Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Palladium-Catalyzed Aminocarbonylation of Aryl Halides

Author(s): Cheriya Mukkolakkal Abdulla Afsina, Rose Mary Philip, Padinjare Veetil Saranya and Gopinathan Anilkumar*

Volume 20, Issue 3, 2023

Published on: 26 August, 2022

Page: [308 - 331] Pages: 24

DOI: 10.2174/1570179419666220430150122

Price: $65

Abstract

Palladium-catalyzed organic reactions are ubiquitous due to their high efficiency in coupling reactions and have wide applications in synthetic chemistry. Their widespread use in organic synthesis has been attributed to moderate conditions associated with reactions and tolerance to different types of functional groups. Palladium-catalysts are extensively used in aminocarbonylation of aryl halides for the synthesis of amides and have found a wide variety of applications in pharmaceuticals, agrochemicals, petrochemicals, materials, polymers, etc. In this review, we summarize the recent advances in the synthesis of amides via palladium-catalyzed aminocarbonylation of aryl halides, and cover literature from 2010 to 2021.

Keywords: Aminocarbonylation, aryl halides, amines, CO, palladium catalyst, amide synthesis.

Graphical Abstract

[1]
Schnyder, A.; Beller, M.; Mehltretter, G.; Nsenda, T.; Studer, M.; Indolese, A.F. Synthesis of primary aromatic amides by aminocarbonylation of aryl halides using formamide as an ammonia synthon. J. Org. Chem., 2001, 66(12), 4311-4315.
[http://dx.doi.org/10.1021/jo015577t] [PMID: 11397169]
[2]
Luszczki, J.J.; Swiader, M.J.; Swiader, K.; Paruszewski, R.; Turski, W.A.; Czuczwar, S.J. Anticonvulsant and acute adverse effect profiles of picolinic acid 2-fluoro-benzylamide in various experimental seizure models and chimney test in mice. Fundam. Clin. Pharmacol., 2008, 22(1), 69-74.
[http://dx.doi.org/10.1111/j.1472-8206.2007.00547.x] [PMID: 18005356]
[3]
Dunetz, J.R.; Magano, J.; Weisenburger, G.A. Large-scale applications of amide coupling reagents for the synthesis of pharmaceuticals. Org. Process Res. Dev., 2016, 20(2), 140-177.
[http://dx.doi.org/10.1021/op500305s]
[4]
Baldessari, A.; Mangone, C.P. One-pot biocatalyzed preparation of substituted amides as intermediates of pharmaceuticals. J. Mol. Catal., B Enzym., 2001, 11(4-6), 335-341.
[http://dx.doi.org/10.1016/S1381-1177(00)00018-7]
[5]
McMahon, J.A.; Bis, J.A.; Vishweshwar, P.; Shattock, T.R.; McLaughlin, O.L.; Zaworotko, M.J. Crystal engineering of the composition of pharmaceutical phases. 3. Primary amide supramolecular heterosynthons and their role in the design of pharmaceutical co-crystals. Z. Kristallogr. Cryst. Mater., 2005, 220(4), 340-350.
[http://dx.doi.org/10.1524/zkri.220.4.340.61624]
[6]
Crochet, P.; Cadierno, V. Catalytic synthesis of amides via aldoximes rearrangement. Chem. Commun. (Camb.), 2015, 51(13), 2495-2505.
[http://dx.doi.org/10.1039/C4CC08684H] [PMID: 25503254]
[7]
Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Catalytic amide formation from non-activated carboxylic acids and amines. Chem. Soc. Rev., 2014, 43(8), 2714-2742.
[http://dx.doi.org/10.1039/C3CS60345H] [PMID: 24430887]
[8]
Lanigan, R.M.; Sheppard, T.D. Recent developments in amide synthesis: Direct amidation of carboxylic acids and transamidation reactions. Eur. J. Org. Chem., 2013, 2013(33), 7453-7465.
[http://dx.doi.org/10.1002/ejoc.201300573]
[9]
Quistad, G.B.; Sparks, S.E.; Casida, J.E. Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides. Toxicol. Appl. Pharmacol., 2001, 173(1), 48-55.
[http://dx.doi.org/10.1006/taap.2001.9175] [PMID: 11350214]
[10]
Shaabani, A.; Soleimani, E.; Rezayan, A.H. A novel approach for the synthesis of aryl amides. Tetrahedron Lett., 2007, 48(35), 6137-6141.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.136]
[11]
Alcantara, R.; Amores, J.; Canoira, L.; Fidalgo, E.; Franco, M.J.; Navarro, A. Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass Bioenergy, 2000, 18(6), 515-527.
[http://dx.doi.org/10.1016/S0961-9534(00)00014-3]
[12]
Xu, R.; Guo, M.; Wang, J.; Zhang, Q.; Zhong, J. Fabrication of solvent-resistant copolyimide membranes for pervaporation recovery of amide solvents. Chem. Eng. Technol., 2018, 41(2), 337-344.
[http://dx.doi.org/10.1002/ceat.201600660]
[13]
Natarajan, A.; Wang, K.; Ramamurthy, V.; Scheffer, J.R.; Patrick, B. Control of enantioselectivity in the photochemical conversion of α-oxoamides into β-lactam derivatives. Org. Lett., 2002, 4(9), 1443-1446.
[http://dx.doi.org/10.1021/ol025700i] [PMID: 11975599]
[14]
Hu, D-Y.; Wan, Q-Q.; Yang, S.; Song, B.A.; Bhadury, P.S.; Jin, L.H.; Yan, K.; Liu, F.; Chen, Z.; Xue, W. Synthesis and antiviral activities of amide derivatives containing the α-aminophosphonate moiety. J. Agric. Food Chem., 2008, 56(3), 998-1001.
[http://dx.doi.org/10.1021/jf072394k] [PMID: 18183949]
[15]
Miyakado, M.; Nakayama, I.; Ohno, N. Insecticidal unsaturated isobutylamides. ACS Symposium Series, 1989, pp. 173-187.
[http://dx.doi.org/10.1021/bk-1989-0387.ch013]
[16]
Kay-Shoemake, J.L.; Watwood, M.E.; Sojka, R.E.; Lentz, R.D. Soil amidase activity in polyacrylamide-treated soils and potential activity toward common amide-containing pesticides. Biol. Fertil. Soils, 2000, 31(2), 183-186.
[http://dx.doi.org/10.1007/s003740050643]
[17]
Chandra, P. Recent advancement in the copper mediated synthesis of heterocyclic amides as important pharmaceutical and agrochemicals. ChemistrySelect, 2021, 6(38), 10274-10322.
[http://dx.doi.org/10.1002/slct.202103035]
[18]
Wang, S-P.; Cheung, C.W.; Ma, J-A. Direct amidation of carboxylic acids with nitroarenes. J. Org. Chem., 2019, 84(21), 13922-13934.
[http://dx.doi.org/10.1021/acs.joc.9b02068] [PMID: 31591886]
[19]
Wang, Z-J.; Gao, Y.; Hou, Y-L.; Zhang, C.; Yu, S-J.; Bian, Q.; Li, Z-M.; Zhao, W-G. Design, synthesis, and fungicidal evaluation of a series of novel 5-methyl-1H-1,2,3-trizole-4-carboxyl amide and ester analogues. Eur. J. Med. Chem., 2014, 86, 87-94.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.029] [PMID: 25147150]
[20]
Wu, Z.; Du, Y.; Zhou, Q.; Chen, L. One pot solvothermal synthesis of novel fluorescent phloem-mobile phenylpyrazole amide pesticides fused olefin moieties to enhance insecticidal bioactivities and photodegradation properties. Pestic. Biochem. Physiol., 2020, 163, 51-63.
[http://dx.doi.org/10.1016/j.pestbp.2019.10.003] [PMID: 31973870]
[21]
Deming, T.J. Synthetic polypeptides for biomedical applications. Prog. Polym. Sci., 2007, 32(8-9), 858-875.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.010]
[22]
Wang, Q.; Yao, Z.; Zhao, C.; Verhallen, T.; Tabor, D.P.; Liu, M.; Ooms, F.; Kang, F.; Aspuru-Guzik, A.; Hu, Y-S.; Wagemaker, M.; Li, B. Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat. Commun., 2020, 11(1), 4188.
[http://dx.doi.org/10.1038/s41467-020-17976-x] [PMID: 32826904]
[23]
Reddy, K.R.; Maheswari, C.U.; Venkateshwar, M.; Kantam, M.L. Oxidative amidation of aldehydes and alcohols with primary amines catalyzed by KI-TBHP. Eur. J. Org. Chem., 2008, 2008(21), 3619-3622.
[http://dx.doi.org/10.1002/ejoc.200800454]
[24]
Guo, X.; Facchetti, A.; Marks, T.J. Imide- and amide-functionalized polymer semiconductors. Chem. Rev., 2014, 114(18), 8943-9021.
[http://dx.doi.org/10.1021/cr500225d] [PMID: 25181005]
[25]
Díaz, A.; Katsarava, R.; Puiggalí, J. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: From polyesters to poly(ester amide)s. Int. J. Mol. Sci., 2014, 15(5), 7064-7123.
[http://dx.doi.org/10.3390/ijms15057064] [PMID: 24776758]
[26]
Huang, B-Q.; Tang, Y-J.; Zeng, Z-X.; Xu, Z-L. Microwave heating assistant preparation of high permselectivity polypiperazine-amide nanofiltration membrane during the interfacial polymerization process with low monomer concentration. J. Membr. Sci., 2020, 596, 117718.
[http://dx.doi.org/10.1016/j.memsci.2019.117718]
[27]
Yu, C.; Mosbach, K. Molecular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymers. J. Org. Chem., 1997, 62(12), 4057-4064.
[http://dx.doi.org/10.1021/jo961784v]
[28]
Scoggins, M.W.; Miller, J.W. Determination of water-soluble polymers containing primary amide groups using the starch-triiodide method. Soc. Pet. Eng. J., 1979, 19(3), 151-154.
[http://dx.doi.org/10.2118/7664-PA]
[29]
Pattabiraman, V.R.; Bode, J.W. Rethinking amide bond synthesis. Nature, 2011, 480(7378), 471-479.
[http://dx.doi.org/10.1038/nature10702] [PMID: 22193101]
[30]
Marchetti, P.M.; Richardson, S.M.; Kariem, N.M.; Campopiano, D.J. Synthesis of N-acyl amide natural products using a versatile adenylating biocatalyst. MedChemComm, 2019, 10(7), 1192-1196.
[http://dx.doi.org/10.1039/C9MD00063A] [PMID: 31741729]
[31]
Deng, X.; Zhou, G.; Tian, J.; Srinivasan, R. Chemoselective amideforming ligation between acylsilanes and hydroxylamines under aqueous conditions. Angew. Chem. Int. Ed. Engl., 2021, 60(13), 7024-7029.
[http://dx.doi.org/10.1002/anie.202012459] [PMID: 33135292]
[32]
Allen, C.L.; Williams, J.M.J. Metal-catalysed approaches to amide bond formation. Chem. Soc. Rev., 2011, 40(7), 3405-3415.
[http://dx.doi.org/10.1039/c0cs00196a] [PMID: 21416075]
[33]
Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. Cross coupling of acyl and aminyl radicals: Direct synthesis of amides catalyzed by Bu4NI with TBHP as an oxidant. Angew. Chem. Int. Ed. Engl., 2012, 51(13), 3231-3235.
[http://dx.doi.org/10.1002/anie.201108763] [PMID: 22337620]
[34]
Csajági, C.; Borcsek, B.; Niesz, K.; Kovács, I.; Székelyhidi, Z.; Bajkó, Z.; Urge, L.; Darvas, F. High-efficiency aminocarbonylation by introducing CO to a pressurized continuous flow reactor. Org. Lett., 2008, 10(8), 1589-1592.
[http://dx.doi.org/10.1021/ol7030894] [PMID: 18358035]
[35]
Brennführer, A.; Neumann, H.; Beller, M. Palladium-catalyzed carbonylation reactions of aryl halides and related compounds. Angew. Chem. Int. Ed. Engl., 2009, 48(23), 4114-4133.
[http://dx.doi.org/10.1002/anie.200900013] [PMID: 19431166]
[36]
Peng, J-B.; Wu, F-P.; Wu, X-F. First-row transition-metal-catalyzed carbonylative transformations of carbon electrophiles. Chem. Rev., 2019, 119(4), 2090-2127.
[http://dx.doi.org/10.1021/acs.chemrev.8b00068] [PMID: 29722527]
[37]
Ishihara, K.; Yano, T. Synthesis of carboxamides by LDA-catalyzed Haller-Bauer and Cannizzaro reactions. Org. Lett., 2004, 6(12), 1983-1986.
[http://dx.doi.org/10.1021/ol0494459] [PMID: 15176799]
[38]
Szostak, M.; Aubé, J. Synthesis, structural analysis, and reactivity of bridged orthoamides by intramolecular Schmidt reaction. J. Am. Chem. Soc., 2010, 132(8), 2530-2531.
[http://dx.doi.org/10.1021/ja910654t] [PMID: 20128606]
[39]
Soellner, M.B.; Nilsson, B.L.; Raines, R.T. Reaction mechanism and kinetics of the traceless Staudinger ligation. J. Am. Chem. Soc., 2006, 128(27), 8820-8828.
[http://dx.doi.org/10.1021/ja060484k] [PMID: 16819875]
[40]
Leung, C.H.; Voutchkova, A.M.; Crabtree, R.H.; Balcells, D.; Eisenstein, O. Atom economic synthesis of amides via transition metal catalyzed rearrangement of oxaziridines. Green Chem., 2007, 9(9), 976-979.
[http://dx.doi.org/10.1039/b706164a]
[41]
Li, J.; Xu, F.; Zhang, Y.; Shen, Q. Heterobimetallic lanthanide/sodium phenoxides: Efficient catalysts for amidation of aldehydes with amines. J. Org. Chem., 2009, 74(6), 2575-2577.
[http://dx.doi.org/10.1021/jo802617d] [PMID: 19209872]
[42]
Xie, P.; Xia, C.; Huang, H. Palladium-catalyzed oxidative aminocarbonylation: A new entry to amides via C-H activation. Org. Lett., 2013, 15(13), 3370-3373.
[http://dx.doi.org/10.1021/ol401419u] [PMID: 23772652]
[43]
Schoenberg, A.; Bartoletti, I.; Heck, R.F. Palladium-catalyzed carboalkoxylation of aryl, benzyl, and vinylic halides. J. Org. Chem., 1974, 39(23), 3318-3326.
[http://dx.doi.org/10.1021/jo00937a003]
[44]
Schoenberg, A.; Heck, R.F. Palladium-catalyzed amidation of aryl, heterocyclic, and vinylic halides. J. Org. Chem., 1974, 39(23), 3327-3331.
[http://dx.doi.org/10.1021/jo00937a004]
[45]
Kannaboina, P.; Raina, G.; Anil Kumar, K.; Das, P. Palladium-catalyzed aminocarbonylation of halo-substituted 7-azaindoles and other heteroarenes using chloroform as a carbon monoxide source. Chem. Commun. (Camb.), 2017, 53(68), 9446-9449.
[http://dx.doi.org/10.1039/C7CC04339B] [PMID: 28795693]
[46]
Wannberg, J.; Larhed, M. Increasing rates and scope of reactions: Sluggish amines in microwave-heated aminocarbonylation reactions under air. J. Org. Chem., 2003, 68(14), 5750-5753.
[http://dx.doi.org/10.1021/jo034382d] [PMID: 12839476]
[47]
Wan, Y.; Alterman, M.; Larhed, M.; Hallberg, A. Dimethylformamide as a carbon monoxide source in fast palladium-catalyzed aminocarbonylations of aryl bromides. J. Org. Chem., 2002, 67(17), 6232-6235.
[http://dx.doi.org/10.1021/jo025965a] [PMID: 12182668]
[48]
Hosoi, K.; Nozaki, K.; Hiyama, T. Carbon monoxide free aminocarbonylation of aryl and alkenyl iodides using DMF as an amide source. Org. Lett., 2002, 4(17), 2849-2851.
[http://dx.doi.org/10.1021/ol026236k] [PMID: 12182571]
[49]
Wan, Y.; Alterman, M.; Larhed, M.; Hallberg, A. Formamide as a combined ammonia synthon and carbon monoxide source in fast palladium-catalyzed aminocarbonylations of aryl halides. J. Comb. Chem., 2003, 5(2), 82-84.
[http://dx.doi.org/10.1021/cc0200843] [PMID: 12625696]
[50]
Hermange, P.; Lindhardt, A.T.; Taaning, R.H.; Bjerglund, K.; Lupp, D.; Skrydstrup, T. Ex situ generation of stoichiometric and substoichiometric 12CO and 13CO and its efficient incorporation in palladium catalyzed aminocarbonylations. J. Am. Chem. Soc., 2011, 133(15), 6061-6071.
[http://dx.doi.org/10.1021/ja200818w] [PMID: 21446732]
[51]
Li, H.; Neumann, H.; Beller, M.; Wu, X.F. Aryl formate as bifunctional reagent: Applications in palladium-catalyzed carbonylative coupling reactions using in situ generated CO. Angew. Chem. Int. Ed. Engl., 2014, 53(12), 3183-3186.
[http://dx.doi.org/10.1002/anie.201311198] [PMID: 24677435]
[52]
Friis, S.D.; Taaning, R.H.; Lindhardt, A.T.; Skrydstrup, T. Silacarboxylic acids as efficient carbon monoxide releasing molecules: Synthesis and application in palladium-catalyzed carbonylation reactions. J. Am. Chem. Soc., 2011, 133(45), 18114-18117.
[http://dx.doi.org/10.1021/ja208652n] [PMID: 22014278]
[53]
Cunico, R.F.; Pandey, R.K. Palladium-catalyzed conversion of benzylic and allylic halides into α-aryl and βγ-unsaturated tertiary amides by the use of a carbamoylsilane. J. Org. Chem., 2005, 70(22), 9048-9050.
[http://dx.doi.org/10.1021/jo0512406] [PMID: 16238350]
[54]
Skoda-Földes, R.R.; Kollár, L. Palladium-catalyzed aminocarbonylation of iodoalkenes and iodoarenes. Lett. Org. Chem., 2010, 7(8), 621-633.
[http://dx.doi.org/10.2174/157017810793811650]
[55]
Wu, X-F.; Neumann, H.; Beller, M. Selective palladium-catalyzed aminocarbonylation of aryl halides with CO and ammonia. Chemistry, 2010, 16(32), 9750-9753.
[http://dx.doi.org/10.1002/chem.201000090] [PMID: 20486104]
[56]
Wu, X-F.; Neumann, H.; Beller, M. Development of a second generation palladium catalyst system for the aminocarbonylation of aryl halides with CO and ammonia. Chem. Asian J., 2010, 5(10), 2168-2172.
[http://dx.doi.org/10.1002/asia.201000418] [PMID: 20672283]
[57]
Nielsen, D.U.; Taaning, R.H.; Lindhardt, A.T.; Gøgsig, T.M.; Skrydstrup, T. Palladium-catalyzed approach to primary amides using nongaseous precursors. Org. Lett., 2011, 13(16), 4454-4457.
[http://dx.doi.org/10.1021/ol201808y] [PMID: 21790124]
[58]
Buscemi, G.; Miller, P.W.; Kealey, S.; Gee, A.D.; Long, N.J.; Passchier, J.; Vilar, R. Rapid carbonylative coupling reactions using palladium(I) dimers: Applications to 11CO-radiolabelling for the synthesis of PET tracers. Org. Biomol. Chem., 2011, 9(9), 3499-3503.
[http://dx.doi.org/10.1039/c1ob05268c] [PMID: 21431235]
[59]
Bjerglund, K.; Lindhardt, A.T.; Skrydstrup, T. Palladium-catalyzed N-acylation of monosubstituted ureas using near-stoichiometric carbon monoxide. J. Org. Chem., 2012, 77(8), 3793-3799.
[http://dx.doi.org/10.1021/jo3000767] [PMID: 22458554]
[60]
Fang, W.; Deng, Q.; Xu, M.; Tu, T. Highly efficient aminocarbonylation of iodoarenes at atmospheric pressure catalyzed by a robust acenaphthoimidazolyidene allylic palladium complex. Org. Lett., 2013, 15(14), 3678-3681.
[http://dx.doi.org/10.1021/ol401550h] [PMID: 23829496]
[61]
Xu, T.; Alper, H. Pd-catalyzed chemoselective carbonylation of aminophenols with iodoarenes: Alkoxycarbonylation vs aminocarbonylation. J. Am. Chem. Soc., 2014, 136(49), 16970-16973.
[http://dx.doi.org/10.1021/ja508588b] [PMID: 25283812]
[62]
Gadge, S.T.; Bhanage, B.M. Pd(OAc)2/DABCO as an efficient and phosphine-free catalytic system for the synthesis of single and double Weinreb amides by the aminocarbonylation of aryl iodides. Org. Biomol. Chem., 2014, 12(30), 5727-5732.
[http://dx.doi.org/10.1039/C4OB00729H] [PMID: 24967832]
[63]
Paluru, D.K.; Dey, S.; Chaudhari, K.R.; Khedkar, M.V.; Bhanage, B.M.; Jain, V.K. Palladium(II) chalcogenolate complexes as catalysts for C-C cross-coupling and carbonylative Suzuki coupling reactions. Tetrahedron Lett., 2014, 55(18), 2953-2956.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.101]
[64]
Gadge, S.T.; Bhanage, B.M. A phosphine-free approach to primary amides by palladium-catalyzed aminocarbonylation of aryl and heteroaryl iodides using methoxylamine hydrochloride as an ammonia equivalent. Synlett, 2014, 25, 85-88.
[65]
Friis, S.D.; Skrydstrup, T.; Buchwald, S.L. Mild Pd-catalyzed aminocarbonylation of (hetero)aryl bromides with a palladacycle precatalyst. Org. Lett., 2014, 16(16), 4296-4299.
[http://dx.doi.org/10.1021/ol502014b] [PMID: 25090373]
[66]
Tinnis, F.; Verho, O.; Gustafson, K.P.J.; Tai, C-W.; Bäckvall, J-E.; Adolfsson, H. Efficient palladium-catalyzed aminocarbonylation of aryl iodides using palladium nanoparticles dispersed on siliceous mesocellular foam. Chemistry, 2014, 20(20), 5885-5889.
[http://dx.doi.org/10.1002/chem.201402029] [PMID: 24687938]
[67]
Markovič, M.; Lopatka, P.; Koóš, P.; Gracza, T. Zn-mediated reduction of oxalyl chloride forming CO and its application in carbonylation reactions. Org. Lett., 2015, 17(22), 5618-5621.
[http://dx.doi.org/10.1021/acs.orglett.5b02840] [PMID: 26555577]
[68]
Carrilho, R.M.B.; Almeida, A.R.; Kiss, M.; Kollár, L.; Skoda-Földes, R. Da. browski, J.M.; Moreno, M.J.S.M.; Pereira, M.M. One-step synthesis of dicarboxamides through Pd-catalysed aminocarbonylation with diamines as N-nucleophiles. Eur. J. Org. Chem., 2015, 2015(8), 1840-1847.
[http://dx.doi.org/10.1002/ejoc.201403444]
[69]
Mane, R.S.; Sasaki, T.; Bhanage, B.M. Silica supported palladium-phosphine as a reusable catalyst for alkoxycarbonylation and aminocarbonylation of aryl and heteroaryl iodides. RSC Advances, 2015, 5(115), 94776-94785.
[http://dx.doi.org/10.1039/C5RA18692G]
[70]
Wu, X.; Shen, C.; Neumann, H. A highly-efficient palladium-catalyzed aminocarbonylation/SNAr approach to dibenzoxazepinones. Green Chem., 2015, 17(5), 2994-2999.
[http://dx.doi.org/10.1039/C5GC00427F]
[71]
Lei, Y.; Xiao, S.; Li, G.; Gu, Y.; Wu, H.; Shi, K. Mild and efficient Pd(PtBu3)2-catalyzed aminocarbonylation of aryl halides to aryl amides with high selectivity. Appl. Organomet. Chem., 2016, 31, 1-6.
[72]
Nordeman, P.; Chow, S.Y.; Odell, A.F.; Antoni, G.; Odell, L.R. Palladium-mediated 11C-carbonylations using aryl halides and cyanamide. Org. Biomol. Chem., 2017, 15(22), 4875-4881.
[http://dx.doi.org/10.1039/C7OB01064H] [PMID: 28537303]
[73]
Mane, R.S.; Bhanage, B.M. Ligand-assisted Pd-catalyzed N-dealkylative carbonylation of tertiary amines with (hetero)aryl halides to tertiary amides. Asian J. Org. Chem., 2018, 7(1), 160-164.
[http://dx.doi.org/10.1002/ajoc.201700574]
[74]
Tomé, V. A.; Calvete, M. J. F.; Vinagreiro, C. S.; Aroso, R. T.; Pereira, M. M. A new tool in the quest for biocompatible phthalocyanines: Palladium catalyzed aminocarbonylation for amide substituted phthalonitriles and illustrative phthalocyanines thereof. Catalysts, 2018, 8480/1-480/14.
[75]
Wang, J.Y.; Strom, A.E.; Hartwig, J.F. Mechanistic studies of palladium-catalyzed aminocarbonylation of aryl chlorides with carbon monoxide and ammonia. J. Am. Chem. Soc., 2018, 140(25), 7979-7993.
[http://dx.doi.org/10.1021/jacs.8b04073] [PMID: 29852736]
[76]
Aranda, B.; Moya, S.A.; Vega, A.; Valdebenito, G. RamirezLopez, S.; Aguirre, P. New palladium (II) complexes containing phosphine nitrogen ligands and their use as catalysts in aminocarbonylation reaction. Appl. Organomet. Chem., 2019, 33(4), e4709.
[http://dx.doi.org/10.1002/aoc.4709]
[77]
Rilvin-Derrick, E.; Oram, N.; Richardson, J. An efficient palladium-catalysed aminocarbonylation of benzyl chlorides. Synlett, 2020, 31(4), 369-372.
[http://dx.doi.org/10.1055/s-0039-1690786]
[78]
Gergely, M.; Benyei, A.; Kollar, L. 2-aminobenzimidazole and -benzoxazole as N-nucleophile in palladium-catalysed aminocarbonylation. Tetrahedron, 2020, 76(14), 131079-131084.
[http://dx.doi.org/10.1016/j.tet.2020.131079]
[79]
Wieckowska, A.; Fransson, R.; Odell, L.R.; Larhed, M. Microwave-assisted synthesis of Weinreb and MAP aryl amides via Pd-catalyzed Heck aminocarbonylation using Mo(CO)6 or W(CO)6. J. Org. Chem., 2011, 76(3), 978-981.
[http://dx.doi.org/10.1021/jo102151u] [PMID: 21229975]
[80]
Mane, R.S.; Nordeman, P.; Odell, L.R.; Larhed, M. Palladium-catalyzed carbonylative synthesis of N-cyanobenzamides from aryl iodides/bromides and cyanamide. Tetrahedron Lett., 2013, 54(50), 6912-6915.
[http://dx.doi.org/10.1016/j.tetlet.2013.10.040]
[81]
Babjak, M. Caletková, O.; Ďurišová, D.; Gracza, T. Iron pentacarbonyl in alkoxy- and aminocarbonylation of aromatic halides. Synlett, 2014, 25(18), 2579-2584.
[http://dx.doi.org/10.1055/s-0034-1379227]
[82]
Suresh, A.S.; Baburajan, P.; Ahmed, M. Synthesis of primary amides by aminocarbonylation of aryl/hetero halides using non-gaseous NH3 and CO sources. Tetrahedron Lett., 2015, 56(34), 4864-4867.
[http://dx.doi.org/10.1016/j.tetlet.2015.06.054]
[83]
Åkerbladh, L.; Schembri, L.S.; Larhed, M.; Odell, L.R. Palladium(0)-catalyzed carbonylative one-pot synthesis of N-acylguanidines. J. Org. Chem., 2017, 82(23), 12520-12529.
[http://dx.doi.org/10.1021/acs.joc.7b02294] [PMID: 29027801]
[84]
Li, Z.; Wang, L. Palladium-catalyzed aminocarbonylation reaction to access 1,3,4-oxadiazoles using chloroform as the carbon monoxide source. Adv. Synth. Catal., 2015, 357(16-17), 3469-3473.
[http://dx.doi.org/10.1002/adsc.201500778]
[85]
Gockel, S.N.; Hull, K.L. Chloroform as a carbon monoxide precursor: In or Ex Situ generation of co for pd-catalyzed aminocarbonylations. Org. Lett., 2015, 17(13), 3236-3239.
[http://dx.doi.org/10.1021/acs.orglett.5b01385] [PMID: 26090688]
[86]
Seo, Y-S.; Kim, D-S.; Jun, C-H. Synthesis of amides and phthalimides >via a palladium catalyzed aminocarbonylation of aryl halides with formic acid and carbodiimides. Chem. Asian J., 2016, 11(24), 3508-3512.
[http://dx.doi.org/10.1002/asia.201601421] [PMID: 27813274]
[87]
Iranpoor, N.; Panahi, F.; Roozbin, F.; Erfan, S.; Rahimi, S. Palladium-catalyzed aminocarbonylation of aryl halides with 2,4,6-Trichloro-1,3,5-triazine/formamide mixed reagent. Eur. J. Org. Chem., 2016, 2016(9), 1781-1787.
[http://dx.doi.org/10.1002/ejoc.201501607]
[88]
Sawant, D.N.; Wagh, Y.S.; Bhatte, K.D.; Bhanage, B.M. Palladium-catalyzed carbon-monoxide-free aminocarbonylation of aryl halides using N-substituted formamides as an amide source. J. Org. Chem., 2011, 76(13), 5489-5494.
[http://dx.doi.org/10.1021/jo200754v] [PMID: 21618964]
[89]
Sawant, D.N.; Wagh, Y.S.; Tambade, P.J.; Bhatte, K.D.; Bhanage, B.M. Cyanides-free cyanation of aryl halides using formamide. Adv. Synth. Catal., 2011, 353(5), 781-787.
[http://dx.doi.org/10.1002/adsc.201000807]
[90]
Tong, W.; Cao, P.; Liu, Y.; Chen, J. Synthesis of secondary aromatic amides via pd-catalyzed aminocarbonylation of aryl halides using carbamoylsilane as an amide source. J. Org. Chem., 2017, 82(21), 11603-11608.
[http://dx.doi.org/10.1021/acs.joc.7b01028] [PMID: 29027467]
[91]
Zhu, Y.; Chuanzhao, L.; Biying, A.O.; Sudarmadji, M.; Chen, A.; Tuan, D.T.; Seayad, A.M. Stabilized well-dispersed Pd(0) nanoparticles for aminocarbonylation of aryl halides. Dalton Trans., 2011, 40(36), 9320-9325.
[http://dx.doi.org/10.1039/c1dt10927h] [PMID: 21842062]
[92]
Prasad, A.V.; Biying, A.O.; Ling, W.Y.; Stubbs, L.P.; Zhu, Y. Synthesis and new application of green and recyclable cyclic poly(L-lactide)-clay hybrid. J. Polym. Sci. Part A-1. J. Polym. Sci. A Polym. Chem., 2013, 51(19), 4167-4174.
[http://dx.doi.org/10.1002/pola.26829]
[93]
Khedkar, M.V.; Sasaki, T.; Bhanage, B.M. Immobilized palladium metal-containing ionic liquid-catalyzed alkoxycarbonylation, phenoxycarbonylation, and aminocarbonylation reactions. ACS Catal., 2013, 3(3), 287-293.
[http://dx.doi.org/10.1021/cs300719r]
[94]
Du, H.; Ruan, Q.; Qi, M.; Han, W. Ligand-free pd-catalyzed double carbonylation of aryl iodides with amines to α-ketoamides under atmospheric pressure of carbon monoxide and at room temperature. J. Org. Chem., 2015, 80(15), 7816-7823.
[http://dx.doi.org/10.1021/acs.joc.5b01249] [PMID: 26140509]
[95]
Mane, R.S.; Bhanage, B.M. Pd/C-catalyzed aminocarbonylation of aryl iodides via oxidative C-N bond activation of tertiary amines to tertiary amides. J. Org. Chem., 2016, 81(3), 1223-1228.
[http://dx.doi.org/10.1021/acs.joc.5b02385] [PMID: 26756705]
[96]
Lei, Y.; Wan, Y.; Li, G.; Zhou, X.; Gu, Y.; Wang, R.; Feng, J. Palladium supported on an amphiphilic porous organic polymer: A highly efficient catalyst for aminocarbonylation reactions in water. Mater. Chem. Front., 2017, 1(8), 1541-1549.
[http://dx.doi.org/10.1039/C6QM00331A]
[97]
Mane, R.S.; Bhanage, B.M. Carbonylative tertiary amide synthesis from aryl iodides and tertiary amines via oxidant-free C-N bond cleavage catalyzed by palladium(II) chloride in polyethylene glycol/water. Adv. Synth. Catal., 2017, 359(15), 2621-2629.
[http://dx.doi.org/10.1002/adsc.201700317]
[98]
Hajipour, A-R.; Tavangar-Rizi, Z.; Iranpoor, N. Palladium-catalyzed carbonylation of aryl halides: An efficient, heterogeneous and phosphine-free catalytic system for aminocarbonylation and alkoxycarbonylation employing Mo(CO)6 as a solid carbon monoxide source. RSC Advances, 2016, 6(82), 78468-78476.
[http://dx.doi.org/10.1039/C6RA18679C]
[99]
Iranpoor, N.; Firouzabadi, H.; Rizi, Z.T.; Erfan, S. WCl6/DMF as a new reagent system for the phosphine-free Pd(0)-catalyzed aminocarbonylation of aryl halides. RSC Advances, 2014, 4(81), 43178-43182.
[http://dx.doi.org/10.1039/C4RA04673K]
[100]
Zhang, Y.; Sun, H.; Zhang, W.; Gao, Z.; Yang, P.; Gu, J.N. N-dimethylformamide solvothermal strategy: From fabrication of palladium nanoparticles supported on reduced graphene oxide nanosheets to their application in catalytic aminocarbonylation reactions. Appl. Catal., 2015, 496, 9-16.
[101]
Bal Reddy, C.; Ram, S.; Kumar, A.; Bharti, R.; Das, P. Supported palladium nanoparticles that catalyze aminocarbonylation of aryl halides with amines using oxalic acid as a sustainable CO source. Chemistry, 2019, 25(16), 4067-4071.
[http://dx.doi.org/10.1002/chem.201900271] [PMID: 30730074]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy