Research Article

微RNA在急慢性心力衰竭中的差异表达

卷 29, 期 30, 2022

发表于: 08 June, 2022

页: [5130 - 5138] 页: 9

弟呕挨: 10.2174/0929867329666220426095655

价格: $65

摘要

背景:MicroRNA在转录后水平上修饰蛋白质表达,其循环水平可能有助于识别潜在的分子途径。 目的:评估慢性和急性心力衰竭(HF)中与心肌细胞能量底物、自噬和缺血相关的microRNA的差异表达。 方法:在这项病例对照研究中,我们研究了19例急性HF(AHF)患者和19例慢性HF(CHF)患者。在患者抵达时,48小时和120小时从患者那里收集基本人口统计学和临床特征。在所有研究点收集用于microRNA测量(miR-22,-92a和-499),B型利钠肽(BNP),C反应蛋白和高灵敏度心脏肌钙蛋白I的血液样品。在这项研究中,我们纳入了左心室射血分数为<40%的受试者。 结果:基线时,与充血性心力衰竭相比,AHF的循环miR-22水平高出1.9倍(p<0.001),miR-92a水平高出1.25倍(p=0.003),miR-499水平低5倍(p<0.001)。有趣的是,发现循环miR-499与BNP水平相关(r = 0.47,p = 0.01)。在随访时,所有三种检查的微RNA(miR-22,p = 0.001,miR-92a,p = 0.001和miR-499,p<0.001)的水平逐步增加,但对于CHF受试者则没有 结论:MicroRNA -22、-92a和-499在慢性和急性HF受试者中差异表达。MicroRNA特征也被差异化地表达到患者的出院。这些发现可能对慢性和急性心力衰竭患者的诊断、进展和治疗具有重要意义。

关键词: 急性心力衰竭,miRNA,B型利钠肽,生物标志物,差异表达,慢性心力衰竭。

[1]
McDonagh, T.A. Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; Cleland, J.G.F.; Coats, A.J.S.; Crespo-Leiro, M.G.; Farmakis, D.; Gilard, M.; Heymans, S.; Hoes, A.W.; Jaarsma, T.; Jankowska, E.A.; Lainscak, M.; Lam, C.S.P.; Lyon, A.R.; McMurray, J.J.V.; Mebazaa, A.; Mindham, R.; Muneretto, C.; Francesco Piepoli, M.; Price, S.; Rosano, G.M.C.; Ruschitzka, F.; Kathrine Skibelund, A.; Group, E.S.C.S.D. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J., 2021, 42(36), 3599-3726.
[http://dx.doi.org/10.1093/eurheartj/ehab368] [PMID: 34447992]
[2]
Fonarow, G.C.; Abraham, W.T.; Albert, N.M.; Stough, W.G.; Gheorghiade, M.; Greenberg, B.H.; O’Connor, C.M.; Pieper, K.; Sun, J.L.; Yancy, C.W.; Young, J.B. OPTIMIZE-HF Investigators and Hospitals. Factors identified as precipitating hospital admissions for heart failure and clinical outcomes: Findings from OPTIMIZE-HF. Arch. Intern. Med., 2008, 168(8), 847-854.
[http://dx.doi.org/10.1001/archinte.168.8.847] [PMID: 18443260]
[3]
Miró, Ò.; García Sarasola, A.; Fuenzalida, C.; Calderón, S.; Jacob, J.; Aguirre, A.; Wu, D.M.; Rizzi, M.A.; Malchair, P.; Haro, A.; Her-rera, S.; Gil, V.; Martín-Sánchez, F.J.; Llorens, P.; Herrero Puente, P.; Bueno, H.; Domínguez Rodríguez, A.; Müller, C.E.; Mebazaa, A.; Chioncel, O.; Alquézar-Arbé, A. ICA-SEMES Research Group. Departments involved during the first episode of acute heart failure and subsequent emergency department revisits and rehospitalisations: An outlook through the NOVICA cohort. Eur. J. Heart Fail., 2019, 21(10), 1231-1244.
[http://dx.doi.org/10.1002/ejhf.1567] [PMID: 31389111]
[4]
Chioncel, O.; Mebazaa, A.; Maggioni, A.P.; Harjola, V.P.; Rosano, G.; Laroche, C.; Piepoli, M.F.; Crespo-Leiro, M.G.; Lainscak, M.; Ponikowski, P.; Filippatos, G.; Ruschitzka, F.; Seferovic, P.; Coats, A.J.S.; Lund, L.H. ESC-EORP-HFA Heart Failure Long-Term Registry Investigators Acute heart failure congestion and perfusion status - impact of the clinical classification on in-hospital and long-term outcomes; insights from the ESC-EORP-HFA Heart Failure Long-Term Registry. Eur. J. Heart Fail., 2019, 21(11), 1338-1352.
[http://dx.doi.org/10.1002/ejhf.1492] [PMID: 31127678]
[5]
Miró, Ò.; Levy, P.D.; Möckel, M.; Pang, P.S.; Lambrinou, E.; Bueno, H.; Hollander, J.E.; Harjola, V.P.; Diercks, D.B.; Gray, A.J.; DiSomma, S.; Papa, A.M.; Collins, S.P. Disposition of emergency department patients diagnosed with acute heart failure: An interna-tional emergency medicine perspective. Eur. J. Emerg. Med., 2017, 24(1), 2-12.
[http://dx.doi.org/10.1097/MEJ.0000000000000411] [PMID: 27254376]
[6]
Lee, D.S.; Stitt, A.; Austin, P.C.; Stukel, T.A.; Schull, M.J.; Chong, A.; Newton, G.E.; Lee, J.S.; Tu, J.V. Prediction of heart failure mortality in emergent care: A cohort study. Ann. Intern. Med., 2012, 156(11), 767-775.
[http://dx.doi.org/10.7326/0003-4819-156-11-201206050-00003]
[7]
Nguyen, H.M.; Nguyen, T.D.; Nguyen, T.L.; Nguyen, T.A. Orientation of human microprocessor on primary microRNAs. Biochemistry, 2019, 58(4), 189-198.
[http://dx.doi.org/10.1021/acs.biochem.8b00944] [PMID: 30481000]
[8]
Baumjohann, D.; Heissmeyer, V. Posttranscriptional gene regulation of T follicular helper cells by RNA-binding proteins and mi-croRNAs. Front. Immunol., 2018, 9, 1794.
[http://dx.doi.org/10.3389/fimmu.2018.01794] [PMID: 30108596]
[9]
Selbach, M.; Schwanhäusser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. Nature, 2008, 455(7209), 58-63.
[http://dx.doi.org/10.1038/nature07228] [PMID: 18668040]
[10]
Oliveira-Carvalho, V.; Carvalho, V.O.; Silva, M.M.; Guimarães, G.V.; Bocchi, E.A. MicroRNAs: A new paradigm in the treatment and diagnosis of heart failure? Arq. Bras. Cardiol., 2012, 98(4), 362-369.
[http://dx.doi.org/10.1590/S0066-782X2012000400011] [PMID: 22735911]
[11]
Oliveira-Carvalho, V.; da Silva, M.M.; Guimarães, G.V.; Bacal, F.; Bocchi, E.A. MicroRNAs: New players in heart failure. Mol. Biol. Rep., 2013, 40(3), 2663-2670.
[http://dx.doi.org/10.1007/s11033-012-2352-y] [PMID: 23242657]
[12]
Vegter, E.L.; van der Meer, P.; de Windt, L.J.; Pinto, Y.M.; Voors, A.A. MicroRNAs in heart failure: From biomarker to target for therapy. Eur. J. Heart Fail., 2016, 18(5), 457-468.
[http://dx.doi.org/10.1002/ejhf.495] [PMID: 26869172]
[13]
Huang, Z.P.; Wang, D.Z. miR-22 in cardiac remodeling and disease. Trends Cardiovasc. Med., 2014, 24(7), 267-272.
[http://dx.doi.org/10.1016/j.tcm.2014.07.005] [PMID: 25218673]
[14]
Wong, L.L.; Wang, J.; Liew, O.W.; Richards, A.M.; Chen, Y.T. MicroRNA and heart failure. Int. J. Mol. Sci., 2016, 17(4), 502.
[http://dx.doi.org/10.3390/ijms17040502] [PMID: 27058529]
[15]
Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuz-netsova, T.; Lancellotti, P.; Muraru, D.; Picard, M.H.; Rietzschel, E.R.; Rudski, L.; Spencer, K.T.; Tsang, W.; Voigt, J.U. Recommenda-tions for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European association of cardiovascular imaging. J. Am. Soc. Echocardiogr., 2015, 28(1), 1-39.e14.
[http://dx.doi.org/10.1016/j.echo.2014.10.003] [PMID: 25559473]
[16]
Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Fed-eration (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). Circulation, 2018, 138(20), e618-e651.
[http://dx.doi.org/10.1161/CIR.0000000000000617] [PMID: 30571511]
[17]
Sciarretta, S.; De Falco, E.; Frati, G.; Sadoshima, J. How to be young at heart? miR-22 as a potential therapeutic target to boost autopha-gy and protect the old myocardium. Ann. Transl. Med., 2017, 5(3), 52.
[http://dx.doi.org/10.21037/atm.2017.01.52] [PMID: 28251131]
[18]
Rogg, E.M.; Abplanalp, W.T.; Bischof, C.; John, D.; Schulz, M.H.; Krishnan, J.; Fischer, A.; Poluzzi, C.; Schaefer, L.; Bonauer, A.; Zeiher, A.M.; Dimmeler, S. Analysis of cell type-specific effects of microRNA-92a provides novel insights into target regulation and mechanism of action. Circulation, 2018, 138(22), 2545-2558.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.034598] [PMID: 30571345]
[19]
Corsten, M.F.; Dennert, R.; Jochems, S.; Kuznetsova, T.; Devaux, Y.; Hofstra, L.; Wagner, D.R.; Staessen, J.A.; Heymans, S.; Schroen, B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ. Cardiovasc. Genet., 2010, 3(6), 499-506.
[http://dx.doi.org/10.1161/CIRCGENETICS.110.957415] [PMID: 20921333]
[20]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[21]
Ponikowski, P.; Jankowska, E.A. Pathogenesis and clinical presentation of acute heart failure. Rev. Esp. Cardiol. (Engl. Ed.), 2015, 68(4), 331-337.
[http://dx.doi.org/10.1016/j.rec.2015.02.001] [PMID: 25743769]
[22]
Sullivan, R.D.; Mehta, R.M.; Tripathi, R.; Reed, G.L.; Gladysheva, I.P. Renin activity in heart failure with reduced systolic function-new insights. Renin activity in heart failure with reduced systolic function-new insights. Int. J. Mol. Sci., 2019, 20(13), E3182.
[http://dx.doi.org/10.3390/ijms20133182] [PMID: 31261774]
[23]
Florea, V.G.; Cohn, J.N. The autonomic nervous system and heart failure. Circ. Res., 2014, 114(11), 1815-1826.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302589] [PMID: 24855204]
[24]
Roberts, E.; Ludman, A.J.; Dworzynski, K.; Al-Mohammad, A.; Cowie, M.R.; McMurray, J.J.; Mant, J.; Failure, N.G.D.G.A.H. NICE Guideline Development Group for Acute Heart Failure. The diagnostic accuracy of the natriuretic peptides in heart failure: Systematic re-view and diagnostic meta-analysis in the acute care setting. BMJ, 2015, 350, h910.
[http://dx.doi.org/10.1136/bmj.h910] [PMID: 25740799]
[25]
Theofilis, P.; Vogiatzi, G.; Oikonomou, E.; Gazouli, M.; Siasos, G.; Katifelis, H.; Perrea, D.; Vavuranakis, M.; Iliopoulos, D.C.; Tsiou-fis, C.; Tousoulis, D. The effect of microRNA-126 mimic administration on vascular perfusion recovery in an animal model of hind limb ischemia. Front. Mol. Biosci., 2021, 8, 724465.
[http://dx.doi.org/10.3389/fmolb.2021.724465] [PMID: 34513927]
[26]
Theofilis, P.; Oikonomou, E.; Vogiatzi, G.; Antonopoulos, A.S.; Siasos, G.; Iliopoulos, D.C.; Perrea, D.; Tsioufis, C.; Tousoulis, D. The impact of proangiogenic microRNA modulation on blood flow recovery following hind limb ischemia. A systematic review and me-ta-analysis of animal studies. Vascul. Pharmacol., 2021, 141, 106906.
[http://dx.doi.org/10.1016/j.vph.2021.106906] [PMID: 34509635]
[27]
Zakynthinos, G.; Siasos, G.; Oikonomou, E.; Gazouli, M.; Mourouzis, K.; Zaromitidou, M.; Tsigkou, V.; Bletsa, E.; Stampouloglou, P.; Tsouroulas, S.; Marinos, G.; Vlasis, K.; Vavuranakis, M.; Stefanadis, C.; Tousoulis, D. Exploration analysis of microRNAs -146a, -19b, and -21 in patients with acute coronary syndrome. Hellenic J. Cardiol., 2021, 62(3), 260-263.
[http://dx.doi.org/10.1016/j.hjc.2020.08.002] [PMID: 32835809]
[28]
Gurha, P.; Abreu-Goodger, C.; Wang, T.; Ramirez, M.O.; Drumond, A.L.; van Dongen, S.; Chen, Y.; Bartonicek, N.; Enright, A.J.; Lee, B.; Kelm, R.J., Jr; Reddy, A.K.; Taffet, G.E.; Bradley, A.; Wehrens, X.H.; Entman, M.L.; Rodriguez, A. Targeted deletion of mi-croRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction. Circulation, 2012, 125(22), 2751-2761.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.044354] [PMID: 22570371]
[29]
Gupta, S.K.; Foinquinos, A.; Thum, S.; Remke, J.; Zimmer, K.; Bauters, C.; de Groote, P.; Boon, R.A.; de Windt, L.J.; Preissl, S.; Hein, L.; Batkai, S.; Pinet, F.; Thum, T. Preclinical development of a microrna-based therapy for elderly patients with myocardial infarction. J. Am. Coll. Cardiol., 2016, 68(14), 1557-1571.
[http://dx.doi.org/10.1016/j.jacc.2016.07.739] [PMID: 27687198]
[30]
Lopaschuk, G.D.; Karwi, Q.G.; Tian, R.; Wende, A.R.; Abel, E.D. Cardiac energy metabolism in heart failure. Circ. Res., 2021, 128(10), 1487-1513.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.318241] [PMID: 33983836]
[31]
Zhang, Y.; Cheng, J.; Chen, F.; Wu, C.; Zhang, J.; Ren, X.; Pan, Y.; Nie, B.; Li, Q.; Li, Y. Circulating endothelial microparticles and miR-92a in acute myocardial infarction. Biosci. Rep., 2017, 37(2), BSR20170047.
[http://dx.doi.org/10.1042/BSR20170047] [PMID: 28213360]
[32]
Niculescu, L.S.; Simionescu, N.; Sanda, G.M.; Carnuta, M.G.; Stancu, C.S.; Popescu, A.C.; Popescu, M.R.; Vlad, A.; Dimulescu, D.R.; Simionescu, M.; Sima, A.V. MiR-486 and miR-92a identified in circulating HDL discriminate between stable and vulnerable cor-onary artery disease patients. PLoS One, 2015, 10(10), e0140958.
[http://dx.doi.org/10.1371/journal.pone.0140958] [PMID: 26485305]
[33]
Pinchi, E.; Frati, P.; Aromatario, M.; Cipolloni, L.; Fabbri, M.; La Russa, R.; Maiese, A.; Neri, M.; Santurro, A.; Scopetti, M.; Viola, R.V.; Turillazzi, E.; Fineschi, V. miR-1, miR-499 and miR-208 are sensitive markers to diagnose sudden death due to early acute myo-cardial infarction. J. Cell. Mol. Med., 2019, 23(9), 6005-6016.
[http://dx.doi.org/10.1111/jcmm.14463] [PMID: 31240830]
[34]
Adachi, T.; Nakanishi, M.; Otsuka, Y.; Nishimura, K.; Hirokawa, G.; Goto, Y.; Nonogi, H.; Iwai, N. Plasma microRNA 499 as a bi-omarker of acute myocardial infarction. Clin. Chem., 2010, 56(7), 1183-1185.
[http://dx.doi.org/10.1373/clinchem.2010.144121] [PMID: 20395621]
[35]
Zhu, J.; Yao, K.; Wang, Q.; Guo, J.; Shi, H.; Ma, L.; Liu, H.; Gao, W.; Zou, Y.; Ge, J. Ischemic postconditioning-regulated miR-499 protects the rat heart against ischemia/reperfusion injury by inhibiting apoptosis through PDCD4. Cell. Physiol. Biochem., 2016, 39(6), 2364-2380.
[http://dx.doi.org/10.1159/000452506] [PMID: 27832626]
[36]
Victoria, B.; Dhahbi, J.M.; Nunez Lopez, Y.O.; Spinel, L.; Atamna, H.; Spindler, S.R.; Masternak, M.M. Circulating microRNA signa-ture of genotype-by-age interactions in the long-lived Ames dwarf mouse. Aging Cell, 2015, 14(6), 1055-1066.
[http://dx.doi.org/10.1111/acel.12373] [PMID: 26176567]
[37]
de Lucia, C.; Komici, K.; Borghetti, G.; Femminella, G.D.; Bencivenga, L.; Cannavo, A.; Corbi, G.; Ferrara, N.; Houser, S.R.; Koch, W.J.; Rengo, G. microRNA in cardiovascular aging and age-related cardiovascular diseases. Front. Med. (Lausanne), 2017, 4, 74.
[http://dx.doi.org/10.3389/fmed.2017.00074] [PMID: 28660188]
[38]
Jazbutyte, V.; Fiedler, J.; Kneitz, S.; Galuppo, P.; Just, A.; Holzmann, A.; Bauersachs, J.; Thum, T. MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Dordr.), 2013, 35(3), 747-762.
[http://dx.doi.org/10.1007/s11357-012-9407-9] [PMID: 22538858]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy