Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Optical Properties of Hydrothermally Grown ZnO Nanoflowers

Author(s): Pijus Kanti Samanta*

Volume 12, Issue 3, 2022

Published on: 04 August, 2022

Article ID: e130522204716 Pages: 7

DOI: 10.2174/2210681212666220513095658

Price: $65

Abstract

A simple hydrothermal method has been successfully employed to synthesize flower-like ZnO nanostructure. X-ray diffraction data confirm the formation of ZnO with a Wurtzite structure. FESEM images show the flower-like morphology of the synthesized nanostructures. The energy dispersive X-ray spectroscopic analysis confirms the stoichiometric composition.. X-ray fluorescence spectrum shows no impurity element in the synthesized ZnO. The synthesized ZnO exhibits low absorption in the visible region of wavelength. Band gap enhancement was also observed owing to the quantum confinement effect. The synthesized ZnO nanoflowers exhibit strong room-temperature photoluminescence with a broad emission peak at 429 nm arising due to the recombination of electrons at zinc interstitials and holes in the valence band. This defect-related photoluminescence is very important in the context of understanding the defect dynamics in ZnO.

Background: Zinc oxide (ZnO) is a well-known multifunctional material possessing unique structural, electrical, and optical properties that are very useful in various device applications. Being a high and direct band gap semiconductor, it is potentially being used in various UV light sources and detectors fabrication. However, the emission and absorption properties strongly depend on the size of the ZnO nanoparticles which in turn depends on the morphology of the nanostructure. Therefore, it is very much important to understand the structure-property relationship for a predictable device performance.

Objectives: Our objective of this work is to synthesize flower-like ZnO nanostructures using a simple hydrothermal method. The flower-like ZnO morphology offers a large surface area that will be very suitable for designing gas and chemical sensor devices. Another objective of this work is to study the crystallography of ZnO. Next, the optical properties (emission and absorption) have been investigated to understand the defect-related photoluminescence mechanism.

Methods: A simple hydrothermal method has been deployed to synthesize flower-like ZnO nanostructures. A chloride decomposition scheme has been used to produce zinc hydroxide ions that will produce ZnO nuclide. At the onset of saturation, ZnO nanocrystals start to grow. The entire reaction was performed inside a Teflon cell stainless steel autoclave. The autoclave was placed in a horizontal tube furnace and maintained at 150 °C for 2 hr. resulting in the formation of white powder-like material.

Results:The X-ray diffraction data confirm the formation of polycrystalline ZnO having a Wurtzite structure. Flower-like morphology was clearly observed in FESEM images. The EDS data confirm the composition of ZnO with proper stoichiometry. Gibb’s free energy calculation favors the reaction under the experimental condition. The absorption spectrum was used to calculate the band gap of the synthesized ZnO nanoflowers. The Tauc plot revealed the band gap of the synthesized ZnO to be~ 3.69 eV. This enhancement of band gap compared to bulk ZnO occurs due to the quantum confinement effect. The synthesized ZnO nanoflowers exhibit broad photoluminescence peaked at 429 nm owing to the presence of interstitial zinc.

Conclusion: A hydrothermal method has been successfully used to synthesize well-crystalline ZnO nanoflowers of proper stoichiometry. The flower-like nanostructure exhibits band gap enhancement due to the quantum confinement effect. Room temperature visible photoluminescence was observed from the ZnO nanoflowers with a board emission peak at 429 nm. This emission arises due to the presence of deep-level zinc interstitial states. This finding will be very useful in understanding the role of defects in the visible emission from ZnO nanostructures.

Keywords: ZnO, nanoflower, absorption, band gap, photoluminescence, defect-states.

Graphical Abstract

[1]
Theerthagiri, J.; Salla, S.; Senthil, R.A.; Nithyadharseni, P.; Madankumar, A.; Arunachalam, P.; Maiyalagan, T.; Kim, H.S. A review on ZnO nanostructured materials: Energy, environmental and biological applications. Nanotechnology, 2019, 30(39), 392001-392006.
[http://dx.doi.org/10.1088/1361-6528/ab268a] [PMID: 31158832]
[2]
Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett., 2008, 279(1), 71-76.
[http://dx.doi.org/10.1111/j.1574-6968.2007.01012.x] [PMID: 18081843]
[3]
Ali, A.M.; Rahman, K.S.; Ali, L.M.; Akhtaruzzaman, Md.; Sopian, K.; Radiman, S. Amin. N. A computational study on the energy bandgap engineering in performance enhancement of CdTe thin film solar cells. Results Phys., 2017, 7, 1066-1072.
[http://dx.doi.org/10.1016/j.rinp.2017.02.032]
[4]
Labiadh, H.; Lahbib, K.; Hidouri, S.; Touil, S.; Chaabane, T.B. Insight of ZnS nanoparticles contribution in different biological uses. Asian Pac. J. Trop. Med., 2016, 9(8), 757-762.
[http://dx.doi.org/10.1016/j.apjtm.2016.06.008] [PMID: 27569884]
[5]
Park, Y.S.; Dmytruk, A.; Dmitruk, I.; Kasuya, A.; Takeda, M.; Ohuchi, N.; Okamoto, Y.; Kaji, N.; Tokeshi, M.; Baba, Y. Size-selective growth and stabilization of small CdSe nanoparticles in aqueous solution. ACS Nano, 2010, 4(1), 121-128.
[http://dx.doi.org/10.1021/nn901570m] [PMID: 20014824]
[6]
Mursal, I.; Jalil, Z. Structural and optical properties of zinc oxide (ZnO) based thin films deposited by sol-gel spin coating method. J. Phys. Conf. Ser., 2018, 1116, 032020-032026.
[http://dx.doi.org/10.1088/1742-6596/1116/3/032020]
[7]
Brus, L.E. Electron–electron and electron hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys., 1984, 80, 4403-4409.
[http://dx.doi.org/10.1063/1.447218]
[8]
Davis, K.; Yarbrough, R.; Froeschle, M.; White, J.; Rathnayake, H. Band gap engineered zinc oxide nanostructures via a sol–gel synthesis of solvent driven shape-controlled crystal growth. RSC Advances, 2019, 9, 14638-14648.
[http://dx.doi.org/10.1039/C9RA02091H]
[9]
Aljawfi, R.N.; Alam, M.J.; Rahman, F.; Ahmad, S.; Shahee, A.; Kumar, S. Impact of annealing on the structural and optical properties of ZnO nanoparticles and tracing the formation of clusters via DFT calculation. Arab. J. Chem., 2020, 13, 2207-2218.
[http://dx.doi.org/10.1016/j.arabjc.2018.04.006]
[10]
Sajjad, M.; Ullah, I.; Khan, M.I.; Khan, J.; Khan, M.Y.; Qureshi, M.T. Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results Phys., 2018, 9, 1301-1309.
[http://dx.doi.org/10.1016/j.rinp.2018.04.010]
[11]
Das, S.C.; Green, R.J.; Podder, J.; Regier, T.Z.; Chang, G.S.; Moewes, A. Band gap tuning in ZnO through Ni doping via spray pyrolysis. J. Phys. Chem. C, 2013, 117, 12745-12753.
[http://dx.doi.org/10.1021/jp3126329]
[12]
Salaken, S.M.; Farzana, E.; Podder, J. Effect of Fe-doping on the structural and optical properties of ZnO thin films prepared by spray pyrolysis. J. Semiconduc., 2013, 34, 073003.
[http://dx.doi.org/10.1088/1674-4926/34/7/073003]
[13]
Samanta, P.K.; Chaudhuri, P.R. Growth and optical properties of chemically grown ZnO nanobelts. Sci. Adv. Mater., 2011, 3, 107-112.
[http://dx.doi.org/10.1166/sam.2011.1141]
[14]
Samanta, P.K.; Patra, S.K.; Chaudhuri, P.R. Violet emission from flower-like bundle of ZnO nanosheets. Physica E, 2009, 41, 664-667.
[http://dx.doi.org/10.1016/j.physe.2008.11.015]
[15]
Fujihara, S.; Ogawa, Y.; Kasai, A. Tunable visible photoluminescence from ZnO thin films through Mg-doping and annealing. Chem. Mater., 2004, 16, 2965-2968.
[http://dx.doi.org/10.1021/cm049599i]
[16]
Huang, C.; Zheng, Y.; Chen, S.; Shen, P. Pulsed laser condensation of dense cubic ZnO with unique luminescence, vibrations, and interphase interfaces. Cryst. Growth Des., 2018, 18, 4428-4437.
[http://dx.doi.org/10.1021/acs.cgd.8b00407]
[17]
Mohammed, M. K. A. Carbon nanotubes loaded ZnO/Ag ternary nanohybrid with improved visible light photocatalytic activity and stability. Optik, 2020, 217, 164867.
[18]
Khan, A.; Abbasi, M.A.; Wissting, J.; Nur, O.; Willander, M. Harvesting piezoelectric potential from zinc oxide nanoflowers grown on textile fabric substrate. Phys. Status Solidi, 2013, 7(11), 980-984.
[http://dx.doi.org/10.1002/pssr.201308105]
[19]
Medina, J.; Bolaños, H.; Mosquera-Sanchez, L.P.; Rodriguez-Paez, J.E. Controlled synthesis of ZnO nanoparticles and evaluation of their toxicity in Mus musculus mice. Int. Nano Lett., 2018, 8, 165-179.
[http://dx.doi.org/10.1007/s40089-018-0242-6]
[20]
Cao, D.; Gong, S.; Shu, X.; Zhu, D.; Liang, S. Preparation of ZnO nanoparticles with high dispersibility based on oriented attachment (OA) process. Nanoscale Res. Lett., 2019, 210, 1-11.
[21]
Mahamuni, P.P.; Patil, P.M.; Dhanavade, M.J.; Badiger, M.V.; Shadija, P.G.; Lokhande, A.C.; Bohara, R.A. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem. Biophys. Rep., 2018, 17, 71-80.
[http://dx.doi.org/10.1016/j.bbrep.2018.11.007] [PMID: 30582010]
[22]
Lv, H.; Sang, D.; Li, H.; Du, X.; Li, D.; Zou, G. Thermal evaporation synthesis and properties of ZnO nano/microstructures using carbon group elements as the reducing agents. Nanoscale Res. Lett., 2010, 5(3), 620-624.
[http://dx.doi.org/10.1007/s11671-010-9524-2] [PMID: 20672143]
[23]
Gao, W.; Li, Z. ZnO thin films produced by magnetron sputtering. Ceram. Int., 2004, 30(7), 1155-1159.
[http://dx.doi.org/10.1016/j.ceramint.2003.12.197]
[24]
Mote, V.; Purushotham, Y.; Dole, B. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys., 2012, 6, 1-8.
[25]
Shetti, N.P.; Bukkitgar, S. D.; Reddy, K. R.; Reddy, C.V.; Aminabhavi, T.M. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens. Bioelec., 2019, 141, 1-42.
[http://dx.doi.org/10.1016/j.bios.2019.111417]
[26]
Kumari, N.; Patel, S. R.; Gohel, J. V. Optical and structural properties of ZnO thin films prepared by spray pyrolysis for enhanced efficiency perovskite solar cell application. Opti. Quant. Electron., 2018, 50, 180.
[http://dx.doi.org/10.1007/s11082-018-1376-5]
[27]
Fan, J.; Li, T.; Heng, H. Hydrothermal growth of ZnO nanoflowers and their photocatalyst application. Bull. Mater. Sci., 2016, 39, 19-26.
[http://dx.doi.org/10.1007/s12034-015-1145-z]
[28]
Scherrer, P. Göttinger nachrichten gesell. Mathematisch-Physikalische Klasse, 1918, 2, 98-100.
[29]
Zhu, P.; Zhang, J.; Wu, Z.; Zhang, Z. Microwave-assisted synthesis of various ZnO hierarchical nanostructures: Effects of heating parameters of microwave oven. Cryst. Growth Des., 2008, 8, 3148-3153.
[http://dx.doi.org/10.1021/cg0704504]
[30]
Lagashetty, A.; Havanoor, V.; Basavaraja, S.; Balaji, S.D.; Venkataraman, A. Microwave-assisted route for synthesis of nanosized metal oxides, microwave-assisted route for synthesis of nanosized metal oxides. Sci. Technol. Adv. Mater., 2007, 8(6), 484-493.
[http://dx.doi.org/10.1016/j.stam.2007.07.001]
[31]
Yanning, Qu.; Huang, R.; Qi, W.; Shi, M.; Su, R.; He, Z. Controllable synthesis of ZnO nanoflowers with structure-dependent photocatalytic activity. Catal. Today, 2020, 355, 397-407.
[http://dx.doi.org/10.1016/j.cattod.2019.07.056]
[32]
Shao, S.; Jia, P.; Liu, S.; Bai, W. Stable field emission from rose-like zinc oxide nanostructures synthesized through a hydrothermal route. Mater. Lett., 2008, 62, 1200-1203.
[http://dx.doi.org/10.1016/j.matlet.2007.08.049]
[33]
Li, F.; Hu, L.; Li, Z.; Huang, X. Influence of temperature on the morphology and luminescence of ZnO micro and nanostructures prepared by CTAB-assisted hydrothermal method. J. Alloys Compd., 2008, 465, L14-L19.
[http://dx.doi.org/10.1016/j.jallcom.2007.11.009]
[34]
Rana, A.H.S.; Kang, M.; Kim, H. Microwave-assisted facile and ultrafast growth of ZnO nanostructures and proposition of alternative microwave-assisted methods to address growth stoppage. Scientific Reports, 2016, 6(1), 24870.
[http://dx.doi.org/10.1038/srep24870]
[35]
Katiyar, A.; Kumar, N.; Shukla, R.K.; Srivastava, A. Substrate free ultrasonic-assisted hydrothermal growth of ZnO nanoflowers at low temperature. SN Applied Sciences., 2020, 1386(1-7), 2.
[36]
Govender, K.; Boyle, D.S.; Kenway, P.B.; O’Brien, P. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem., 2004, 14, 2575-2591.
[http://dx.doi.org/10.1039/B404784B]
[37]
Samanta, P.K.; Bandyopadhyay, A.K. Chemical growth of hexagonal zinc oxide nanorods and their optical properties. Appl. Nanosci., 2012, 2, 111-117.
[http://dx.doi.org/10.1007/s13204-011-0038-8]
[38]
Safa, S.; Azimirad, R.; Mohammadi, K.; Hejazi, R.; Khayatian, A. Investigation of ethanol vapor sensing properties of ZnO flower-like nanostructures. Measurement, 2015, 73, 588-595.
[http://dx.doi.org/10.1016/j.measurement.2015.06.001]
[39]
Feng, J-J.; Liao, Q-C.; Wang, A-J.; Chen, J-R. Mannite supported hydrothermal synthesis of hollow flower-like ZnO structures for photocatalytic applications. CrystEngComm, 2011, 13, 4202-4210.
[http://dx.doi.org/10.1039/c1ce05090g]
[40]
Wu, C.; Qiao, X.; Luo, L.; Li, H. Synthesis of ZnO flowers and their photoluminescence properties. Mater. Res. Bull., 2008, 43(7), 1883-1891.
[http://dx.doi.org/10.1016/j.materresbull.2007.07.025]
[41]
Lide, D.R. Handbook of Chemistry and Physics, N. W. Corpor ate Blvd; CRC Press LLC: Boca Raton, USA, 2000, pp. 1-2661.
[42]
D’Amico, P.; Calzolari, A.; Ruini, A.; Catellani, A. New energy with ZnS: Novel applications for a standard transparent compound. Sci. Rep., 2017, 16805(1-9), 7.
[http://dx.doi.org/10.1038/s41598-017-17156-w]
[43]
Borah, J.P.; Sarma, K.C. Optical and optoelectronic properties of ZnS nanostructured thin film. Acta Phys. Pol. A, 2008, 114, 713-719.
[http://dx.doi.org/10.12693/APhysPolA.114.713]
[44]
Tam, K.H.; Cheung, C.K.; Leung, Y.H.; Djurisić, A.B.; Ling, C.C.; Beling, C.D.; Fung, S.; Kwok, W.M.; Chan, W.K.; Phillips, D.L.; Ding, L.; Ge, W.K. Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B, 2006, 110(42), 20865-20871.
[http://dx.doi.org/10.1021/jp063239w] [PMID: 17048900]
[45]
Babu, K.S.; Sanguino, P.; Schwarz, R. Santos, L., Alves, S. A., Fedorov, A., Himamaheswara Rao, V. Kiran, J. N., Sujatha, Ch. Orange photoluminescence from hydrothermally grown ZnO nanorods and study on its defects. Indian J. Pure Appl. Phy., 2021, 59, 462-467.
[46]
Malinovskis, U.; Dutovs, A.; Poplausks, R.; Jevdokimovs, D.; Graniel, O.; Bechelany, M.; Muiznieks, I.; Erts, D.; Prikulis, D. Visible photoluminescence of variable-length zinc oxide nanorods embedded in porous anodic alumina template for biosensor applications. Coatings, 2021, 756(1-11), 11.
[http://dx.doi.org/10.3390/coatings11070756]
[47]
Liton, M.N.H.; Khan, M.K.R.; Rahman, M.M.; Islam, M.M. Effect of N and Cu doping on structure, surface morphology and photoluminescence properties of ZnO thin films. J. Sci. Res., 2015, 7, 23-34.
[http://dx.doi.org/10.3329/jsr.v7i1-2.19573]
[48]
Lin, B.; Fu, Z.; Jia, Y. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett., 2001, 79, 943-945.
[http://dx.doi.org/10.1063/1.1394173]
[49]
Xu, P.S.; Sun, Y.M.; Shi, C.S.; Xu, F.Q.; Pan, H.B. The electronic structure and spectral properties of ZnO and its defects. Nucl. Inst. Methods Phy. Res. Sec. B., 2003, 199, 286-290.
[http://dx.doi.org/10.1016/S0168-583X(02)01425-8]
[50]
Oliva, J.; Diaz-Torres, L.; Torres-Castro, A.; Salas, P.; Perez-Mayen, L.; De la Rosa, E. Effect of TEA on the blue emission of ZnO quantum dots with high quantum yield. Opt. Mater. Express, 2015, 5, 1109-1121.
[http://dx.doi.org/10.1364/OME.5.001109]
[51]
Zhang, D.H.; Xue, Z.Y.; Wang, Q.P. The mechanisms of blue emission from ZnO films deposited on glass substrate by r.f. magnetron sputtering. J. Phys. D Appl. Phys., 2002, 35, 2837-2840.
[http://dx.doi.org/10.1088/0022-3727/35/21/321]
[52]
Kim, H.H.; Lee, Y.; Lee, Y.J.; Jeong, J.; Yi, Y.; Park, C.; Yim, S.; Angadi, B.; Ko, K.; Kang, J.; Choi, W.K. Realization of excitation wavelength independent blue emission of ZnO quantum dots with intrinsic defects. ACS Photonics, 2020, 7, 723-734.
[http://dx.doi.org/10.1021/acsphotonics.9b01587]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy