Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Microhomology-Mediated Break-Induced Replication: A Possible Molecular Mechanism of the Formation of a Large CNV in FBN1 Gene in a Patient with Marfan Syndrome

Author(s): Gergely Buki, Kinga Hadzsiev and Judit Bene*

Volume 23, Issue 5, 2023

Published on: 01 August, 2022

Page: [433 - 441] Pages: 9

DOI: 10.2174/1566524022666220428111943

Price: $65

Abstract

Background: Marfan syndrome (MFS) is an autosomal dominant multisystem disorder caused by mutations in the fibrillin-1 gene (FBN1). A small portion of them is copy number variations (CNVs), which can occur through recombination-based, replication-based mechanisms or retrotransposition. Not many have been characterized precisely in MFS.

Methods: A female patient with suspected Marfan syndrome was referred for genetic testing at our institute. After systematic sequencing of FBN1, TGFBR1, and TGFBR2 genes, multiplex ligation-dependent probe amplification was applied. Long-range PCR, subsequent Sanger sequencing with designed primers, and preliminary in silico analysis were applied for the precise characterization of the breakpoints.

Results: Primary analysis displayed a de novo large deletion affecting exons 46 and 47 in the FBN1 gene, which resulted in the loss of the 31st and 32nd calcium-binding EGFlike domains. Further examination of the breakpoints showed a 4916 nucleotide long deletion localized in intronic regions. Surprisingly a ‘TG’ dinucleotide insertion was detected at the junction. We hypothesize that the CNV formation was generated by a rare event based on the known microhomology-mediated break-induced replication (MMBIR).

Conclusion: An increasing number of CNVs are associated with Mendelian diseases and other traits. Approximately 2-7% of the cases in MFS are caused by CNVs. Up to date, hardly any model was proposed to demonstrate the formation of these genomic rearrangements in the FBN1 gene. Hereby, with the help of previous models and breakpoint analysis, we presented a potential mechanism (based on MMBIR) in the formation of this large deletion.

Keywords: MMBIR, Marfan syndrome, FBN1 gene, CNV, genomic rearrangement, breakpoint analyses.

[1]
Judge DP, Dietz HC. Marfan’s syndrome. Lancet 2005; 366(9501): 1965-76.
[http://dx.doi.org/10.1016/S0140-6736(05)67789-6] [PMID: 16325700]
[2]
Adams JN, Trent RJ. Aortic complications of Marfan’s syndrome. Lancet 1998; 352(9142): 1722-3.
[http://dx.doi.org/10.1016/S0140-6736(05)79822-6] [PMID: 9848345]
[3]
Sakai LY, Keene DR, Renard M, De Backer J. FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene 2016; 591(1): 279-91.
[http://dx.doi.org/10.1016/j.gene.2016.07.033] [PMID: 27437668]
[4]
Mizuguchi T, Collod-Beroud G, Akiyama T, et al. Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet 2004; 36(8): 855-60.
[http://dx.doi.org/10.1038/ng1392] [PMID: 15235604]
[5]
Chung BH, Lam ST, Tong TM, et al. Identification of novel FBN1 and TGFBR2 mutations in 65 probands with Marfan syndrome or Marfan-like phenotypes. Am J Med Genet A 2009; 149A(7): 1452-9.
[http://dx.doi.org/10.1002/ajmg.a.32918] [PMID: 19533785]
[6]
Lerner-Ellis JP, Aldubayan SH, Hernandez AL, et al. The spectrum of FBN1, TGFβR1, TGFβR2 and ACTA2 variants in 594 individuals with suspected Marfan syndrome, Loeys-Dietz syndrome or Thoracic Aortic Aneurysms and Dissections (TAAD). Mol Genet Metab 2014; 112(2): 171-6.
[http://dx.doi.org/10.1016/j.ymgme.2014.03.011] [PMID: 24793577]
[7]
Mátyás G, Alonso S, Patrignani A, et al. Large genomic fibrillin-1 (FBN1) gene deletions provide evidence for true haploinsufficiency in Marfan syndrome. Hum Genet 2007; 122(1): 23-32.
[http://dx.doi.org/10.1007/s00439-007-0371-x] [PMID: 17492313]
[8]
Li J, Wu W, Lu C, et al. Gross deletions in FBN1 results in variable phenotypes of Marfan syndrome. Clin Chim Acta 2017; 474: 54-9.
[http://dx.doi.org/10.1016/j.cca.2017.08.023] [PMID: 28842177]
[9]
Furtado LV, Wooderchak-Donahue W, Rope AF, et al. Characterization of large genomic deletions in the FBN1 gene using multiplex ligation-dependent probe amplification. BMC Med Genet 2011; 12: 119.
[http://dx.doi.org/10.1186/1471-2350-12-119] [PMID: 21936929]
[10]
Benke K, Ágg B, Meienberg J, et al. Hungarian Marfan family with large FBN1 deletion calls attention to copy number variation detection in the current NGS era. J Thorac Dis 2018; 10(4): 2456-60.
[http://dx.doi.org/10.21037/jtd.2018.04.40] [PMID: 29850152]
[11]
Yang H, Ma Y, Luo M, et al. Identification of gross deletions in FBN1 gene by MLPA. Hum Genomics 2018; 12(1): 46.
[http://dx.doi.org/10.1186/s40246-018-0178-y] [PMID: 30286810]
[12]
Mills RE, Walter K, Stewart C, et al. Mapping copy number variation by population-scale genome sequencing. Nature 2011; 470(7332): 59-65.
[http://dx.doi.org/10.1038/nature09708] [PMID: 21293372]
[13]
Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet 2006; 7(2): 85-97.
[http://dx.doi.org/10.1038/nrg1767] [PMID: 16418744]
[14]
Lupski JR. Genomic rearrangements and sporadic disease. Nat Genet 2007; 39(7) (Suppl.): S43-7.
[http://dx.doi.org/10.1038/ng2084] [PMID: 17597781]
[15]
Turner DJ, Miretti M, Rajan D, et al. Germline rates of de novo meiotic deletions and duplications causing several genomic disorders. Nat Genet 2008; 40(1): 90-5.
[http://dx.doi.org/10.1038/ng.2007.40] [PMID: 18059269]
[16]
Lupski JR. An evolution revolution provides further revelation. BioEssays 2007; 29(12): 1182-4.
[http://dx.doi.org/10.1002/bies.20686] [PMID: 18008371]
[17]
Dumas L, Kim YH, Karimpour-Fard A, et al. Gene copy number variation spanning 60 million years of human and primate evolution. Genome Res 2007; 17(9): 1266-77.
[http://dx.doi.org/10.1101/gr.6557307] [PMID: 17666543]
[18]
Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 2009; 10: 451-81.
[http://dx.doi.org/10.1146/annurev.genom.9.081307.164217] [PMID: 19715442]
[19]
Lupski JR, Stankiewicz P. Genomic disorders: Molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet 2005; 1(6): e49.
[http://dx.doi.org/10.1371/journal.pgen.0010049] [PMID: 16444292]
[20]
Kazazian HH Jr, Moran JV. The impact of L1 retrotransposons on the human genome. Nat Genet 1998; 19(1): 19-24.
[http://dx.doi.org/10.1038/ng0598-19] [PMID: 9590283]
[21]
Korbel JO, Urban AE, Affourtit JP, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 2007; 318(5849): 420-6.
[http://dx.doi.org/10.1126/science.1149504] [PMID: 17901297]
[22]
Benson G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res 1999; 27(2): 573-80.
[http://dx.doi.org/10.1093/nar/27.2.573] [PMID: 9862982]
[23]
Xie X, Liu W, Dong G, Zhu Q, Liu YG. MMEJ-KO: A web tool for designing paired CRISPR guide RNAs for microhomology-mediated end joining fragment deletion. Sci China Life Sci 2021; 64(6): 1021-4.
[http://dx.doi.org/10.1007/s11427-020-1797-3] [PMID: 32996045]
[24]
Smit A, Hubley R, Green P. RepeatMasker Open-4.0. 2013.
[25]
Goios A, Meirinhos J, Rocha R, Lopes R, Amorim A, Pereira L. RepeatAround: A software tool for finding and visualizing repeats in circular genomes and its application to a human mtDNA database. Mitochondrion 2006; 6(4): 218-24.
[http://dx.doi.org/10.1016/j.mito.2006.06.001] [PMID: 16854633]
[26]
Kikin O, D’Antonio L, Bagga PS. QGRS Mapper: A web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res 2006; 34 (Suppl_2): W676-82.
[27]
Zhang F, Khajavi M, Connolly AM, Towne CF, Batish SD, Lupski JR. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat Genet 2009; 41(7): 849-53.
[http://dx.doi.org/10.1038/ng.399] [PMID: 19543269]
[28]
Gu W, Zhang F, Lupski JR. Mechanisms for human genomic rearrangements. PathoGenetics 2008; 1(1): 4.
[http://dx.doi.org/10.1186/1755-8417-1-4] [PMID: 19014668]
[29]
Plesser Duvdevani M, Pettersson M, Eisfeldt J, et al. Whole-genome sequencing reveals complex chromosome rearrangement disrupting NIPBL in infant with Cornelia de Lange syndrome. Am J Med Genet A 2020; 182(5): 1143-51.
[http://dx.doi.org/10.1002/ajmg.a.61539] [PMID: 32125084]
[30]
Lieber MR. The mechanism of human nonhomologous DNA end joining. J Biol Chem 2008; 283(1): 1-5.
[http://dx.doi.org/10.1074/jbc.R700039200] [PMID: 17999957]
[31]
Shaw CJ, Lupski JR. Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms. Hum Genet 2005; 116(1-2): 1-7.
[http://dx.doi.org/10.1007/s00439-004-1204-9] [PMID: 15526218]
[32]
Toffolatti L, Cardazzo B, Nobile C, et al. Investigating the mechanism of chromosomal deletion: Characterization of 39 deletion breakpoints in introns 47 and 48 of the human dystrophin gene. Genomics 2002; 80(5): 523-30.
[http://dx.doi.org/10.1006/geno.2002.6861] [PMID: 12408970]
[33]
Nobile C, Toffolatti L, Rizzi F, et al. Analysis of 22 deletion breakpoints in dystrophin intron 49. Hum Genet 2002; 110(5): 418-21.
[http://dx.doi.org/10.1007/s00439-002-0721-7] [PMID: 12073011]
[34]
Ekundayo B, Bleichert F. Origins of DNA replication. PLoS Genet 2019; 15(9): e1008320.
[http://dx.doi.org/10.1371/journal.pgen.1008320] [PMID: 31513569]
[35]
García-Muse T, Aguilera A. Transcription-replication conflicts: How they occur and how they are resolved. Nat Rev Mol Cell Biol 2016; 17(9): 553-63.
[http://dx.doi.org/10.1038/nrm.2016.88] [PMID: 27435505]
[36]
Lee JA, Carvalho CM, Lupski JR. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 2007; 131(7): 1235-47.
[http://dx.doi.org/10.1016/j.cell.2007.11.037] [PMID: 18160035]
[37]
Hastings PJ, Lupski JR, Rosenberg SM, Ira G. Mechanisms of change in gene copy number. Nat Rev Genet 2009; 10(8): 551-64.
[http://dx.doi.org/10.1038/nrg2593] [PMID: 19597530]
[38]
Hastings PJ, Ira G, Lupski JR. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 2009; 5(1): e1000327.
[http://dx.doi.org/10.1371/journal.pgen.1000327] [PMID: 19180184]
[39]
Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat Cell Biol 2014; 16(1): 2-9.
[http://dx.doi.org/10.1038/ncb2897] [PMID: 24366029]
[40]
Ottaviani D, LeCain M, Sheer D. The role of microhomology in genomic structural variation. Trends Genet 2014; 30(3): 85-94.
[http://dx.doi.org/10.1016/j.tig.2014.01.001] [PMID: 24503142]
[41]
Tokoro M, Tamura S, Suzuki N, et al. Aberrant X chromosomal rearrangement through multi-step template switching during sister chromatid formation in a patient with severe hemophilia A. Mol Genet Genomic Med 2020; 8(9): e1390.
[http://dx.doi.org/10.1002/mgg3.1390] [PMID: 32627361]
[42]
Beck CR, Carvalho CMB, Akdemir ZC, et al. Megabase length hypermutation accompanies human structural variation at 17p11.2. Cell 2019; 176(6): 1310-1324.e10.
[http://dx.doi.org/10.1016/j.cell.2019.01.045] [PMID: 30827684]
[43]
Liu P, Erez A, Nagamani SC, et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 2011; 146(6): 889-903.
[http://dx.doi.org/10.1016/j.cell.2011.07.042] [PMID: 21925314]
[44]
Redin C, Brand H, Collins RL, et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat Genet 2017; 49(1): 36-45.
[http://dx.doi.org/10.1038/ng.3720] [PMID: 27841880]
[45]
Blyth M, Foulds N, Turner C, Bunyan D. Severe Marfan syndrome due to FBN1 exon deletions. Am J Med Genet A 2008; 146A(10): 1320-4.
[http://dx.doi.org/10.1002/ajmg.a.32229] [PMID: 18412115]
[46]
Apitz C, Mackensen-Haen S, Girisch M, et al. Neonatal Marfan syndrome: Unusually large deletion of exons 24-26 of FBN1 associated with poor prognosis. Klin Padiatr 2010; 222(4): 261-3.
[http://dx.doi.org/10.1055/s-0030-1247510] [PMID: 20455198]
[47]
Pees C, Michel-Behnke I, Hagl M, Laccone F. Detection of 15 novel mutations in 52 children from 40 families with the Marfan or Loeys-Dietz syndrome and phenotype-genotype correlations. Clin Genet 2014; 86(6): 552-7.
[http://dx.doi.org/10.1111/cge.12314] [PMID: 24199744]
[48]
Yoo EH, Woo H, Ki CS, et al. Clinical and genetic analysis of Korean patients with Marfan syndrome: Possible ethnic differences in clinical manifestation. Clin Genet 2010; 77(2): 177-82.
[http://dx.doi.org/10.1111/j.1399-0004.2009.01287.x] [PMID: 19863550]
[49]
Liu W, Schrijver I, Brenn T, Furthmayr H, Francke U. Multi-exon deletions of the FBN1 gene in Marfan syndrome. BMC Med Genet 2001; 2: 11.
[http://dx.doi.org/10.1186/1471-2350-2-11] [PMID: 11710961]
[50]
Voermans Nc, Timmermans J, van Alfen N, et al. Neuromuscular features in Marfan syndrome. Clin Genet 2009; 76(1): 25-37.
[http://dx.doi.org/10.1111/j.1399-0004.2009.01197.x] [PMID: 19659760]
[51]
Singh KK, Elligsen D, Liersch R, et al. Multi-exon out of frame deletion of the FBN1 gene leading to a severe juvenile onset cardiovascular phenotype in Marfan syndrome. J Mol Cell Cardiol 2007; 42(2): 352-6.
[http://dx.doi.org/10.1016/j.yjmcc.2006.11.006] [PMID: 17189636]
[52]
Kainulainen K, Sakai LY, Child A, et al. Two mutations in Marfan syndrome resulting in truncated fibrillin polypeptides. Proc Natl Acad Sci USA 1992; 89(13): 5917-21.
[http://dx.doi.org/10.1073/pnas.89.13.5917] [PMID: 1631074]
[53]
McInerney-Leo AM, Marshall MS, Gardiner B, et al. Whole exome sequencing is an efficient, sensitive and specific method of mutation detection in osteogenesis imperfecta and Marfan syndrome. Bonekey Rep 2013; 2: 456.
[http://dx.doi.org/10.1038/bonekey.2013.190] [PMID: 24501682]
[54]
Loeys B, Nuytinck L, Delvaux I, De Bie S, De Paepe A. Genotype and phenotype analysis of 171 patients referred for molecular study of the fibrillin-1 gene FBN1 because of suspected Marfan syndrome. Arch Intern Med 2001; 161(20): 2447-54.
[http://dx.doi.org/10.1001/archinte.161.20.2447] [PMID: 11700157]
[55]
Ogawa N, Imai Y, Takahashi Y, et al. Evaluating Japanese patients with the Marfan syndrome using high-throughput microarray-based mutational analysis of fibrillin-1 gene. Am J Cardiol 2011; 108(12): 1801-7.
[http://dx.doi.org/10.1016/j.amjcard.2011.07.053] [PMID: 21907952]
[56]
LU Xin-xin HX-l, WANG Ren, CHEN Xi-jun, et al. Detection of deletion mutations of FBN1 in two patients with Marfan syndrome using Next Generation Sequencing (NGS) and Multiplex Ligation-Dependent Probe Amplification (MLPA) technique. Chin J Clin Lab Sci 2015; 10: 744-7.
[57]
Weidenbach M, Brenner R, Rantamäki T, Redel DA. Acute mitral regurgitation due to chordal rupture in a patient with neonatal Marfan syndrome caused by a deletion in exon 29 of the FBN1 gene. Pediatr Cardiol 1999; 20(5): 382-5.
[http://dx.doi.org/10.1007/s002469900493] [PMID: 10441700]
[58]
Wooderchak-Donahue W, VanSant-Webb C, Tvrdik T, et al. Clinical utility of a next generation sequencing panel assay for Marfan and Marfan-like syndromes featuring aortopathy. Am J Med Genet A 2015; 167A(8): 1747-57.
[http://dx.doi.org/10.1002/ajmg.a.37085] [PMID: 25944730]
[59]
Hung CC, Lin SY, Lee CN, et al. Mutation spectrum of the fibrillin-1 (FBN1) gene in Taiwanese patients with Marfan syndrome. Ann Hum Genet 2009; 73(Pt 6): 559-67.
[http://dx.doi.org/10.1111/j.1469-1809.2009.00545.x] [PMID: 19839986]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy