Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Pharmacological Activity and Mechanism of Action of Flavonoids from Diverse Millettia Plant Organs

Author(s): Eutrophe Le Doux Kamto* and Boniface Pone Kamdem*

Volume 12, Issue 7, 2022

Published on: 05 July, 2022

Article ID: e090522204421 Pages: 29

DOI: 10.2174/2210315512666220509114733

Price: $65

Abstract

Background: There has been increasing interest in the research of flavonoids from plant sources because of their versatile effects reported in various biological studies. The bioavailability, metabolism, and biological activity of flavonoids depend on the configuration, the total number of hydroxyl groups, and the substitution of functional groups about their nuclear structure. Plant organs are the main dietary source of flavonoids for humans and have been used as a remedy in traditional medicine. Some examples include Millettia plants which have been reported to contain several flavonoids with pharmacological activity against multifactorial diseases.

Aim of the Study: The present study summarizes up-to-date and comprehensive information on the pharmacological activity of flavonoids from plants of the genus Millettia.

Methods: The literature information was obtained from published and unpublished materials (theses, dissertations, and textbooks), retrieved from databases, such as Science Direct, SciFinder, PubMed (National Library of Medicine), Scopus, Wiley, American Chemical Society, Springer, and Web of Science.

Results: Plants from the genus Millettia contain more than 400 different flavonoids, among which approximately 100 flavonoids were pharmacologically active in in vitro or in vivo studies. These flavonoids exhibited antioxidant, antiprotozoal, anti-inflammatory, and anticancer activities, among others.

Conclusion: Flavonoids from Millettia plants were reported to exhibit in vitro antioxidant, antiprotozoal, anti-inflammatory, anticancer activities, etc. These compounds can be used as a starting point for the development of new agents against multifactorial diseases. However, more in vivo experiments, cytotoxicity tests, and detailed mechanism of action of Millettia bioactive flavonoids should be investigated.

Keywords: Millettia sp., flavonoids, medicinal uses, biological activity, drug discovery, molecular targets, toxicity.

Graphical Abstract

[1]
Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. J. Pharm. Sci., 2018, 13(1), 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[2]
Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[3]
Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci., 2012, 196, 67-76.
[http://dx.doi.org/10.1016/j.plantsci.2012.07.014] [PMID: 23017900]
[4]
Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules, 2021, 26(17), 5377.
[http://dx.doi.org/10.3390/molecules26175377] [PMID: 34500810]
[5]
Pandey, A.K. Anti-staphylococcal activity of a pan-tropical aggressive and obnoxious weed Parihenium histerophorus: An in vitro study. Natl. Acad. Sci. Lett., 2007, 30(11-12), 383-386.
[6]
Rice-Evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res., 1995, 22(4), 375-383.
[http://dx.doi.org/10.3109/10715769509145649] [PMID: 7633567]
[7]
Cook, N.C.; Samman, S. Review: Flavonoids-chemistry, metabolism, cardioprotective effects and dietary sources. J. Nutr. Biochem., 1996, 7(2), 66-76.
[http://dx.doi.org/10.1016/0955-2863(95)00168-9]
[8]
Kumar, S.; Gupta, A.; Pandey, A.K. Calotropis procera root extract has capability to combat free radical mediated damage. ISRN Pharmacol., 2013, 2013(691372), 691372.
[http://dx.doi.org/10.1155/2013/691372] [PMID: 24222863]
[9]
Banzouzi, J.T.; Prost, A.; Rajemiarimiraho, M.; Ongoka, P. Traditional uses of the African Millettia species (Fabaceae). Int. J. Bot., 2008, 4(4), 406-420.
[http://dx.doi.org/10.3923/ijb.2008.406.420]
[10]
Havyarimana, L.; Ndendoung, S.T.; Tamokou, J.D.; Atchadé, A.T.; Tanyi, J.M. Chemical constituents of Millettia barteri and their antimi-crobial and antioxidant activities. Pharm. Biol., 2012, 50(2), 141-146.
[http://dx.doi.org/10.3109/13880209.2011.579618] [PMID: 22338120]
[11]
Deyou, T.; Gumula, I.; Pang, F.; Gruhonjic, A.; Mumo, M.; Holleran, J.; Duffy, S.; Fitzpatrick, P.A.; Heydenreich, M.; Landberg, G.; Derese, S.; Avery, V.; Rissanen, K.; Erdélyi, M.; Yenesew, A. Rotenoids, flavonoids, and chalcones from the root bark of Millettia usara-mensis. J. Nat. Prod., 2015, 78(12), 2932-2939.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00581] [PMID: 26651537]
[12]
Judd, W.S.; Campbell, C.S.; Kellogg, E.A.; Stevens, P.F. Plant Systematics: A phylogenetic approach; Sinauer Associates, Inc.: Sunderland, MA, 1999.
[13]
Wanda, G.J.M.K. Characterisation of oestrogenic properties of Isoflavones derived from Millettia griffoniana Baill.: Molecular mode of action and tissue selectivity., 2006, 151.
[14]
Adjanohoun, E.J. Contribution to the ethnobotanic and floristic studies in the Gabon; 1st Edition; Agence de Cooperation Culturelle et Technique (ACCT): Paris, 1984.
[15]
Neuwinger, H.D. African Traditional medicine, A dictionary of plant use and applications; 1st Ed; Medpharm Scientific Publishers: Sttugart, 2000.
[16]
Taye, B.; Giday, M.; Animut, A.; Seid, J. Antibacterial activities of selected medicinal plants in traditional treatment of human wounds in Ethiopia. Asian Pac. J. Trop. Biomed., 2011, 1(5), 370-375.
[http://dx.doi.org/10.1016/S2221-1691(11)60082-8] [PMID: 23569795]
[17]
Leonard, B. Phytochemical investigation of the stem bark of Millettia oblata ssp. Teitensis for antiplasmodial and larvicidal principles., 2011, 143.
[18]
Sofowora, A. Medicinal plants and traditional medicine in Africa: Traditional medicine: Definitions and terminology; advantage and in-convenient; John Wiley and Sons Limited: New York, 1982, pp. 9-12.
[19]
Ajaghaku, D.L.; Akah, P.A.; Ilodigwe, E.E.; Nduka, S.O.; Osonwa, U.E.; Okoye, F.B.C. Upregulation of CD4+ T-lymphocytes by isomeric mixture of quercetin-3-O-rutinoside and quercetin-3-O-robinobioside isolated from Millettia aboensis. Immunol. Invest., 2018, 47(4), 372-388.
[http://dx.doi.org/10.1080/08820139.2018.1433201] [PMID: 29405788]
[20]
Pailee, P.; Mahidol, C.; Ruchirawat, S.; Prachyawarakorn, V. Diverse flavonoids from the roots of Millettia brandisiana. Phytochemistry, 2019, 162, 157-164.
[http://dx.doi.org/10.1016/j.phytochem.2019.03.013] [PMID: 30925376]
[21]
Fotsing, M.T.; Yankep, E.; Mbafor, J.T.; Atchadé, A.T. Chemical constituents from stem barks of Millettia versicolor and Millettia zechi-ana. Rasayan J. Chem., 2011, 4, 242-244.
[22]
Ding, P.; Qiu, J.Y.; Ying, G.; Dai, L. Chemical constituents of Millettia speciosa. Chin. Herb. Med., 2014, 6(4), 332-334.
[http://dx.doi.org/10.1016/S1674-6384(14)60051-4]
[23]
Zingue, S.; Ntsa, D.M.; Magne Nde, C.B.; Michel, T.; Ndinteh, D.T.; Clyne, C.; Njamen, D. Lupeol, the major compound of the dichloro-methane extract of Millettia macrophylla Benth (Fabaceae), displays estrogenic effects in ovariectomized rats. Phytother. Res., 2019, 33(4), 949-957.
[http://dx.doi.org/10.1002/ptr.6288] [PMID: 30693996]
[24]
Ngamga, D.; Fanso Free, S.N.Y.; Tane, P.; Fomum, Z.T. Millaurine A, a new guanidine alkaloid from seeds of Millettia laurentii. Fitoterapia, 2007, 78(3), 276-277.
[http://dx.doi.org/10.1016/j.fitote.2006.11.018] [PMID: 17343990]
[25]
Palazzino, G.; Rasoanaivo, P.; Federici, E.; Nicoletti, M.; Galeffi, C. Prenylated isoflavonoids from Millettia pervilleana. Phytochemistry, 2003, 63(4), 471-474.
[http://dx.doi.org/10.1016/S0031-9422(02)00489-2] [PMID: 12770601]
[26]
Ayine-Tora, D.M.; Kingsford-Adaboh, R.; Asomaning, W.A.; Harrison, J.J.E.K.; Mills-Robertson, F.C.; Bukari, Y.; Sakyi, P.O.; Kaminta, S.; Reynisson, J. Coumarin antifungal lead compounds from Millettia thonningii and their predicted mechanism of action. Molecules, 2016, 21(10), 1369.
[http://dx.doi.org/10.3390/molecules21101369] [PMID: 27754464]
[27]
Yin, T.; Tu, G.; Zhang, Q.; Wang, B.; Zhao, Y. Three new phenolic glycosides from the caulis of Millettia speciosa. Magn. Reson. Chem., 2008, 46(4), 387-391.
[http://dx.doi.org/10.1002/mrc.2189] [PMID: 18273876]
[28]
López, M.; Martínez, F.; Del Valle, C.; Orte, C.; Miró, M. Analysis of phenolic constituents of biological interest in red wines by high-performance liquid chromatography. J. Chromatogr. A, 2001, 922(1-2), 359-363.
[http://dx.doi.org/10.1016/S0021-9673(01)00913-X] [PMID: 11486883]
[29]
Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 1996, 20(7), 933-956.
[http://dx.doi.org/10.1016/0891-5849(95)02227-9] [PMID: 8743980]
[30]
Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55(6), 481-504.
[http://dx.doi.org/10.1016/S0031-9422(00)00235-1] [PMID: 11130659]
[31]
Narayana, K.R.; Reddy, M.S.; Chaluvadi, M.R.; Krishna, D.R. Bioflavonoids classification, pharmacological, biochemical effects and ther-apeutic potential. Indian J. Pharmacol., 2001, 33, 2-16.
[32]
Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability and epidemiology. Nutr. Res., 2004, 24(10), 851-874.
[http://dx.doi.org/10.1016/j.nutres.2004.07.005]
[33]
Taylor, L.P.; Grotewold, E. Flavonoids as developmental regulators. Curr. Opin. Plant Biol., 2005, 8(3), 317-323.
[http://dx.doi.org/10.1016/j.pbi.2005.03.005] [PMID: 15860429]
[34]
Hidalgo, M.; Sánches-Moreno, C.; Pascual-Teresa, S. Flavonoid-flavonoid interaction and its effect on their antioxidante activity. Food Chem., 2010, 121(3), 69.
[http://dx.doi.org/10.1016/j.foodchem.2009.12.097]
[35]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[36]
Mülazımoğlu, I.E.; Özkan, E.; Solak, A.O. Covalently grafted on to the glassy carbon electrode in non-aqueous media of apigenin and naringenin as different flavonoid derivatives. Anal. Bioanal. Electrochem., 2011, 3, 102-118.
[37]
Anderson, O.M.; Markhan, K.R. Flavonoids: Chemistry, Biochemistry and Applications; 1st Edition; CRC Press, Tayor and Francis, 2006.
[38]
Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A-H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243.
[http://dx.doi.org/10.3390/molecules25225243]
[39]
Middleton, E. The flavonoids. Trends Pharmacol. Sci., 1984, 5, 335-338.
[40]
Liao, X.L.; Luo, J.G.; Kong, L.Y. Flavonoids from Millettia nitida var. hirsutissima with their anticoagulative activities and inhibitory effects on NO production. J. Nat. Med., 2013, 67(4), 856-861.
[http://dx.doi.org/10.1007/s11418-013-0745-4] [PMID: 23359229]
[41]
Wang, W.; Wang, J.; Li, N.; Zhang, X.; Zhao, W.; Li, J.; Si, Y. Chemopreventive flavonoids from Millettia pulchra Kurz var-laxior (Dunn) Z.Wei (Yulangsan) function as Michael reaction acceptors. Bioorg. Med. Chem. Lett., 2015, 25(5), 1078-1081.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.009] [PMID: 25630222]
[42]
Phrutivorapongkul, A.; Lipipun, V.; Ruangrungsi, N.; Kirtikara, K.; Nishikawa, K.; Maruyama, S.; Watanabe, T.; Ishikawa, T. Studies on the chemical constituents of stem bark of Millettia leucantha: isolation of new chalcones with cytotoxic, anti-herpes simplex virus and an-ti-inflammatory activities. Chem. Pharm. Bull. (Tokyo), 2003, 51(2), 187-190.
[http://dx.doi.org/10.1248/cpb.51.187] [PMID: 12576653]
[43]
Dat, L.D.; Tu, N.T.M.; Duc, N.V.; Luyen, B.T.T.; Huyen, C.T.T.; Jang, H.J.; Thu, D.T.; Huong, T.T.; Tram, L.H.; Thong, N.V.; Hung, N.D.; Kim, Y.H.; Thao, N.P. Anti-inflammatory secondary metabolites from the stems of Millettia dielsiana Harms ex Diels. Carbohydr. Res., 2019, 484, 107778.
[http://dx.doi.org/10.1016/j.carres.2019.107778] [PMID: 31470215]
[44]
Tang, H.; Wu, B.; Chen, K.; Pei, H.; Wu, W.; Ma, L.; Peng, A.; Ye, H.; Chen, L. Separation of flavonoids from Millettia griffithii with high-performance counter-current chromatography guided by anti-inflammatory activity. J. Sep. Sci., 2015, 38(3), 523-529.
[http://dx.doi.org/10.1002/jssc.201401068] [PMID: 25413585]
[45]
Fang, S.C.; Hsu, C.L.; Lin, H.T.; Yen, G.C. Anticancer effects of flavonoid derivatives isolated from Millettia reticulata Benth in SK-Hep-1 human hepatocellular carcinoma cells. J. Agric. Food Chem., 2010, 58(2), 814-820.
[http://dx.doi.org/10.1021/jf903216r] [PMID: 19994890]
[46]
Su, X.H.; Li, C.Y.; Zhong, Y.J.; Yuan, Z.P.; Li, Y.F.; Liang, B. A new prenylated chalcone from the seeds of Millettia pachycarpa. Chin. J. Nat. Med., 2012, 10(3), 222-225.
[http://dx.doi.org/10.3724/SP.J.1009.2012.00222]
[47]
Ye, H.; Xie, C.; Wu, W.; Xiang, M.; Liu, Z.; Li, Y.; Tang, M.; Li, S.; Yang, J.; Tang, H.; Chen, K.; Long, C.; Peng, A.; Chen, L. Millettia pachycarpa exhibits anti-inflammatory activity through the suppression of LPS-induced NO/iNOS expression. Am. J. Chin. Med., 2014, 42(4), 949-965.
[http://dx.doi.org/10.1142/S0192415X14500608] [PMID: 25004885]
[48]
Ye, H.; Fu, A.; Wu, W.; Li, Y.; Wang, G.; Tang, M.; Li, S.; He, S.; Zhong, S.; Lai, H.; Yang, J.; Xiang, M.; Peng, A.; Chen, L. Cytotoxic and apoptotic effects of constituents from Millettia pachycarpa Benth. Fitoterapia, 2012, 83(8), 1402-1408.
[http://dx.doi.org/10.1016/j.fitote.2012.08.001] [PMID: 22902267]
[49]
Yenesew, A.; Derese, S.; Midiwo, J.O.; Oketch-Rabah, H.A.; Lisgarten, J.; Palmer, R.; Heydenreich, M.; Peter, M.G.; Akala, H.; Wangui, J.; Liyala, P.; Waters, N.C. Anti-plasmodial activities and X-ray crystal structures of rotenoids from Millettia usaramensis subspecies usara-mensis. Phytochemistry, 2003, 64(3), 773-779.
[http://dx.doi.org/10.1016/S0031-9422(03)00373-X] [PMID: 13679101]
[50]
Wang, W.; Li, N.; Wang, J.; Chen, G.; Huang, R.; Zhao, W.; Li, J.; Si, Y. Bioactive benzofuran-chalcanes as potential NQO1 inducers from Millettia pulchra (Benth) kurzvar-laxior (Dunn). Z.Wei. Phytochemistry, 2016, 131, 107-114.
[51]
Tu, Y.B.; Xiao, T.; Gong, G.Y.; Bian, Y.Q.; Li, Y.F. A new isoflavone with anti-inflammatory effect from the seeds of Millettia pachycarpa. Nat. Prod. Res., 2020, 34(7), 981-987. a
[http://dx.doi.org/10.1080/14786419.2018.1547294] [PMID: 30636441]
[52]
Kumar, R.J.; Krupadanam, G.L.D.; Srimannarayana, G. Isoflavans from Millettia racemosa. Phytochemistry, 1989, 28(3), 913-916.
[http://dx.doi.org/10.1016/0031-9422(89)80141-4]
[53]
Rao, C.P.; Krupadanam, G.L.D. An isoflavan from Millettia racemosa. Phytochemistry, 1994, 35(6), 1597-1599.
[http://dx.doi.org/10.1016/S0031-9422(00)86904-6]
[54]
Yankep, E.; Mbafor, J.T.; Fomum, Z.T.; Steinbeck, C.; Messanga, B.B.; Nyasse, B.; Budzikiewicz, H.; Lenz, C.; Schmickler, H. Further isoflavonoid metabolites from Millettia griffoniana (Bail). Phytochemistry, 2001, 56(4), 363-368.
[http://dx.doi.org/10.1016/S0031-9422(00)00400-3] [PMID: 11249102]
[55]
Yankep, E.; Njamen, D.; Fotsing, M.T.; Fomum, Z.T.; Mbanya, J.C.; Giner, R.M.; Recio, M.C.; Máñez, S.; Ríos, J.L. Griffonianone D, an isoflavone with anti-inflammatory activity from the root bark of Millettia griffoniana. J. Nat. Prod., 2003, 66(9), 1288-1290.
[http://dx.doi.org/10.1021/np0205912] [PMID: 14510620]
[56]
Ngamga, D.; Yankep, E.; Tane, P.; Merhatibe, M.; Ngadjui, B.T.; Fomum, Z.T.; Berhanu, M.; Abegaz, B.M. Isoflavonoids from Seeds of Millettia griffoniana (Bail). Z. Naturforsch. B. J. Chem. Sci., 2005, 60(9), 973-977.
[http://dx.doi.org/10.1515/znb-2005-0911]
[57]
Kapingu, M.C.; Mbwambo, Z.H.; Moshi, M.J.; Magadula, J.J.; Cos, P.; Berghe, D.V.; Maes, L.; Theunis, M.; Apers, S.; Pieters, L.; Vlietinck, A. A novel isoflavonoid from Millettia puguensis. Planta Med., 2006, 72(14), 1341-1343.
[http://dx.doi.org/10.1055/s-2006-951689] [PMID: 17054049]
[58]
Takahashi, M.; Fuchino, H.; Sekita, S.; Satake, M.; Kiuchi, F. In vitro leishmanicidal constituents of Millettia pendula. Chem. Pharm. Bull. (Tokyo), 2006, 54(6), 915-917.
[http://dx.doi.org/10.1248/cpb.54.915] [PMID: 16755071]
[59]
Kikuchi, H.; Ohtsuki, T.; Koyano, T.; Kowithayakorn, T.; Sakai, T.; Ishibashi, M. Brandisianins A.-F, isoflavonoids isolated from Mil-lettia brandisiana in a screening program for death-receptor expression enhancement activity. J. Nat. Prod., 2007, 70(12), 1910-1914.
[http://dx.doi.org/10.1021/np0703904] [PMID: 18039011]
[60]
Gong, T.; Wang, D.X.; Chen, R.Y.; Liu, P.; Yu, D.Q. Novel benzil and isoflavone derivatives from Millettia dielsiana. Planta Med., 2009, 75(3), 236-242.
[http://dx.doi.org/10.1055/s-0028-1112203] [PMID: 19140097]
[61]
Ye, H.; Wu, W.; Liu, Z.; Xie, C.; Tang, M.; Li, S.; Yang, J.; Tang, H.; Chen, K.; Long, C.; Peng, A.; Wei, Y.; Chen, L. Bioactivity-guided isolation of anti-inflammation flavonoids from the stems of Millettia dielsiana Harms. Fitoterapia, 2014, 95, 154-159. b
[http://dx.doi.org/10.1016/j.fitote.2014.03.008] [PMID: 24641946]
[62]
Tu, Y.; Wu, C.; Kang, Y.; Li, Q.; Zhu, C.; Li, Y. Bioactivity-guided identification of flavonoids with cholinesterase and β-amyloid peptide aggregation inhibitory effects from the seeds of Millettia pachycarpa. Bioorg. Med. Chem. Lett., 2019, 29(10), 1194-1198. b
[http://dx.doi.org/10.1016/j.bmcl.2019.03.024] [PMID: 30910460]
[63]
Zingue, S.; do Carmo, Í.A.R.; Tchoumtchoua, J.; Tchoupang, E.N.; Bratti, L.O.S.; Mora, T.D.; Halabalaki, M.; Njamen, D.; Creczynski-Pasa, T.B.; Filippin-Monteiro, F.B. Millettia macrophylla (Fabaceae) phenolic fraction prevents differentiation of 3T3-L1 adipocytes and the increased risks of cardiovascular diseases in ovariectomized rats. J. Ethnopharmacol., 2018, 222, 87-98.
[http://dx.doi.org/10.1016/j.jep.2018.04.046] [PMID: 29727734]
[64]
Yan, W.; Yang, J.; Tang, H.; Xue, L.; Chen, K.; Wang, L.; Zhao, M.; Tang, M.; Peng, A.; Long, C.; Chen, X.; Ye, H.; Chen, L. Flavonoids from the stems of Millettia pachyloba Drake mediate cytotoxic activity through apoptosis and autophagy in cancer cells. J. Adv. Res., 2019, 20, 117-127.
[http://dx.doi.org/10.1016/j.jare.2019.06.002] [PMID: 31338224]
[65]
Wang, Y.Y.; Kwak, J.H.; Lee, K.T.; Deyou, T.; Jang, Y.P.; Choi, J.H. Isoflavones isolated from the seeds of Millettia ferruginea induced apoptotic cell death in human ovarian cancer cells. Molecules, 2020, 25(1), 207.
[http://dx.doi.org/10.3390/molecules25010207] [PMID: 31947862]
[66]
Raksat, A.; Maneerat, W.; Andersen, R.J.; Pyne, S.G.; Laphookhieo, S. Antibacterial prenylated isoflavonoids from the stems of Millettia extensa. J. Nat. Prod., 2018, 81(8), 1835-1840.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00321] [PMID: 30106294]
[67]
Raksat, A.; Maneerat, W.; Rujanapun, N.; Andersen, R.J.; Pyne, S.G.; Laphookhieo, S. Antibacterial and inhibitory activities against nitric oxide production of coumaronochromones and prenylated isoflavones from Millettia extensa. J. Nat. Prod., 2019, 82(8), 2343-2348.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00216] [PMID: 31403786]
[68]
Okamoto, Y.; Susiki, A.; Ueda, K.; Ito, C.; Itoigawa, M.; Furukawa, H.; Nishihara, T.; Kojima, N. Anti-estrogenic activity of pregnylated isoflavones from Millettia pachycarpa: Implications for pharmacophores and unique mechanisms. J. Health Sci., 2006, 52(2), 186-191.
[http://dx.doi.org/10.1248/jhs.52.186]
[69]
Tiabou Tchinda, A.; Nahar Khan, S.; Fuendjiep, V.; Ngandeu, F.; Ngono Ngane, A.; Choudhary, M.I. α-glucosidase inhibitors from Mil-lettia conraui. Chem. Pharm. Bull. (Tokyo), 2007, 55(9), 1402-1403.
[http://dx.doi.org/10.1248/cpb.55.1402] [PMID: 17827772]
[70]
Mai, H.D.T.; Nguyen, T.T.O.; Pham, V.C.; Litaudon, M.; Guéritte, F.; Tran, D.T.; Nguyen, V.H. Cytotoxic prenylated isoflavone and bip-terocarpan from Millettia pachyloba. Planta Med., 2010, 76(15), 1739-1742.
[http://dx.doi.org/10.1055/s-0030-1249834] [PMID: 20414862]
[71]
Ito, C.; Itoigawa, M.; Kojima, N.; Tokuda, H.; Hirata, T.; Nishino, H.; Furukawa, H. Chemical constituents of Millettia taiwaniana: Struc-ture elucidation of five new isoflavonoids and their cancer chemopreventive activity. J. Nat. Prod., 2004, 67(7), 1125-1130.
[http://dx.doi.org/10.1021/np030554q] [PMID: 15270565]
[72]
Ito, C.; Itoigawa, M.; Kumagaya, M.; Okamoto, Y.; Ueda, K.; Nishihara, T.; Kojima, N.; Furukawa, H. Isoflavonoids with antiestrogenic activity from Millettia pachycarpa. J. Nat. Prod., 2006, 69(1), 138-141. a
[http://dx.doi.org/10.1021/np050341w] [PMID: 16441086]
[73]
Ito, C.; Murata, T.; Itoigawa, M.; Nakao, K.; Kumagai, M.; Kaneda, N.; Furukawa, H. Induction of apoptosis by isoflavonoids from the leaves of Millettia taiwaniana in human leukemia HL-60 cells. Planta Med., 2006, 72(5), 424-429. b
[http://dx.doi.org/10.1055/s-2005-916259] [PMID: 16557456]
[74]
Deyou, T.; Marco, M.; Heydenreich, M.; Pan, F.; Gruhonjic, A.; Fitzpatrick, P.A.; Koch, A.; Derese, S.; Pelletier, J.; Rissanen, K.; Yenesew, A.; Erdélyi, M. Isoflavones and Rotenoids from the Leaves of Millettia oblata ssp. teitensis. J. Nat. Prod., 2017, 80(7), 2060-2066.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00255] [PMID: 28665590]
[75]
Xue, L-L.; Wu, W-S.; Ma, X.; Pei, H-Y.; Tang, M-H.; Kuang, S.; Cai, X-Y.; Wang, L.; Li, Y.; Zhang, R-J.; Hong, F.; Peng, A-H.; Ye, H-Y.; Chen, L-J. Modulation of LPS-induced inflammation in RAW264.7 murine cells by novel isoflavonoids from Millettia pulchra. Bioorg. Chem., 2020, 97, 103693.
[http://dx.doi.org/10.1016/j.bioorg.2020.103693] [PMID: 32120079]
[76]
Musuyu Muganza, D.; Fruth, B.I.; Nzunzu Lami, J.; Cos, P.; Cimanga Kanyanga, R.; Maes, L.; Pieters, L. In vitro antiprotozoal activity and cytotoxicity of extracts and fractions from the leaves, root bark and stem bark of Isolona hexaloba. J. Ethnopharmacol., 2015, 174, 187-194.
[http://dx.doi.org/10.1016/j.jep.2015.07.034] [PMID: 26239153]
[77]
Buyinza, D.; Chalo, D.M.; Derese, S.; Ndakala, A.; Yenesew, A. Flavonoids and isoflavonoids of Millettia dura and Millettia ferruginea: Phytochemical review and chemotaxonomic values. Biochem. Syst. Ecol., 2020, 91, 104053.
[http://dx.doi.org/10.1016/j.bse.2020.104053]
[78]
Fang, S.C.; Hsu, C.L.; Yu, Y.S.; Yen, G.C. Cytotoxic effects of new geranyl chalcone derivatives isolated from the leaves of Artocarpus communis in SW 872 human liposarcoma cells. J. Agric. Food Chem., 2008, 56(19), 8859-8868.
[http://dx.doi.org/10.1021/jf8017436] [PMID: 18767861]
[79]
Rocha e Silva, L.F.; Nogueira, K.L.; Pinto, A.C.; Katzin, A.M.; Sussmann, R.A.C.; Muniz, M.P.; de Andrade Neto, V.F.; Chaves, F.C.M.; Coutinho, J.P.; Lima, E.S.; Krettli, A.U.; Tadei, W.P.; Pohlit, A.M. In vivo antimalarial activity and mechanisms of action of 4-nerolidylcatechol derivatives. Antimicrob. Agents Chemother., 2015, 59(6), 3271-3280.
[http://dx.doi.org/10.1128/AAC.05012-14] [PMID: 25801563]
[80]
Kayser, O.; Olbrich, C.; Yardley, V.; Kiderlen, A.F.; Croft, S.L. Formulation of amphotericin B as nanosuspension for oral administration. Int. J. Pharm., 2003, 254(1), 73-75.
[http://dx.doi.org/10.1016/S0378-5173(02)00686-5] [PMID: 12615413]
[81]
Boniface, P.K.; Sano, C.M.; Elizabeth, F.I. Unveiling the targets involved in quest of antileishmanial leads using in-silico methods. Curr. Drug Targets, 2020, 21(7), 681-712.
[http://dx.doi.org/10.2174/1389450121666200128112948] [PMID: 32003668]
[82]
Sala, A.; Recio, M.C.; Giner, R.M.; Máñez, S.; Ríos, J-L. Anti-phospholipase A2 and anti-inflammatory activity of Santolina chamaecy-parissus. Life Sci., 2000, 66(2), PL35-PL40.
[PMID: 10666016]
[83]
Robak, J.; Shridi, F.; Wolbís, M.; Królikowska, M. Screening of the influence of flavonoids on lipoxygenase and cyclooxygenase activity, as well as on nonenzymic lipid oxidation. Pol. J. Pharmacol. Pharm., 1988, 40(5), 451-458.
[PMID: 3151014]
[84]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[85]
Wisastra, R.; Dekker, F.J. Inflammation, cancer and oxidative lipoxygenase activity are intimately linked. Cancers (Basel), 2014, 6(3), 1500-1521.
[http://dx.doi.org/10.3390/cancers6031500] [PMID: 25037020]
[86]
Levin, J.I.; Laufer, S. Anti-inflammatory Drug Discovery; Royal Society of Chemistry, 2012.
[http://dx.doi.org/10.1039/9781849735346]
[87]
Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World, 2018, 11(5), 627-635.
[http://dx.doi.org/10.14202/vetworld.2018.627-635] [PMID: 29915501]
[88]
Rayanil, K.O.; Bunchornmaspan, P.; Tuntiwachwuttikul, P. A new phenolic compound with anticancer activity from the wood of Millettia leucantha. Arch. Pharm. Res., 2011, 34(6), 881-886.
[http://dx.doi.org/10.1007/s12272-011-0603-4] [PMID: 21725807]
[89]
Ren, Y.; Benatrehina, P.A.; Muñoz Acuña, U.; Yuan, C.; Chai, H.B.; Ninh, T.N.; Carcache de Blanco, E.J.; Soejarto, D.D.; Kinghorn, A.D. Isolation of bioactive rotenoids and isoflavonoids from the fruits of Millettia caerulea. Planta Med., 2016, 82(11-12), 1096-1104.
[http://dx.doi.org/10.1055/s-0042-108059] [PMID: 27280936]
[90]
Memariani, Z.; Abbas, S.Q.; Ul Hassan, S.S.; Ahmadi, A.; Chabra, A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol. Res., 2021, 171, 105264.
[http://dx.doi.org/10.1016/j.phrs.2020.105264] [PMID: 33166734]
[91]
Sui, X.; Han, X.; Chen, P.; Wu, Q.; Feng, J.; Duan, T.; Chen, X.; Pan, T.; Yan, L.; Jin, T.; Xiang, Y.; Gao, Q.; Wen, C.; Ma, W.; Liu, W.; Zhang, R.; Chen, B.; Zhang, M.; Yang, Z.; Kong, N.; Xie, T.; Ding, X. Baicalin induces apoptosis and suppresses the cell cycle progression of lung cancer cells through downregulating Akt/mTOR signaling pathway. Front. Mol. Biosci., 2021, 7, 602282.
[http://dx.doi.org/10.3389/fmolb.2020.602282] [PMID: 33585556]
[92]
Rodruguez-Garcia, C.; Sanchez-Quesada, C.; Gadorio, J.J. Dietary flavonoids as cancer chemopreventive agents: An updated review off human studies. Antioxidants, 2019, 8(5), 137.
[http://dx.doi.org/10.3390/antiox8050137]
[93]
Wanda, G.J.M.K.; Starcke, S.; Zierau, O.; Njamen, D.; Richter, T.; Vollmer, G. Estrogenic activity of griffonianone C, an isoflavone from the root bark of Millettia griffoniana: Regulation of the expression of estrogen responsive genes in uterus and liver of ovariectomized rats. Planta Med., 2007, 73(6), 512-518.
[http://dx.doi.org/10.1055/s-2007-967186] [PMID: 17486534]
[94]
Jung, E-M.; An, B-S.; Yang, H.; Choi, K-C.; Jeung, E-B. Biomarker genes for detecting estrogenic activity of endocrine disruptors via estrogen receptors. Int. J. Environ. Res. Public Health, 2012, 9(3), 698-711.
[http://dx.doi.org/10.3390/ijerph9030698] [PMID: 22690157]
[95]
Duan, W.; Kuo, I.C.; Selvarajan, S.; Chua, K.Y.; Bay, B.H.; Wong, W.S.F. Antiinflammatory effects of genistein, a tyrosine kinase inhibi-tor, on a guinea pig model of asthma. Am. J. Respir. Crit. Care Med., 2003, 167(2), 185-192.
[http://dx.doi.org/10.1164/rccm.200205-420OC] [PMID: 12406820]
[96]
Salem, N., Jr; Litman, B.; Kim, H-Y.; Gawrisch, K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids, 2001, 36(9), 945-959.
[http://dx.doi.org/10.1007/s11745-001-0805-6] [PMID: 11724467]
[97]
Sakai, T.; Kogiso, M. Soy isoflavones and immunity. J. Med. Invest., 2008, 55(3-4), 167-173.
[http://dx.doi.org/10.2152/jmi.55.167] [PMID: 18797128]
[98]
Hou, D.X.; Kumamoto, T. Flavonoids as protein kinase inhibitors for cancer chemoprevention: Direct binding and molecular modeling. Antioxid. Redox Signal., 2010, 13(5), 691-719.
[http://dx.doi.org/10.1089/ars.2009.2816] [PMID: 20070239]
[99]
Cushnie, T.P.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents, 2011, 38(2), 99-107.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.02.014] [PMID: 21514796]
[100]
Feng, X-Q.; Zhu, L-L.; Zhou, Q. Opioid analgesics-related pharmacokinetic drug interactions: From the perspectives of evidence based on randomized controlled trials and clinical risk management. J. Pain Res., 2017, 10, 1225-1239.
[http://dx.doi.org/10.2147/JPR.S138698] [PMID: 28579821]
[101]
Debebe, M. Evaluations on the sub-chronic toxicity of 70% ethanolic seed extracts of Albizia gummifera and Millettia ferruginea on blood parameters and liver and kidney tissues in albino Wistar rats., Addis Ababa University; College of Health Sciences, School of Medicine, Department of anatomy, Ethiopia, , 2014; p. 77.
[102]
Choudhury, M.K.; Shiferaw, Y.; Hussen, A. Toxicity of Millettia ferruginea darasana (family: Fabaceae) against the larvae and adult ticks of Amblyomma variegatum Fabricius a three-host tick in cattle. J. Parasit. Dis., 2015, 39(2), 298-302.
[http://dx.doi.org/10.1007/s12639-013-0311-8] [PMID: 26064022]
[103]
Choudhury, M.K.; Shiferaw, Y. Toxicity of Millettia ferruginea (Hochst) Baker against the larvae and adult ticks of Boophilus decoloratus a one-host tick in cattle. J. Nat. Rem., 2016, 16(1), 33-39.
[http://dx.doi.org/10.18311/jnr/2016/504]
[104]
Lin, T.; Gong, M.; Guan, Q. A magical biological insecticide extracted from seeds of Millettia pachycarpa to kill cabbage aphids. American Institute of Physics. AIP Conf. Proc., 2018, 1956, 4.
[http://dx.doi.org/10.1063/1.5034296]
[105]
Boniface, P.K.; Ferreira, E.I. Flavonoids as efficient scaffolds: Recent trends for malaria, leishmaniasis, Chagas disease, and dengue. Phytother. Res., 2019, 33(10), 2473-2517.
[http://dx.doi.org/10.1002/ptr.6383] [PMID: 31441148]
[106]
Boniface, P.K.; Elizabeth, F.I. An insight into the discovery of potent antifilarial leads against lymphatic filariasis. Curr. Drug Targets, 2020, 21(7), 657-680. b
[http://dx.doi.org/10.2174/1389450120666191204152415] [PMID: 31800381]
[107]
Drew, M.E.; Banerjee, R.; Uffman, E.W.; Gilbertson, S.; Rosenthal, P.J.; Goldberg, D.E. Plasmodium food vacuole plasmepsins are acti-vated by falcipains. J. Biol. Chem., 2008, 283(19), 12870-12876.
[http://dx.doi.org/10.1074/jbc.M708949200] [PMID: 18308731]
[108]
Fitch, C.D.; Chevli, R.; Banyal, H.S.; Phillips, G.; Pfaller, M.A.; Krogstad, D.J. Lysis of Plasmodium falciparum by ferriprotoporphyrin IX and a chloroquine-ferriprotoporphyrin IX complex. Antimicrob. Agents Chemother., 1982, 21(5), 819-822.
[http://dx.doi.org/10.1128/AAC.21.5.819] [PMID: 7049079]
[109]
Lehane, A.M.; McDevitt, C.A.; Kirk, K.; Fidock, D.A. Degrees of chloroquine resistance in Plasmodium - is the redox system involved? Int. J. Parasitol. Drugs Drug Resist., 2012, 2, 47-57.
[http://dx.doi.org/10.1016/j.ijpddr.2011.11.001] [PMID: 22773965]
[110]
Tasdemir, D.; Lack, G.; Brun, R.; Rüedi, P.; Scapozza, L.; Perozzo, R. Inhibition of Plasmodium falciparum fatty acid biosynthesis: Evalu-ation of FabG, FabZ, and FabI as drug targets for flavonoids. J. Med. Chem., 2006, 49(11), 3345-3353.
[http://dx.doi.org/10.1021/jm0600545] [PMID: 16722653]
[111]
Miller, M.J.; Sandoval, M. Nitric Oxide. III. A molecular prelude to intestinal inflammation. Am. J. Physiol., 1999, 276(4), G795-G799.
[PMID: 10198320]
[112]
Vezza, T.; Rodríguez-Nogales, A.; Algieri, F.; Utrilla, M.P.; Rodriguez-Cabezas, M.E.; Galvez, J. Flavonoids in inflammatory bowel disease: A Review. Nutrients, 2016, 8(211), 22.
[http://dx.doi.org/10.3390/nu8040211]
[113]
Sundaram, M.K.; Unni, S.; Somvanshi, P.; Bhardwaj, T.; Mandal, R.K.; Hussain, A.; Haque, S. Genistein mmodulates signaling pathways and targets several epigenetic markers in HeLa cells. Genes (Basel), 2019, 10(12), 955.
[http://dx.doi.org/10.3390/genes10120955] [PMID: 31766427]
[114]
Balasuriya, B.W.N.; Rupasinghe, H.P.V. Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Funct. Food Health Dis., 2011, 5(5), 172-188.
[http://dx.doi.org/10.31989/ffhd.v1i5.132]
[115]
Batra, P.; Sharma, A.K. Anti-cancer potential of flavonoids: Recent trends and future perspectives. 3 Biotech, 2013, 3, 439-459.
[116]
Silver, L.L. Appropriate targets for antibacterial drugs. Cold Spring Harb. Perspect. Med., 2016, 6(12), a030239.
[http://dx.doi.org/10.1101/cshperspect.a030239] [PMID: 27599531]
[117]
Soeiro, M.N.C.; de Castro, S.L. Trypanosoma cruzi targets for new chemotherapeutic approaches. Expert Opin. Ther. Targets, 2009, 13(1), 105-121.
[http://dx.doi.org/10.1517/14728220802623881] [PMID: 19063710]
[118]
Asare, B.K.; Yawson, E.; Rajnarayanan, R.V. Flexible small molecular anti-estrogens with N,N-dialkylated-2,5-diethoxy-4-morpholinoaniline scaffold targets multiple estrogen receptor conformations. Cell Cycle, 2017, 16(15), 1465-1477.
[http://dx.doi.org/10.1080/15384101.2017.1339848] [PMID: 28723234]
[119]
Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; Abubakar, S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J., 2011, 8(8), 560.
[http://dx.doi.org/10.1186/1743-422X-8-560] [PMID: 22201648]
[120]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[121]
Ferreira, A.; Pousinho, S.; Fortuna, A.; Falcão, A.; Alves, G. Flavonoid compounds as reversal agents of the P-glycoprotein-mediated multidrug resistance: Biology, chemistry and pharmacology. Phytochem. Rev., 2015, 14(2), 233-272.
[http://dx.doi.org/10.1007/s11101-014-9358-0]
[122]
Aoki, T.; Akashi, T.; Ayabe, S.I. Flavonoids of leguminous plants: Structure, biological activity, and biosynthesis. J. Plant Res., 2000, 113(4), 475-488.
[http://dx.doi.org/10.1007/PL00013958]
[123]
Cheng, C.L.; Jia, X.H.; Xiao, C.M.; Tang, W.Z. Paulownia C-geranylated flavonoids: Their structural variety, biological activity and appli-cation prospects. Phytochem. Rev., 2019, 18(3), 549-570.
[http://dx.doi.org/10.1007/s11101-019-09614-2] [PMID: 32214921]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy