1A cooperate to amplify p53 promoter activity. Mol Cell Biol 1996; 16(10): 5933-45.
[http://dx.doi.org/10.1128/MCB.16.10.5933] [PMID: 8816507]
[27]
Silasi G, Murphy TH. Stroke and the connectome: How connectivity guides therapeutic intervention. Neuron 2014; 83(6): 1354-68.
[http://dx.doi.org/10.1016/j.neuron.2014.08.052] [PMID: 25233317]
[28]
Johnston SC, Mendis S, Mathers CD. Global variation in stroke burden and mortality: Estimates from monitoring, surveillance, and modelling. Lancet Neurol 2009; 8(4): 345-54.
[http://dx.doi.org/10.1016/S1474-4422(09)70023-7] [PMID: 19233730]
[29]
Zhao J, Mou Y, Bernstock JD. et al.Synthetic oligodeoxynucleotides containing multiple telemeric TTAGGG motifs suppress inflammasome activity in macrophages subjected to oxygen and glucose deprivation and reduce ischemic brain injury in stroke-prone spontaneously hypertensive rats. PLoS One 2015; 10(10): e0140772.
[http://dx.doi.org/10.1371/journal.pone.0140772] [PMID: 26473731]
[30]
Geng Y, Chen Y, Sun W. et al.Electroacupuncture ameliorates cerebral I/R-induced inflammation through DOR-BDNF/TrkB pathway. Evid Based Complement Alternat Med 2020; 2020(3495836): 1-15.
[http://dx.doi.org/10.1155/2020/3495836 ] [PMID: 32256638]
[31]
Huang YG, Yang SB, Du LP, Cai SJ, Feng ZT, Mei ZG. [Electroacupuncture pretreatment alleviated cerebral ischemia-reperfusion injury via suppressing autophagy in cerebral cortex tissue in rats Zhen Ci Yan Jiu 2019; 44(12): 867-72.
[http://dx.doi.org/10.13702/j.1000-0607.190307] [PMID: 31867904]
[32]
Wang MM, Zhang M, Feng YS. et al.Electroacupuncture inhibits neuronal autophagy and apoptosis via the PI3K/AKT pathway following ischemic stroke. Front Cell Neurosci 2020; 14(134): 134.
[http://dx.doi.org/10.3389/fncel.2020.00134] [PMID: 32477073]
[33]
Jiang T, Meiyan W, Zhanqin Z. Electroacupuncture attenuated cerebral ischemic injury and neuroinflammation through α7nAChR-mediated inhibition of NLRP3 inflammasome in stroke rats. Mol Med 2019; 25(1): 019-0091.
[http://dx.doi.org/10.1186/s10020-019-0091-4] [PMID: 31117961]
[34]
Li Z, Li J, Tang N. Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. Neuroscience 2017; 354: 1-10.
[http://dx.doi.org/10.1016/j.neuroscience.2017.04.017] [PMID: 28433650]
[35]
Lakhan SE, Kirchgessner A, Tepper D, Leonard A. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol 2013; 4(32): 32.
[http://dx.doi.org/10.3389/fneur.2013.00032] [PMID: 23565108]
[36]
Zhang QY, Wang ZJ, Sun DM. et al.Novel therapeutic effects of leonurine on ischemic stroke: New mechanisms of BBB integrity. Oxid Med Cell Longev 2017; 2017(10): 1-17.
[http://dx.doi.org/10.1155/2017/7150376] [PMID: 28690765]
[37]
Choi JS, Park J, Suk K, Moon C, Park YK, Han HS. Mild hypothermia attenuates intercellular adhesion molecule-1 induction via activation of extracellular signal-regulated kinase-1/2 in a focal cerebral ischemia model. Stroke Res Treat 2011; 2011(10): 1-9.
[http://dx.doi.org/10.4061/2011/846716] [PMID: 21716663]
[38]
Mizuma A, Yenari MA. Anti-inflammatory targets for the treatment of reperfusion injury in stroke. Front Neurol 2017; 8(467): 467.
[http://dx.doi.org/10.3389/fneur.2017.00467] [PMID: 28936196]
[39]
Du H, He Y, Pan Y. et al.Danhong injection attenuates cerebral ischemia-reperfusion injury in rats through the suppression of the neuroinflammation. Front Pharmacol 2021; 12(561237): 561237.
[http://dx.doi.org/10.3389/fphar.2021.561237] [PMID: 33927611]
[40]
Tan L, Jiang W, Lu A, Cai H, Kong L. miR-155 aggravates liver ischemia/reperfusion injury by suppressing SOCS1 in mice. Transplant Proc 2018; 50(10): 3831-9.
[http://dx.doi.org/10.1016/j.transproceed.2018.08.060] [PMID: 30577275]
[41]
Zhang Z, Chen H, Zhou L, Li C, Lu G, Wang L. Macrophage derived exosomal miRNA 155 promotes tubular injury in ischemia induced acute kidney injury. Int J Mol Med 2022; 50(3): 116.
[http://dx.doi.org/10.3892/ijmm.2022.5172] [PMID: 35795997]
[42]
Chen JG, Xu XM, Ji H, Sun B. Inhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats. Iran J Basic Med Sci 2019; 22(9): 1050-8.
[http://dx.doi.org/10.22038/ijbms.2019.34853.8270] [PMID: 31807249]
[43]
Han D, Zhou Y. YY1-induced upregulation of lncRNA NEAT1 contributes to OGD/R injury-induced inflammatory response in cerebral microglial cells via Wnt/β-catenin signaling pathway. In Vitro Cell Dev Biol Anim 2019; 55(7): 501-11.
[http://dx.doi.org/10.1007/s11626-019-00375-y] [PMID: 31286366]
[44]
Schweitzer KM, Dräger AM, van der Valk P. et al.Constitutive expression of E-selectin and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues. Am J Pathol 1996; 148(1): 165-75.
[PMID: 8546203]
[45]
Zhang C, Xiaoping Z, Yifei H. YY1 mediates TGF-β1-induced EMT and pro-fibrogenesis in alveolar epithelial cells. Respir Res 2019; 20(1): 019-1223.
[http://dx.doi.org/10.1186/s12931-019-1223-7] [PMID: 31703732]
[46]
Liu W, Guo Q, Zhao H. Oxidative stress-elicited YY1 potentiates antioxidative response via enhancement of NRF2-driven transcriptional activity: A potential neuronal defensive mechanism against ischemia/reperfusion cerebral injury. Biomed Pharmacother 2018; 108: 698-706.
[http://dx.doi.org/10.1016/j.biopha.2018.09.082] [PMID: 30248537]
[47]
Wang ZT, Chen ZJ, Jiang GM. et al.Histone deacetylase inhibitors suppress mutant p53 transcription via HDAC8/YY1 signals in triple negative breast cancer cells. Cell Signal 2016; 28(5): 506-15.
[http://dx.doi.org/10.1016/j.cellsig.2016.02.006] [PMID: 26876786]
[48]
Yan H, Wang S, Li Z. et al.Upregulation of miRNA-155 expression by OxLDL in dendritic cells involves JAK1/2 kinase and transcription factors YY1 and MYB. Int J Mol Med 2016; 37(5): 1371-8.
[http://dx.doi.org/10.3892/ijmm.2016.2526] [PMID: 26985867]
[49]
Dashkova DA, Esimbekova AR, Kotova KV, Ruksha TG. MiR-155-5p-mediated increase in p53 content induced by dacarbazine in melanoma cells. Russian Journal of Oncology 2023; 27(1): 21-8.
[http://dx.doi.org/10.17816/onco107182]
[50]
Wang Y, Zong-Ji Z, Yi-Jie J. et al.Role of p53/miR-155-5p/sirt1 loop in renal tubular injury of diabetic kidney disease. J Transl Med 2018; 16(1): 018-1486.
[http://dx.doi.org/10.1186/s12967-018-1486-7] [PMID: 29848325]
[51]
Xiao-Bo L. miR-155-5p Targets FOXO3 and affects the senescence of umbilicalcord mesenchymal stem cells. Chin J Biochem Mol Biol 1-17.
[http://dx.doi.org/10.13865/j.cnki.cjbmb.2023.06.1027]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy