[1]
Wang, Y.; Yang, Y.; Ren, L.; Shao, Y.; Tao, W.; Dai, X.J. Preexisting mental disorders increase the risk of COVID-19 infection and asso-ciated mortality. Front. Public Health, 2021, 9, 684112.
[http://dx.doi.org/10.3389/fpubh.2021.684112]
[http://dx.doi.org/10.3389/fpubh.2021.684112]
[2]
Matías-Guiu, J.; Gomez-Pinedo, U.; Montero-Escribano, P.; Gomez-Iglesias, P.; Porta-Etessam, J.; Matias-Guiu, J.A. Should we expect neurological symptoms in the SARS-CoV-2 epidemic? Neurologia, 2020, 35(3), 170-175.
[http://dx.doi.org/10.1016/j.nrleng.2020.03.002] [PMID: 32299636]
[http://dx.doi.org/10.1016/j.nrleng.2020.03.002] [PMID: 32299636]
[3]
Li, Y.C.; Bai, W.Z.; Hashikawa, T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol., 2020, 92(6), 552-555.
[http://dx.doi.org/10.1002/jmv.25728] [PMID: 32104915]
[http://dx.doi.org/10.1002/jmv.25728] [PMID: 32104915]
[4]
Stevens, R.D.; Puybasset, L. The brain-lung-brain axis. Intensive Care Med., 2011, 37(7), 1054-1056.
[http://dx.doi.org/10.1007/s00134-011-2233-1] [PMID: 21544691]
[http://dx.doi.org/10.1007/s00134-011-2233-1] [PMID: 21544691]
[5]
Kuo, C.L.; Pilling, L.C.; Atkins, J.L.; Masoli, J.A.H.; Delgado, J.; Kuchel, G.A.; Melzer, D. APOE e4 genotype predicts severe COVID-19 in the UK Biobank community cohort. J. Gerontol. A Biol. Sci. Med. Sci., 2020, 75(11), 2231-2232.
[http://dx.doi.org/10.1093/gerona/glaa131] [PMID: 32451547]
[http://dx.doi.org/10.1093/gerona/glaa131] [PMID: 32451547]
[6]
Giebel, C.; Cannon, J.; Hanna, K.; Butchard, S.; Eley, R.; Gaughan, A.; Komuravelli, A.; Shenton, J.; Callaghan, S.; Tetlow, H.; Limbert, S.; Whittington, R.; Rogers, C.; Rajagopal, M.; Ward, K.; Shaw, L.; Corcoran, R.; Bennett, K.; Gabbay, M. Impact of COVID-19 related social support service closures on people with dementia and unpaid carers: A qualitative study. Aging Ment. Health, 2021, 25(7), 1281-1288.
[http://dx.doi.org/10.1080/13607863.2020.1822292] [PMID: 32954794]
[http://dx.doi.org/10.1080/13607863.2020.1822292] [PMID: 32954794]
[7]
Bergantin, L.B. Debating the “bidirectional link” between diabetes and depression through the Ca2+/cAMP signalling: Off-label effects of Ca2+ channel blockers. Pharmacol. Res., 2019, 141, 298-302.
[http://dx.doi.org/10.1016/j.phrs.2019.01.008] [PMID: 30639385]
[http://dx.doi.org/10.1016/j.phrs.2019.01.008] [PMID: 30639385]
[8]
Arruda, A.P.; Hotamisligil, G.S. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab., 2015, 22(3), 381-397.
[http://dx.doi.org/10.1016/j.cmet.2015.06.010] [PMID: 26190652]
[http://dx.doi.org/10.1016/j.cmet.2015.06.010] [PMID: 26190652]
[9]
Bergantin, L.B. The clinical link between depression and obesity: Role of Ca2+/cAMP signalling. Psychiatry Res., 2020, 291, 113167.
[http://dx.doi.org/10.1016/j.psychres.2020.113167] [PMID: 32562933]
[http://dx.doi.org/10.1016/j.psychres.2020.113167] [PMID: 32562933]
[10]
Bergantin, L.B. Diabetes and inflammatory diseases: An overview from the perspective of Ca2+/3′-5′-cyclic adenosine monophosphate signaling. World J. Diabetes, 2021, 12(6), 767-779.
[http://dx.doi.org/10.4239/wjd.v12.i6.767] [PMID: 34168726]
[http://dx.doi.org/10.4239/wjd.v12.i6.767] [PMID: 34168726]
[11]
Bergantin, L.B. The interplay among epilepsy, Parkinson’s Disease and inflammation: Revisiting the Link through Ca2+/cAMP Signalling. Curr. Neurovasc. Res., 2021, 18(1), 162-168.
[http://dx.doi.org/10.2174/1567202618666210603123345] [PMID: 34082680]
[http://dx.doi.org/10.2174/1567202618666210603123345] [PMID: 34082680]
[12]
Wu, C.L.; Wen, S.H. A 10-year follow-up study of the association between calcium channel blocker use and the risk of dementia in el-derly hypertensive patients. Medicine (Baltimore), 2016, 95(32), e4593.
[http://dx.doi.org/10.1097/MD.0000000000004593] [PMID: 27512890]
[http://dx.doi.org/10.1097/MD.0000000000004593] [PMID: 27512890]
[13]
Hanon, O.; Pequignot, R.; Seux, M.L.; Lenoir, H.; Bune, A.; Rigaud, A.S.; Forette, F.; Girerd, X. Relationship between antihypertensive drug therapy and cognitive function in elderly hypertensive patients with memory complaints. J. Hypertens., 2006, 24(10), 2101-2107.
[http://dx.doi.org/10.1097/01.hjh.0000244961.69985.05] [PMID: 16957572]
[http://dx.doi.org/10.1097/01.hjh.0000244961.69985.05] [PMID: 16957572]
[14]
Rouch, L.; Cestac, P.; Hanon, O.; Cool, C.; Helmer, C.; Bouhanick, B.; Chamontin, B.; Dartigues, J.F.; Vellas, B.; Andrieu, S. Antihyper-tensive drugs, prevention of cognitive decline and dementia: A systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs, 2015, 29(2), 113-130.
[http://dx.doi.org/10.1007/s40263-015-0230-6] [PMID: 25700645]
[http://dx.doi.org/10.1007/s40263-015-0230-6] [PMID: 25700645]
[15]
Ashby, E.L.; Miners, J.S.; Kehoe, P.G.; Love, S. Effects of hypertension and anti-hypertensive treatment on amyloid-ß plaque load and Aß- synthesizing and Aß-degrading enzymes in frontal cortex. J. Alzheimers Dis., 2016, 50, 1191-1203.
[http://dx.doi.org/10.3233/JAD-150831] [PMID: 26836178]
[http://dx.doi.org/10.3233/JAD-150831] [PMID: 26836178]
[16]
Olivier, M. Modulation of host cell intracellular Ca2+. Parasitol. Today, 1996, 12(4), 145-150.
[http://dx.doi.org/10.1016/0169-4758(96)10006-5] [PMID: 15275223]
[http://dx.doi.org/10.1016/0169-4758(96)10006-5] [PMID: 15275223]
[17]
Scherbik, S.V.; Brinton, M.A. Virus-induced Ca2+ influx extends survival of west nile virus-infected cells. J. Virol., 2010, 84(17), 8721-8731.
[http://dx.doi.org/10.1128/JVI.00144-10] [PMID: 20538858]
[http://dx.doi.org/10.1128/JVI.00144-10] [PMID: 20538858]
[18]
Dionicio, C.L.; Peña, F.; Constantino-Jonapa, L.A.; Vazquez, C.; Yocupicio-Monroy, M.; Rosales, R.; Zambrano, J.L.; Ruiz, M.C.; Del Angel, R.M.; Ludert, J.E. Dengue virus induced changes in Ca2+ homeostasis in human hepatic cells that favor the viral replicative cycle. Virus Res., 2018, 245, 17-28.
[http://dx.doi.org/10.1016/j.virusres.2017.11.029] [PMID: 29269104]
[http://dx.doi.org/10.1016/j.virusres.2017.11.029] [PMID: 29269104]
[19]
Nugent, K.M.; Shanley, J.D. Verapamil inhibits influenza A virus replication. Arch. Virol., 1984, 81(1-2), 163-170.
[http://dx.doi.org/10.1007/BF01309305] [PMID: 6743023]
[http://dx.doi.org/10.1007/BF01309305] [PMID: 6743023]
[20]
Johansen, L.M.; DeWald, L.E.; Shoemaker, C.J.; Hoffstrom, B.G.; Lear-Rooney, C.M.; Stossel, A.; Nelson, E.; Delos, S.E.; Simmons, J.A.; Grenier, J.M.; Pierce, L.T.; Pajouhesh, H.; Lehár, J.; Hensley, L.E.; Glass, P.J.; White, J.M.; Olinger, G.G. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Sci. Transl. Med., 2015, 7(290), 290ra89.
[http://dx.doi.org/10.1126/scitranslmed.aaa5597] [PMID: 26041706]
[http://dx.doi.org/10.1126/scitranslmed.aaa5597] [PMID: 26041706]
[21]
Straus, M.R.; Bidon, M.K.; Tang, T.; Jaimes, J.A.; Whittaker, G.R.; Daniel, S. Inhibitors of L-Type calcium channels show therapeutic potential for treating SARS-CoV-2 infections by preventing virus entry and spread. ACS Infect. Dis., 2021, 7(10), 2807-2815.
[http://dx.doi.org/10.1021/acsinfecdis.1c00023] [PMID: 34498840]
[http://dx.doi.org/10.1021/acsinfecdis.1c00023] [PMID: 34498840]
[22]
Halls, M.L.; Cooper, D.M. Regulation by Ca2+-signaling pathways of adenylyl cyclases. Cold Spring Harb. Perspect. Biol., 2011, 3(1), a004143.
[http://dx.doi.org/10.1101/cshperspect.a004143] [PMID: 21123395]
[http://dx.doi.org/10.1101/cshperspect.a004143] [PMID: 21123395]
[23]
Antoni, F.A. Interactions between intracellular free Ca2+ and cyclic AMP in neuroendocrine cells. Cell Calcium, 2012, 51(3-4), 260-266.
[http://dx.doi.org/10.1016/j.ceca.2011.12.013] [PMID: 22385836]
[http://dx.doi.org/10.1016/j.ceca.2011.12.013] [PMID: 22385836]
[24]
Willoughby, D. Organization of cAMP signalling microdomains for optimal regulation by Ca2+ entry. Biochem. Soc. Trans., 2012, 40(1), 246-250.
[http://dx.doi.org/10.1042/BST20110613] [PMID: 22260699]
[http://dx.doi.org/10.1042/BST20110613] [PMID: 22260699]
[25]
Fagan, K.A.; Graf, R.A.; Tolman, S.; Schaack, J.; Cooper, D.M. Regulation of a Ca2+-sensitive adenylyl cyclase in an excitable cell. Role of voltage-gated versus capacitative Ca2+ entry. J. Biol. Chem., 2000, 275(51), 40187-40194.
[http://dx.doi.org/10.1074/jbc.M006606200] [PMID: 11010970]
[http://dx.doi.org/10.1074/jbc.M006606200] [PMID: 11010970]
[26]
Goraya, T.A.; Masada, N.; Ciruela, A.; Willoughby, D.; Clynes, M.A.; Cooper, D.M. Kinetic properties of Ca2+/calmodulin-dependent phosphodiesterase isoforms dictate intracellular cAMP dynamics in response to elevation of cytosolic Ca2+. Cell. Signal., 2008, 20(2), 359-374.
[http://dx.doi.org/10.1016/j.cellsig.2007.10.024] [PMID: 18335582]
[http://dx.doi.org/10.1016/j.cellsig.2007.10.024] [PMID: 18335582]
[27]
Giovannucci, D.R.; Groblewski, G.E.; Sneyd, J.; Yule, D.I. Targeted phosphorylation of inositol 1,4,5-trisphosphate receptors selectively inhibits localized Ca2+ release and shapes oscillatory Ca2+ signals. J. Biol. Chem., 2000, 275(43), 33704-33711.
[http://dx.doi.org/10.1074/jbc.M004278200] [PMID: 10887192]
[http://dx.doi.org/10.1074/jbc.M004278200] [PMID: 10887192]
[28]
Fechner, L.; Baumann, O.; Walz, B. Activation of the cyclic AMP pathway promotes serotonin-induced Ca2+ oscillations in salivary glands of the blowfly Calliphora vicina. Cell Calcium, 2013, 53(2), 94-101.
[http://dx.doi.org/10.1016/j.ceca.2012.10.004] [PMID: 23131569]
[http://dx.doi.org/10.1016/j.ceca.2012.10.004] [PMID: 23131569]
[29]
Chatton, J.Y.; Cao, Y.; Liu, H.; Stucki, J.W. Permissive role of cAMP in the oscillatory Ca2+ response to inositol 1,4,5-trisphosphate in rat hepatocytes. Biochem. J., 1998, 330(Pt 3), 1411-1416.
[http://dx.doi.org/10.1042/bj3301411] [PMID: 9494114]
[http://dx.doi.org/10.1042/bj3301411] [PMID: 9494114]
[30]
Lee, R.J.; Foskett, J.K. cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways. J. Clin. Invest., 2010, 120(9), 3137-3148.
[http://dx.doi.org/10.1172/JCI42992] [PMID: 20739756]
[http://dx.doi.org/10.1172/JCI42992] [PMID: 20739756]
[31]
Marks, A.R. Calcium cycling proteins and heart failure: mechanisms and therapeutics. J. Clin. Invest., 2013, 123(1), 46-52.
[http://dx.doi.org/10.1172/JCI62834] [PMID: 23281409]
[http://dx.doi.org/10.1172/JCI62834] [PMID: 23281409]