Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Perspective

Thietanes and Derivatives thereof in Medicinal Chemistry

Author(s): Karol R. Francisco and Carlo Ballatore*

Volume 22, Issue 15, 2022

Published on: 21 June, 2022

Page: [1219 - 1234] Pages: 16

DOI: 10.2174/1568026622666220511154228

Abstract

Unlike the oxetane ring, which, as evidenced by numerous studies, is known to play an increasingly important role in medicinal chemistry, the thietane ring has thus far received comparatively limited attention. Nonetheless, a growing number of reports now indicate that this 4- membered ring heterocycle may provide opportunities in analog design. In the present review article, we discuss the possible use and utility of the thietane fragment in medicinal chemistry and provide an overview of its properties and recent applications with a focus on isosteric replacements.

Keywords: Thietanes derivatives, Medicinal chemistry, Oxetane ring, MMP, Arachidonic acid, Heterocycles.

Graphical Abstract

[1]
Bauer, M.R.; Di Fruscia, P.; Lucas, S.C.C.; Michaelides, I.N.; Nelson, J.E.; Storer, R.I.; Whitehurst, B.C. Put a ring on it: Application of small aliphatic rings in medicinal chemistry. RSC Med. Chem., 2021, 12(4), 448-471.
[http://dx.doi.org/10.1039/D0MD00370K] [PMID: 33937776]
[2]
Bull, J.A.; Croft, R.A.; Davis, O.A.; Doran, R.; Morgan, K.F. Oxetanes: Recent advances in synthesis, reactivity, and medicinal chemis-try. Chem. Rev., 2016, 116(19), 12150-12233.
[http://dx.doi.org/10.1021/acs.chemrev.6b00274] [PMID: 27631342]
[3]
Xu, J. Recent synthesis of thietanes. Beilstein J. Org. Chem., 2020, 16, 1357-1410.
[http://dx.doi.org/10.3762/bjoc.16.116] [PMID: 32647542]
[4]
Xu, J. Synthesis of thietanes from saturated three-membered heterocycles. Asian J. Org. Chem., 2020, 9(7), 1008-1017.
[http://dx.doi.org/10.1002/ajoc.202000219]
[5]
Carreira, E.M.; Fessard, T.C. Four-membered ring-containing spirocycles: Synthetic strategies and opportunities. Chem. Rev., 2014, 114(16), 8257-8322.
[http://dx.doi.org/10.1021/cr500127b] [PMID: 25003801]
[6]
Sander, M. Thietanes. Chem. Rev., 1966, 66(3), 341-353.
[http://dx.doi.org/10.1021/cr60241a005]
[7]
Luger, P.; Buschmann, J. Oxetane: The first X-ray analysis of a nonsubstituted four-membered ring. J. Am. Chem. Soc., 1984, 106(23), 7118-7121.
[http://dx.doi.org/10.1021/ja00335a041]
[8]
Karakida, K-i.; Kuchitsu, K. Molecular structure of trimethylene sulfide as studied by gas electron diffraction with joint use of rotational constants. Bull. Chem. Soc. Jpn., 1975, 48(6), 1691-1695.
[http://dx.doi.org/10.1246/bcsj.48.1691]
[9]
Blake, T.A.; Xantheas, S.S. Structure, vibrational spectrum, and ring puckering barrier of cyclobutane. J. Phys. Chem. A, 2006, 110(35), 10487-10494.
[http://dx.doi.org/10.1021/jp062472r] [PMID: 16942054]
[10]
Bevan, J.W.; Legon, A.C.; Millen, D.J. Tilts, bends, and twists of methylene groups in four-membered rings. Evidence from the microwave spectrum of trimethylene sulphoxide. J. Chem. Soc., Chem. Comm., 1974, 659-660.
[11]
Abrahamsson, S.; Rehnberg, G. The crystal and molecular structure of 1-thiacyclobutane-3-carboxylic acid-1-oxide. Acta Chem. Scand., 1972, 2, 494-500.
[http://dx.doi.org/10.3891/acta.chem.scand.26-0494]
[12]
Barlow, J.H.; Hall, R.; Russell, D.R.; Smith, D.J.H. Stereochemical assignments of 3-substited thietan-1-oxides. The crystal structures of cis- and trans-3-p-bromophenylthietan-1-oxides. J. Chem. Soc., Chem. Comm, 1975, 133-134.
[13]
Chiang, J.F. Structure of 3-Bromo- &6-thietane 1,1-Dioxide, C3H3BrO2S. Acta Crystallogr., 1983, C39, 737-738.
[14]
Hardgrove, G.L., Jr; Bratholdt, S.; Lein, M.M. The crystal structure of cis-2,4-diphenylthietane trans-1-monoxide. J. Org. Chem., 1974, 39(2), 246-248.
[http://dx.doi.org/10.1021/jo00916a029]
[15]
Ziegler, M.L.; Weib, J.; Schildknecht, H.; Grund, N.; Sasse, H-E. Die kristall- und molekulstruktur von 2,2-dimethylthietan- 1,1-dioxid. Justus Liebigs Ann. Chem., 1972, 1702-1709.
[16]
Kumakura, S. The crystal and molecular structure of trans-2,2-diphenyl-3,4-dichlorothietane. Chem. Soc. Jpn., 1981, 54, 3701-3705.
[http://dx.doi.org/10.1246/bcsj.54.3701]
[17]
Smart, B.E.; Middleton, W.J. Bis(trifluoromethyl)sulfene: generation and cycloaddition reactions. J. Am. Chem. Soc., 1987, 109, 4982-4992.
[http://dx.doi.org/10.1021/ja00250a037]
[18]
Block, E. Comprehensive Heterocyclic Chemistry; Katritzky, A.R; Rees, C.W., Ed.; Elsevier, 1984, p. 7.
[19]
Harris, D.O.; Harrington, H.W.; Luntz, A.C.; Gwinn, W.D. Microwave spectrum, vibration-rotation interaction, and potential function for the ring-puckering vibration of trimethylene sulfide. J. Chem. Phys., 1966, 44, 3467-3480.
[http://dx.doi.org/10.1063/1.1727251]
[20]
Harrington, H.W. Out-of-plane bending frequencies in trimethylene sulfide from microwave intensity measurements. J. Chem. Phys., 1966, 44, 3481-3485.
[http://dx.doi.org/10.1063/1.1727252]
[21]
Shaw, R.A.; Smithson, T.L.; Wieser, H. The ring-puckering vibration of 3-methyl thietan. J. Mol. Struct., 1983, 102(1), 199-202.
[http://dx.doi.org/10.1016/0022-2860(83)80018-0]
[22]
Eigenmann, H.K.; Golden, D.M.; Benson, S.W. Revised group additivity parameters for the enthalpies of formation of oxygen-containing organic compounds. J. Chem. Phys., 1973, 77(13), 1687-1691.
[http://dx.doi.org/10.1021/j100632a019]
[23]
Wiberg, K.B. The concept of strain in organic chemistry. Angew. Chem. Int. Ed. Engl., 1986, 25, 312-322.
[http://dx.doi.org/10.1002/anie.198603121]
[24]
Bach, R.D.; Dmitrenko, O. Strain energy of small ring hydrocarbons. Influence of C-H bond dissociation energies. J. Am. Chem. Soc., 2004, 126(13), 4444-4452.
[http://dx.doi.org/10.1021/ja036309a] [PMID: 15053635]
[25]
Francisco, K.R.; Varricchio, C.; Paniak, T.J.; Kozlowski, M.C.; Brancale, A.; Ballatore, C. Structure property relationships of N-acylsulfonamides and related bioisosteres. Eur. J. Med. Chem., 2021, 218, 113399.
[http://dx.doi.org/10.1016/j.ejmech.2021.113399] [PMID: 33823393]
[26]
Lassalas, P.; Oukoloff, K.; Makani, V.; James, M.; Tran, V.; Yao, Y.; Huang, L.; Vijayendran, K.; Monti, L.; Trojanowski, J.Q.; Lee, V.M-Y.; Kozlowski, M.C.; Smith, A.B., III; Brunden, K.R.; Ballatore, C. Evaluation of oxetan-3-ol, thietan-3-ol, and derivatives thereof as bioisosteres of the carboxylic acid functional group. ACS Med. Chem. Lett., 2017, 8(8), 864-868.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00212] [PMID: 28835803]
[27]
Johnson, C.; Siegl, W. Configuration assignment in thietane 1-oxide systems (1,2). Tetrahedron Lett., 1969, 10(23), 1879-1882.
[http://dx.doi.org/10.1016/S0040-4039(01)88037-0]
[28]
Hamberg, M.; Svensson, J.; Samuelsson, B. Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Natl. Acad. Sci. USA, 1975, 72(8), 2994-2998.
[http://dx.doi.org/10.1073/pnas.72.8.2994] [PMID: 1059088]
[29]
Smyth, E.M. Thromboxane and the thromboxane receptor in cardiovascular disease. Clin. Lipidol., 2010, 5(2), 209-219.
[http://dx.doi.org/10.2217/clp.10.11] [PMID: 20543887]
[30]
Nakahata, N. Thromboxane A2: Physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol. Ther., 2008, 118(1), 18-35.
[http://dx.doi.org/10.1016/j.pharmthera.2008.01.001] [PMID: 18374420]
[31]
Ohuchida, S.; Hamanaka, N.; Hayashi, M. Synthesis of thromboxane A2 analogs-2: (±)-thiathromboxane A2. Tetrahedron, 1983, 39(24), 4257-4261.
[http://dx.doi.org/10.1016/S0040-4020(01)88648-8]
[32]
Fujioka, M.; Nagao, T.; Kuriyama, H. Actions of the novel thromboxane A2 antagonists, ONO-1270 and ONO-3708, on smooth muscle cells of the guinea-pig basilar artery. Naunyn Schmiedebergs Arch. Pharmacol., 1986, 334(4), 468-474.
[http://dx.doi.org/10.1007/BF00569388] [PMID: 3821937]
[33]
Narumiya, S.; Okuma, M.; Ushikubi, F. Binding of a radioiodinated 13-azapinane thromboxane antagonist to platelets: Correlation with antiaggregatory activity in different species. Br. J. Pharmacol., 1986, 88(2), 323-331.
[http://dx.doi.org/10.1111/j.1476-5381.1986.tb10208.x] [PMID: 3730697]
[34]
Moriyama, T.; Takamura, H.; Narita, H.; Tanaka, K.; Matsuura, T.; Kito, M. Elevation of cytosolic free Ca2+ is directly evoked by thromboxane A2 in human platelets during activation with collagen. J. Biochem., 1988, 103(6), 901-902.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a122383] [PMID: 3170519]
[35]
Saito, S.; Yamasaki, K.; Yamada, S.; Matsumoto, A.; Akatsu, T.; Takahashi, N.; Shibasaki, Y.; Suda, T.; Fukuhara, T. A stable analogue of thromboxane A2, 9,11-epithio-11,12-methanothrom-boxane A2, stimulates bone resorption in vitro and osteoclast-like cell formation in mouse marrow culture. Bone Miner., 1991, 12(1), 15-23.
[http://dx.doi.org/10.1016/0169-6009(91)90118-J] [PMID: 2001499]
[36]
Fukuo, K.; Morimoto, S.; Koh, E.; Yukawa, S.; Tsuchiya, H.; Imanaka, S.; Yamamoto, H.; Onishi, T.; Kumahara, Y. Effects of prosta-glandins on the cytosolic free calcium concentration in vascular smooth muscle cells. Biochem. Biophys. Res. Commun., 1986, 136(1), 247-252.
[http://dx.doi.org/10.1016/0006-291X(86)90901-0] [PMID: 3458464]
[37]
Kawahara, Y.; Fukuzaki, H.; Kaibuchi, K.; Tsuda, T.; Hoshijima, M.; Takai, Y. Activation of protein kinase C by the action of 9,11-epithio-11,12-methano-thromboxane A2 (STA2), a stable analogue of thromboxane A2, in human platelets. Thromb. Res., 1986, 41(6), 811-818.
[http://dx.doi.org/10.1016/0049-3848(86)90379-8] [PMID: 3010491]
[38]
Hamano, S.; Komatsu, H.; Hiraku, S.; Ujiie, A. Role of thromboxane A2 (TXA2) in the phospholipid metabolism in rabbit platelets. Nihon Kessen Shiketsu Gakkai shi, 1986, 17, 315-321.
[39]
Sessa, W.C.; Halushka, P.V.; Okwu, A.; Nasjletti, A. Characterization of the vascular thromboxane A2/prostaglandin endoperoxide re-ceptor in rabbit aorta. Regulation by dexamethasone. Circ. Res., 1990, 67(6), 1562-1569.
[http://dx.doi.org/10.1161/01.RES.67.6.1562] [PMID: 2147131]
[40]
Mais, D.E.; Saussy, D.L., Jr; Chaikhouni, A.; Kochel, P.J.; Knapp, D.R.; Hamanaka, N.; Halushka, P.V. Pharmacologic characterization of human and canine thromboxane A2/prostaglandin H2 receptors in platelets and blood vessels: Evidence for different receptors. J. Pharmacol. Exp. Ther., 1985, 233(2), 418-424.
[PMID: 2987481]
[41]
Futaki, N.; Arai, I.; Hamasaka, Y.; Takahashi, S.; Higuchi, S.; Otomo, S. Selective inhibition of NS-398 on prostanoid production in inflamed tissue in rat carrageenan-air-pouch inflammation. J. Pharm. Pharmacol., 1993, 45(8), 753-755.
[http://dx.doi.org/10.1111/j.2042-7158.1993.tb07103.x] [PMID: 8229647]
[42]
Wang, Y.F.; Shi, Q.W.; Dong, M.; Kiyota, H.; Gu, Y.C.; Cong, B. Natural taxanes: Developments since 1828. Chem. Rev., 2011, 111(12), 7652-7709.
[http://dx.doi.org/10.1021/cr100147u] [PMID: 21970550]
[43]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
[44]
Gunatilaka, A.A.; Ramdayal, F.D.; Sarragiotto, M.H.; Kingston, D.G.; Sackett, D.L.; Hamel, E. Synthesis and biological evaluation of novel paclitaxel (Taxol) D-ring modified analogues. J. Org. Chem., 1999, 64(8), 2694-2703.
[http://dx.doi.org/10.1021/jo982095h] [PMID: 11674339]
[45]
Mercklé, L.; Dubois, J.; Place, E.; Thoret, S.; Guéritte, F.; Guénard, D.; Poupat, C.; Ahond, A.; Potier, P. Semisynthesis of D-ring modi-fied taxoids: Novel thia derivatives of docetaxel. J. Org. Chem., 2001, 66(15), 5058-5065.
[http://dx.doi.org/10.1021/jo015539+] [PMID: 11463257]
[46]
Wang, M.; Cornett, B.; Nettles, J.; Liotta, D.C.; Snyder, J.P. The oxetane ring in taxol. J. Org. Chem., 2000, 65(4), 1059-1068.
[http://dx.doi.org/10.1021/jo9916075] [PMID: 10814054]
[47]
Hadváry, P.; Lengsfeld, H.; Wolfer, H. Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin. Biochem. J., 1988, 256(2), 357-361.
[http://dx.doi.org/10.1042/bj2560357] [PMID: 3223916]
[48]
Nelson, R.H.; Miles, J.M. The use of orlistat in the treatment of obesity, dyslipidaemia and Type 2 diabetes. Expert Opin. Pharmacother., 2005, 6(14), 2483-2491.
[http://dx.doi.org/10.1517/14656566.6.14.2483] [PMID: 16259579]
[49]
Hadváry, P.; Sidler, W.; Meister, W.; Vetter, W.; Wolfer, H. The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. J. Biol. Chem., 1991, 266(4), 2021-2027.
[http://dx.doi.org/10.1016/S0021-9258(18)52203-1] [PMID: 1899234]
[50]
Menendez, J.A.; Vellon, L.; Lupu, R. Antitumoral actions of the anti-obesity drug orlistat (XenicalTM) in breast cancer cells: Blockade of cell cycle progression, promotion of apoptotic cell death and PEA3-mediated transcriptional repression of Her2/neu (erbB-2) oncogene. Ann. Oncol., 2005, 16(8), 1253-1267.
[http://dx.doi.org/10.1093/annonc/mdi239] [PMID: 15870086]
[51]
Noel, A.; Delpech, B.; Crich, D. Comparison of the reactivity of β-thiolactones and β-lactones toward ring-opening by thiols and amines. Org. Biomol. Chem., 2012, 10(32), 6480-6483.
[http://dx.doi.org/10.1039/C2OB25640A] [PMID: 22751994]
[52]
Lüthi-Peng, Q.; Winkler, F.K. Large spectral changes accompany the conformational transition of human pancreatic lipase induced by acylation with the inhibitor tetrahydrolipstatin. Eur. J. Biochem., 1992, 205(1), 383-390.
[http://dx.doi.org/10.1111/j.1432-1033.1992.tb16791.x] [PMID: 1555598]
[53]
Aubry, S.; Aubert, G.; Cresteil, T.; Crich, D. Synthesis and biological investigation of the β-thiolactone and β-lactam analogs of tetrahy-drolipstatin. Org. Biomol. Chem., 2012, 10(13), 2629-2632.
[http://dx.doi.org/10.1039/c2ob06976h] [PMID: 22354549]
[54]
Shimada, N.; Hasegawa, S.; Harada, T.; Tomisawa, T.; Fujii, A.; Takita, T. Oxetanocin, a novel nucleoside from bacteria. J. Antibiot. (Tokyo), 1986, 39(11), 1623-1625.
[http://dx.doi.org/10.7164/antibiotics.39.1623] [PMID: 3025147]
[55]
Seki, J.; Shimada, N.; Takahashi, K.; Takita, T.; Takeuchi, T.; Hoshino, H. Inhibition of infectivity of human immunodeficiency virus by a novel nucleoside, oxetanocin, and related compounds. Antimicrob. Agents Chemother., 1989, 33(5), 773-775.
[http://dx.doi.org/10.1128/AAC.33.5.773] [PMID: 2787618]
[56]
Sakuma, T.; Saijo, M.; Suzutani, T.; Yoshida, I.; Saito, S.; Kitagawa, M.; Hasegawa, S.; Azuma, M. Antiviral activity of oxetanocins against varicella-zoster virus. Antimicrob. Agents Chemother., 1991, 35(7), 1512-1514.
[http://dx.doi.org/10.1128/AAC.35.7.1512] [PMID: 1656865]
[57]
Alder, J.; Mitten, M.; Norbeck, D.; Marsh, K.; Kern, E.R.; Clement, J. Efficacy of A-73209, a potent orally active agent against VZV and HSV infections. Antiviral Res., 1994, 23(2), 93-105.
[http://dx.doi.org/10.1016/0166-3542(94)90037-X] [PMID: 8147583]
[58]
Nagahata, T.; Kitagawa, M.; Matsubara, K. Effect of oxetanocin G, a novel nucleoside analog, on DNA synthesis by hepatitis B virus virions. Antimicrob. Agents Chemother., 1994, 38(4), 707-712.
[http://dx.doi.org/10.1128/AAC.38.4.707] [PMID: 7518217]
[59]
Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov., 2013, 12(6), 447-464.
[http://dx.doi.org/10.1038/nrd4010] [PMID: 23722347]
[60]
Daikoku, T.; Yamamoto, N.; Saito, S.; Kitagawa, M.; Shimada, N.; Nishiyama, Y. Mechanism of inhibition of human cytomegalovirus replication by oxetanocin G. Biochem. Biophys. Res. Commun., 1991, 176(2), 805-812.
[http://dx.doi.org/10.1016/S0006-291X(05)80257-8] [PMID: 1851005]
[61]
Izuta, S.; Shimada, N.; Kitagawa, M.; Suzuki, M.; Kojima, K.; Yoshida, S. Inhibitory effects of triphosphate derivatives of oxetanocin G and related compounds on eukaryotic and viral DNA polymerases and human immunodeficiency virus reverse transcriptase. J. Biochem., 1992, 112(1), 81-87.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a123870] [PMID: 1385392]
[62]
Choo, H.; Chen, X.; Yadav, V.; Wang, J.; Schinazi, R.F.; Chu, C.K. Synthesis and anti-HIV activity of D- and L-thietanose nucleosides. J. Med. Chem., 2006, 49(5), 1635-1647.
[http://dx.doi.org/10.1021/jm050912h] [PMID: 16509580]
[63]
Tzara, A.; Xanthopoulos, D.; Kourounakis, A.P. Morpholine as a scaffold in medicinal chemistry: An update on synthetic strategies. ChemMedChem, 2020, 15(5), 392-403.
[http://dx.doi.org/10.1002/cmdc.201900682] [PMID: 32017384]
[64]
Kourounakis, A.P.; Xanthopoulos, D.; Tzara, A. Morpholine as a privileged structure: A review on the medicinal chemistry and pharma-cological activity of morpholine containing bioactive molecules. Med. Res. Rev., 2020, 40(2), 709-752.
[http://dx.doi.org/10.1002/med.21634] [PMID: 31512284]
[65]
Wuitschik, G.; Rogers-Evans, M.; Buckl, A.; Bernasconi, M.; Märki, M.; Godel, T.; Fischer, H.; Wagner, B.; Parrilla, I.; Schuler, F.; Schneider, J.; Alker, A.; Schweizer, W.B.; Müller, K.; Carreira, E.M. Spirocyclic oxetanes: Synthesis and properties. Angew. Chem. Int. Ed. Engl., 2008, 47(24), 4512-4515.
[http://dx.doi.org/10.1002/anie.200800450] [PMID: 18465828]
[66]
Mascitti, V.; Robinson, R.; Preville, C.; Thuma, B.; Carr, C.; Reese, M.; Maguire, R.; Leininger, M.; Lowe, A.; Steppan, C. Syntheses of C-5-spirocyclic C-glycoside SGLT2 inhibitors. Tetrahedron Lett., 2010, 51(14), 1880-1883.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.024]
[67]
Burkhard, J.A.; Wagner, B.; Fischer, H.; Schuler, F.; Müller, K.; Carreira, E.M. Synthesis of azaspirocycles and their evaluation in drug discovery. Angew. Chem. Int. Ed. Engl., 2010, 49(20), 3524-3527.
[http://dx.doi.org/10.1002/anie.200907108] [PMID: 20544904]
[68]
Kirichok, A.A.; Shton, I.O.; Pishel, I.M.; Zozulya, S.A.; Borysko, P.O.; Kubyshkin, V.; Zaporozhets, O.A.; Tolmachev, A.A.; Mykhaili-uk, P.K. Synthesis of multifunctional spirocyclic azetidines and their application in drug discovery. Chemistry, 2018, 24(21), 5444-5449.
[http://dx.doi.org/10.1002/chem.201800193] [PMID: 29338097]
[69]
Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: The complexity of targeted inhibitors. Nat. Rev. Cancer, 2005, 5(5), 341-354.
[http://dx.doi.org/10.1038/nrc1609] [PMID: 15864276]
[70]
Sabbah, D.A.; Hajjo, R.; Sweidan, K. Review on Epidermal Growth Factor Receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr. Top. Med. Chem., 2020, 20(10), 815-834.
[http://dx.doi.org/10.2174/1568026620666200303123102] [PMID: 32124699]
[71]
Salomon, D.S.; Brandt, R.; Ciardiello, F.; Normanno, N. Epidermal growth factor-related peptides and their receptors in human malignan-cies. Crit. Rev. Oncol. Hematol., 1995, 19(3), 183-232.
[http://dx.doi.org/10.1016/1040-8428(94)00144-I] [PMID: 7612182]
[72]
Sullivan, I.; Planchard, D. Next-generation EGFR tyrosine kinase inhibitors for treating EGFR-mutant lung cancer beyond first line. Front. Med. (Lausanne), 2017, 3, 76.
[http://dx.doi.org/10.3389/fmed.2016.00076] [PMID: 28149837]
[73]
Ranson, M.; Hammond, L.A.; Ferry, D.; Kris, M.; Tullo, A.; Murray, P.I.; Miller, V.; Averbuch, S.; Ochs, J.; Morris, C.; Feyereislova, A.; Swaisland, H.; Rowinsky, E.K. ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: Results of a phase I trial. J. Clin. Oncol., 2002, 20(9), 2240-2250.
[http://dx.doi.org/10.1200/JCO.2002.10.112] [PMID: 11980995]
[74]
Herbst, R.S.; Fukuoka, M.; Baselga, J. Gefitinib--a novel targeted approach to treating cancer. Nat. Rev. Cancer, 2004, 4(12), 956-965.
[http://dx.doi.org/10.1038/nrc1506] [PMID: 15573117]
[75]
Zhao, F.; Lin, Z.; Wang, F.; Zhao, W.; Dong, X. Four-membered heterocycles-containing 4-anilino-quinazoline derivatives as epidermal growth factor receptor (EGFR) kinase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(19), 5385-5388.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.049] [PMID: 23973168]
[76]
McKillop, D.; Partridge, E.A.; Kemp, J.V.; Spence, M.P.; Kendrew, J.; Barnett, S.; Wood, P.G.; Giles, P.B.; Patterson, A.B.; Bichat, F.; Guilbaud, N.; Stephens, T.C. Tumor penetration of gefitinib (Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor. Mol. Cancer Ther., 2005, 4(4), 641-649.
[http://dx.doi.org/10.1158/1535-7163.MCT-04-0329] [PMID: 15827338]
[77]
Ballatore, C.; Huryn, D.M.; Smith, A.B. III Carboxylic acid (bio)isosteres in drug design. ChemMedChem, 2013, 8(3), 385-395.
[http://dx.doi.org/10.1002/cmdc.201200585] [PMID: 23361977]
[78]
Lassalas, P.; Gay, B.; Lasfargeas, C.; James, M.J.; Tran, V.; Vijayendran, K.G.; Brunden, K.R.; Kozlowski, M.C.; Thomas, C.J.; Smith, A.B., III; Huryn, D.M.; Ballatore, C. Structure property relationships of carboxylic acid isosteres. J. Med. Chem., 2016, 59(7), 3183-3203.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01963] [PMID: 26967507]
[79]
Horgan, C.; O’ Sullivan, T.P. Recent developments in the practical application of novel carboxylic acid bioisosteres. Curr. Med. Chem., 2022, 29(13), 2203-2234.
[http://dx.doi.org/10.2174/0929867328666210820112126] [PMID: 34420501]
[80]
Ballatore, C.; Soper, J.H.; Piscitelli, F.; James, M.; Huang, L.; Atasoylu, O.; Huryn, D.M.; Trojanowski, J.Q.; Lee, V.M-Y.; Brunden, K.R.; Smith, A.B. Cyclopentane-1,3-dione: A novel isostere for the carboxylic acid functional group. Application to the design of potent thromboxane (A2) receptor antagonists. J. Med. Chem., 2011, 54(19), 6969-6983.
[http://dx.doi.org/10.1021/jm200980u] [PMID: 21863799]
[81]
Ballatore, C.; Gay, B.; Huang, L.; Robinson, K.H.; James, M.J.; Trojanowski, J.Q.; Lee, V.M-Y.; Brunden, K.R.; Smith, A.B., III Evalua-tion of the cyclopentane-1,2-dione as a potential bio-isostere of the carboxylic acid functional group. Bioorg. Med. Chem. Lett., 2014, 24(17), 4171-4175.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.047] [PMID: 25127105]
[82]
Duncton, M.A.; Murray, R.B.; Park, G.; Singh, R. Tetrazolone as an acid bioisostere: Application to marketed drugs containing a carbox-ylic acid. Org. Biomol. Chem., 2016, 14(39), 9343-9347.
[http://dx.doi.org/10.1039/C6OB01646D] [PMID: 27714239]
[83]
Borhade, S.R.; Svensson, R.; Brandt, P.; Artursson, P.; Arvidsson, P.I.; Sandström, A. Preclinical characterization of acyl sulfonimidam-ides: Potential carboxylic acid bioisosteres with tunable properties. ChemMedChem, 2015, 10(3), 455-460.
[http://dx.doi.org/10.1002/cmdc.201402497] [PMID: 25630705]
[84]
Pemberton, N.; Graden, H.; Evertsson, E.; Bratt, E.; Lepistö, M.; Johannesson, P.; Svensson, P.H. Synthesis and functionalization of cyclic sulfonimidamides: A novel chiral heterocyclic carboxylic Acid bioisostere. ACS Med. Chem. Lett., 2012, 3(7), 574-578.
[http://dx.doi.org/10.1021/ml3000935] [PMID: 24900513]
[85]
Credille, C.V.; Dick, B.L.; Morrison, C.N.; Stokes, R.W.; Adamek, R.N.; Wu, N.C.; Wilson, I.A.; Cohen, S.M. Structure-activity relation-ships in metal-binding pharmacophores for influenza endonuclease. J. Med. Chem., 2018, 61(22), 10206-10217.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01363] [PMID: 30351002]
[86]
Dick, B.L.; Cohen, S.M. Metal-binding isosteres as new scaffolds for metalloenzyme inhibitors. Inorg. Chem., 2018, 57(15), 9538-9543.
[http://dx.doi.org/10.1021/acs.inorgchem.8b01632] [PMID: 30009599]
[87]
Mdluli, K.E.; Witte, P.R.; Kline, T.; Barb, A.W.; Erwin, A.L.; Mansfield, B.E.; McClerren, A.L.; Pirrung, M.C.; Tumey, L.N.; Warrener, P.; Raetz, C.R.; Stover, C.K. Molecular validation of LpxC as an antibacterial drug target in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2006, 50(6), 2178-2184.
[http://dx.doi.org/10.1128/AAC.00140-06] [PMID: 16723580]
[88]
Williams, A.H.; Raetz, C.R. Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. Proc. Natl. Acad. Sci. USA, 2007, 104(34), 13543-13550.
[http://dx.doi.org/10.1073/pnas.0705833104] [PMID: 17698807]
[89]
Erwin, A.L. Antibacterial drug discovery targeting the lipopolysaccharide biosynthetic enzyme LpxC. Cold Spring Harb. Perspect. Med., 2016, 6(7), a025304.
[http://dx.doi.org/10.1101/cshperspect.a025304] [PMID: 27235477]
[90]
Krause, K.M.; Haglund, C.M.; Hebner, C.; Serio, A.W.; Lee, G.; Nieto, V.; Cohen, F.; Kane, T.R.; Machajewski, T.D.; Hildebrandt, D.; Pillar, C.; Thwaites, M.; Hall, D.; Miesel, L.; Hackel, M.; Burek, A.; Andrews, L.D.; Armstrong, E.; Swem, L.; Jubb, A.; Cirz, R.T. Potent LpxC inhibitors with in vitro activity against multidrug-resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2019, 63(11), e00977-e19.
[http://dx.doi.org/10.1128/AAC.00977-19] [PMID: 31451507]
[91]
Liu, F.; Ma, S. Recent process in the inhibitors of UDP-3-O-(R-3-hydroxyacyl)-nacetylglucosamine deacetylase (LpxC) against gram-negative bacteria. Mini Rev. Med. Chem., 2018, 18(4), 310-323.
[http://dx.doi.org/10.2174/1389557516666161013120253] [PMID: 27739357]
[92]
Cohen, F.; Aggen, J.B.; Andrews, L.D.; Assar, Z.; Boggs, J.; Choi, T.; Dozzo, P.; Easterday, A.N.; Haglund, C.M.; Hildebrandt, D.J.; Holt, M.C.; Joly, K.; Jubb, A.; Kamal, Z.; Kane, T.R.; Konradi, A.W.; Krause, K.M.; Linsell, M.S.; Machajewski, T.D.; Miroshnikova, O.; Moser, H.E.; Nieto, V.; Phan, T.; Plato, C.; Serio, A.W.; Seroogy, J.; Shakhmin, A.; Stein, A.J.; Sun, A.D.; Sviridov, S.; Wang, Z.; Wlasichuk, K.; Yang, W.; Zhou, X.; Zhu, H.; Cirz, R.T. Optimization of LpxC inhibitors for antibacterial activity and cardiovascular safe-ty. ChemMedChem, 2019, 14(16), 1560-1572.
[http://dx.doi.org/10.1002/cmdc.201900287] [PMID: 31283109]
[93]
Yu, K.L.; Sin, N.; Civiello, R.L.; Wang, X.A.; Combrink, K.D.; Gulgeze, H.B.; Venables, B.L.; Wright, J.J.; Dalterio, R.A.; Zadjura, L.; Marino, A.; Dando, S.; D’Arienzo, C.; Kadow, K.F.; Cianci, C.W.; Li, Z.; Clarke, J.; Genovesi, E.V.; Medina, I.; Lamb, L.; Colonno, R.J.; Yang, Z.; Krystal, M.; Meanwell, N.A. Respiratory syncytial virus fusion inhibitors. Part 4: Optimization for oral bioavailability. Bioorg. Med. Chem. Lett., 2007, 17(4), 895-901.
[http://dx.doi.org/10.1016/j.bmcl.2006.11.063] [PMID: 17169560]
[94]
Shi, W.; Jiang, Z.; He, H.; Xiao, F.; Lin, F.; Sun, Y.; Hou, L.; Shen, L.; Han, L.; Zeng, M.; Lai, K.; Gu, Z.; Chen, X.; Zhao, T.; Guo, L.; Yang, C.; Li, J.; Chen, S. Discovery of 3,3&-Spiro[Azetidine]-2-oxo-indoline derivatives as fusion inhibitors for treatment of RSV infec-tion. ACS Med. Chem. Lett., 2018, 9(2), 94-97.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00418] [PMID: 29456794]
[95]
Schutz, A.; Osawa, S.; Mathis, J.; Hirsch, A.; Bernet, B.; Illarionov, B.; Fischer, M.; Bacher, A.; Diederich, F. Exploring the ribose sub-pocket of the substrate-binding site in Escherichia coli IspE: Structure-based design, synthesis, and biological evaluation of Cytosines and Cytosine Analogues. Eur. J. Org. Chem., 2012, 17, 3278-3287.
[http://dx.doi.org/10.1002/ejoc.201200296]
[96]
Aggarwal, A.; Parai, M.K.; Shetty, N.; Wallis, D.; Woolhiser, L.; Hastings, C.; Dutta, N.K.; Galaviz, S.; Dhakal, R.C.; Shrestha, R.; Waka-bayashi, S.; Walpole, C.; Matthews, D.; Floyd, D.; Scullion, P.; Riley, J.; Epemolu, O.; Norval, S.; Snavely, T.; Robertson, G.T.; Rubin, E.J.; Ioerger, T.R.; Sirgel, F.A.; van der Merwe, R.; van Helden, P.D.; Keller, P.; Böttger, E.C.; Karakousis, P.C.; Lenaerts, A.J.; Sacchet-tini, J.C. Development of a novel lead that targets M. tuberculosis polyketide synthase 13. Cell, 2017, 170(2), 249-259.e25.
[http://dx.doi.org/10.1016/j.cell.2017.06.025] [PMID: 28669536]
[97]
Zhao, W.; Wang, B.; Liu, Y.; Fu, L.; Sheng, L.; Zhao, H.; Lu, Y.; Zhang, D. Design, synthesis, and biological evaluation of novel 4H-chromen-4-one derivatives as antituberculosis agents against multidrug-resistant tuberculosis. Eur. J. Med. Chem., 2020, 189, 112075.
[http://dx.doi.org/10.1016/j.ejmech.2020.112075] [PMID: 31986405]
[98]
Li, C.; Wang, Y.; Gong, Y.; Zhang, T.; Huang, J.; Tan, Z.; Xue, L. Finding an easy way to harmonize: A review of advances in clinical research and combination strategies of EZH2 inhibitors. Clin. Epigenetics, 2021, 13(1), 62.
[http://dx.doi.org/10.1186/s13148-021-01045-1] [PMID: 33761979]
[99]
Kung, P.P.; Bingham, P.; Brooun, A.; Collins, M.; Deng, Y.L.; Dinh, D.; Fan, C.; Gajiwala, K.S.; Grantner, R.; Gukasyan, H.J.; Hu, W.; Huang, B.; Kania, R.; Kephart, S.E.; Krivacic, C.; Kumpf, R.A.; Khamphavong, P.; Kraus, M.; Liu, W.; Maegley, K.A.; Nguyen, L.; Ren, S.; Richter, D.; Rollins, R.A.; Sach, N.; Sharma, S.; Sherrill, J.; Spangler, J.; Stewart, A.E.; Sutton, S.; Uryu, S.; Verhelle, D.; Wang, H.; Wang, S.; Wythes, M.; Xin, S.; Yamazaki, S.; Zhu, H.; Zhu, J.; Zehnder, L.; Edwards, M. Optimization of orally bioavailable enhancer of zeste homolog 2 (ezh2) inhibitors using ligand and property-based design strategies: identification of development candidate (R)-5,8-dichloro-7-(methoxy(oxetan-3-yl)methyl)-2-((4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-3,4-dihydroisoquinolin-1(2H)-one (PF-06821497). J. Med. Chem., 2018, 61(3), 650-665.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01375] [PMID: 29211475]
[100]
Steeneck, C.; Kinzel, O.; Anderhub, S.; Hornberger, M.; Pinto, S.; Morschhaeuser, B.; Braun, F.; Kleymann, G.; Hoffmann, T. Discovery of hydroxyamidine based inhibitors of IDO1 for cancer immunotherapy with reduced potential for glucuronidation. ACS Med. Chem. Lett., 2020, 11(2), 179-187.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00572] [PMID: 32071686]
[101]
Liu, C.; Nan, Y.; Xia, Z.; Gu, K.; Chen, C.; Dong, X.; Ju, D.; Zhao, W. Discovery of novel hydroxyamidine derivatives as indoleamine 2,3-dioxygenase 1 inhibitors with in vivo anti-tumor efficacy. Bioorg. Med. Chem. Lett., 2020, 30(8), 127038.
[http://dx.doi.org/10.1016/j.bmcl.2020.127038] [PMID: 32088128]
[102]
Gonzalez-Lopez de Turiso, F.; Shin, Y.; Brown, M.; Cardozo, M.; Chen, Y.; Fong, D.; Hao, X.; He, X.; Henne, K.; Hu, Y.L.; Johnson, M.G.; Kohn, T.; Lohman, J.; McBride, H.J.; McGee, L.R.; Medina, J.C.; Metz, D.; Miner, K.; Mohn, D.; Pattaropong, V.; Seganish, J.; Simard, J.L.; Wannberg, S.; Whittington, D.A.; Yu, G.; Cushing, T.D. Discovery and in vivo evaluation of dual PI3Kβ/δ inhibitors. J. Med. Chem., 2012, 55(17), 7667-7685.
[http://dx.doi.org/10.1021/jm300679u] [PMID: 22876881]
[103]
Wang, Y.; Cai, W.; Zhang, G.; Yang, T.; Liu, Q.; Cheng, Y.; Zhou, L.; Ma, Y.; Cheng, Z.; Lu, S.; Zhao, Y.G.; Zhang, W.; Xiang, Z.; Wang, S.; Yang, L.; Wu, Q.; Orband-Miller, L.A.; Xu, Y.; Zhang, J.; Gao, R.; Huxdorf, M.; Xiang, J.N.; Zhong, Z.; Elliott, J.D.; Leung, S.; Lin, X. Discovery of novel N-(5-(aryl-carbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides as potent ROR&t inhibitors. Bioorg. Med. Chem., 2014, 22(2), 692-702.
[http://dx.doi.org/10.1016/j.bmc.2013.12.021] [PMID: 24388993]
[104]
Gege, C.; Cummings, M.D.; Albers, M.; Kinzel, O.; Kleymann, G.; Schlüter, T.; Steeneck, C.; Nelen, M.I.; Milligan, C.; Spurlino, J.; Xue, X.; Leonard, K.; Edwards, J.P.; Fourie, A.; Goldberg, S.D.; Hoffmann, T. Identification and biological evaluation of thiazole-based in-verse agonists of ROR&t. Bioorg. Med. Chem. Lett., 2018, 28(9), 1446-1455.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.093] [PMID: 29631962]
[105]
Felts, A.S.; Rodriguez, A.L.; Blobaum, A.L.; Morrison, R.D.; Bates, B.S.; Thompson Gray, A.; Rook, J.M.; Tantawy, M.N.; Byers, F.W.; Chang, S.; Venable, D.F.; Luscombe, V.B.; Tamagnan, G.D.; Niswender, C.M.; Daniels, J.S.; Jones, C.K.; Conn, P.J.; Lindsley, C.W.; Emmitte, K.A. Discovery of N-(5-Fluoropyridin-2-yl)-6-methyl-4-(pyrimidin-5-yloxy)picolinamide (VU0424238): A novel negative al-losteric modulator of metabotropic glutamate receptor subtype 5 selected for clinical evaluation. J. Med. Chem., 2017, 60(12), 5072-5085.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00410] [PMID: 28530802]
[106]
Crouch, R.D.; Blobaum, A.L.; Felts, A.S.; Conn, P.J.; Lindsley, C.W. Species-specific involvement of aldehyde oxidase and xanthine oxidase in the metabolism of the pyrimidine-containing mGlu5-negative allosteric modulator VU0424238 (Auglurant). Drug Metab. Dispos., 2017, 45(12), 1245-1259.
[http://dx.doi.org/10.1124/dmd.117.077552] [PMID: 28939686]
[107]
Felts, A.S.; Bollinger, K.A.; Brassard, C.J.; Rodriguez, A.L.; Morrison, R.D.; Scott Daniels, J.; Blobaum, A.L.; Niswender, C.M.; Jones, C.K.; Conn, P.J.; Emmitte, K.A.; Lindsley, C.W. Discovery of 4-alkoxy-6-methylpicolinamide negative allosteric modulators of metabo-tropic glutamate receptor subtype 5. Bioorg. Med. Chem. Lett., 2019, 29(1), 47-50.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.017] [PMID: 30446311]
[108]
Huang, H.; Winters, M.P.; Meegalla, S.K.; Arnoult, E.; Paul Lee, S.; Zhao, S.; Martin, T.; Rady, B.; Liu, J.; Towers, M.; Otieno, M.; Xu, F.; Lim, H.K.; Silva, J.; Pocai, A.; Player, M.R. Discovery of novel benzo[b]thiophene tetrazoles as non-carboxylate GPR40 agonists. Bioorg. Med. Chem. Lett., 2018, 28(3), 429-436.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.022] [PMID: 29258772]
[109]
Robinson, R.P.; Mascitti, V.; Boustany-Kari, C.M.; Carr, C.L.; Foley, P.M.; Kimoto, E.; Leininger, M.T.; Lowe, A.; Klenotic, M.K.; Mac-donald, J.I.; Maguire, R.J.; Masterson, V.M.; Maurer, T.S.; Miao, Z.; Patel, J.D.; Préville, C.; Reese, M.R.; She, L.; Steppan, C.M.; Thuma, B.A.; Zhu, T. C-Aryl glycoside inhibitors of SGLT2: Exploration of sugar modifications including C-5 spirocyclization. Bioorg. Med. Chem. Lett., 2010, 20(5), 1569-1572.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.075] [PMID: 20149653]

© 2024 Bentham Science Publishers | Privacy Policy