Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Differential Expression of microRNAs in Acute and Chronic Heart Failure

Author(s): Aimilios Kalampogias*, Evangelos Oikonomou*, Gerasimos Siasos, Panagiotis Theofilis, Stathis Dimitropoulos, Maria Gazouli, Vasiliki Gennimata, Georgios Marinos, Georgios Charalambous, Manolis Vavouranakis, Konstantinos Tsioufis and Dimitris Tousoulis

Volume 29, Issue 30, 2022

Published on: 08 June, 2022

Page: [5130 - 5138] Pages: 9

DOI: 10.2174/0929867329666220426095655

Price: $65

Abstract

Background: MicroRNAs modify protein expression at the post-transcriptional level, and their circulating levels may help identify the underlying molecular pathways.

Objective: The purpose of this study was to assess the differential expression of microRNAs related to myocardial cell energy substrate, autophagy, and ischaemia in chronic and acute heart failure (HF).

Methods: In this case-control study, we studied 19 patients with acute HF (AHF) and 19 patients with chronic HF (CHF). Basic demographic and clinical characteristics were collected from the patients upon arrival, at 48 hours, and at 120 hours. Blood samples for microRNAs measurements (miR-22, -92a, and -499), B-type natriuretic peptide (BNP), C reactive protein, and high sensitivity cardiac troponin I, were collected at all study points. In this study, we included subjects with a left ventricular ejection fraction of <40%.

Results: At baseline, circulating miR-22 levels were 1.9-fold higher (p<0.001), miR-92a levels were 1.25-fold higher (p=0.003), and miR-499 were 5-times lower (p<0.001) in AHF compared to CHF. Interestingly, circulating miR-499 was found to be associated with BNP levels (r=0.47, p=0.01). At follow-up, there was a stepwise increase in the levels of all three examined microRNAs (miR-22, p=0.001, miR-92a, p=0.001, and miR-499, p<0.001) for AHF but not for CHF subjects.

Conclusion: MicroRNAs -22, -92a, and -499 are differentially expressed in chronic and acute HF subjects. MicroRNA signatures are also differentially expressed up to the discharge of the patients. These findings may have important implications for diagnosis, progression, and treatment of patients with chronic and acute heart failure.

Keywords: Acute heart failure, miRNA, B-type natriuretic peptide, biomarkers, differential expression, chronic heart failure.

[1]
McDonagh, T.A. Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; Cleland, J.G.F.; Coats, A.J.S.; Crespo-Leiro, M.G.; Farmakis, D.; Gilard, M.; Heymans, S.; Hoes, A.W.; Jaarsma, T.; Jankowska, E.A.; Lainscak, M.; Lam, C.S.P.; Lyon, A.R.; McMurray, J.J.V.; Mebazaa, A.; Mindham, R.; Muneretto, C.; Francesco Piepoli, M.; Price, S.; Rosano, G.M.C.; Ruschitzka, F.; Kathrine Skibelund, A.; Group, E.S.C.S.D. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J., 2021, 42(36), 3599-3726.
[http://dx.doi.org/10.1093/eurheartj/ehab368] [PMID: 34447992]
[2]
Fonarow, G.C.; Abraham, W.T.; Albert, N.M.; Stough, W.G.; Gheorghiade, M.; Greenberg, B.H.; O’Connor, C.M.; Pieper, K.; Sun, J.L.; Yancy, C.W.; Young, J.B. OPTIMIZE-HF Investigators and Hospitals. Factors identified as precipitating hospital admissions for heart failure and clinical outcomes: Findings from OPTIMIZE-HF. Arch. Intern. Med., 2008, 168(8), 847-854.
[http://dx.doi.org/10.1001/archinte.168.8.847] [PMID: 18443260]
[3]
Miró, Ò.; García Sarasola, A.; Fuenzalida, C.; Calderón, S.; Jacob, J.; Aguirre, A.; Wu, D.M.; Rizzi, M.A.; Malchair, P.; Haro, A.; Her-rera, S.; Gil, V.; Martín-Sánchez, F.J.; Llorens, P.; Herrero Puente, P.; Bueno, H.; Domínguez Rodríguez, A.; Müller, C.E.; Mebazaa, A.; Chioncel, O.; Alquézar-Arbé, A. ICA-SEMES Research Group. Departments involved during the first episode of acute heart failure and subsequent emergency department revisits and rehospitalisations: An outlook through the NOVICA cohort. Eur. J. Heart Fail., 2019, 21(10), 1231-1244.
[http://dx.doi.org/10.1002/ejhf.1567] [PMID: 31389111]
[4]
Chioncel, O.; Mebazaa, A.; Maggioni, A.P.; Harjola, V.P.; Rosano, G.; Laroche, C.; Piepoli, M.F.; Crespo-Leiro, M.G.; Lainscak, M.; Ponikowski, P.; Filippatos, G.; Ruschitzka, F.; Seferovic, P.; Coats, A.J.S.; Lund, L.H. ESC-EORP-HFA Heart Failure Long-Term Registry Investigators Acute heart failure congestion and perfusion status - impact of the clinical classification on in-hospital and long-term outcomes; insights from the ESC-EORP-HFA Heart Failure Long-Term Registry. Eur. J. Heart Fail., 2019, 21(11), 1338-1352.
[http://dx.doi.org/10.1002/ejhf.1492] [PMID: 31127678]
[5]
Miró, Ò.; Levy, P.D.; Möckel, M.; Pang, P.S.; Lambrinou, E.; Bueno, H.; Hollander, J.E.; Harjola, V.P.; Diercks, D.B.; Gray, A.J.; DiSomma, S.; Papa, A.M.; Collins, S.P. Disposition of emergency department patients diagnosed with acute heart failure: An interna-tional emergency medicine perspective. Eur. J. Emerg. Med., 2017, 24(1), 2-12.
[http://dx.doi.org/10.1097/MEJ.0000000000000411] [PMID: 27254376]
[6]
Lee, D.S.; Stitt, A.; Austin, P.C.; Stukel, T.A.; Schull, M.J.; Chong, A.; Newton, G.E.; Lee, J.S.; Tu, J.V. Prediction of heart failure mortality in emergent care: A cohort study. Ann. Intern. Med., 2012, 156(11), 767-775.
[http://dx.doi.org/10.7326/0003-4819-156-11-201206050-00003]
[7]
Nguyen, H.M.; Nguyen, T.D.; Nguyen, T.L.; Nguyen, T.A. Orientation of human microprocessor on primary microRNAs. Biochemistry, 2019, 58(4), 189-198.
[http://dx.doi.org/10.1021/acs.biochem.8b00944] [PMID: 30481000]
[8]
Baumjohann, D.; Heissmeyer, V. Posttranscriptional gene regulation of T follicular helper cells by RNA-binding proteins and mi-croRNAs. Front. Immunol., 2018, 9, 1794.
[http://dx.doi.org/10.3389/fimmu.2018.01794] [PMID: 30108596]
[9]
Selbach, M.; Schwanhäusser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. Nature, 2008, 455(7209), 58-63.
[http://dx.doi.org/10.1038/nature07228] [PMID: 18668040]
[10]
Oliveira-Carvalho, V.; Carvalho, V.O.; Silva, M.M.; Guimarães, G.V.; Bocchi, E.A. MicroRNAs: A new paradigm in the treatment and diagnosis of heart failure? Arq. Bras. Cardiol., 2012, 98(4), 362-369.
[http://dx.doi.org/10.1590/S0066-782X2012000400011] [PMID: 22735911]
[11]
Oliveira-Carvalho, V.; da Silva, M.M.; Guimarães, G.V.; Bacal, F.; Bocchi, E.A. MicroRNAs: New players in heart failure. Mol. Biol. Rep., 2013, 40(3), 2663-2670.
[http://dx.doi.org/10.1007/s11033-012-2352-y] [PMID: 23242657]
[12]
Vegter, E.L.; van der Meer, P.; de Windt, L.J.; Pinto, Y.M.; Voors, A.A. MicroRNAs in heart failure: From biomarker to target for therapy. Eur. J. Heart Fail., 2016, 18(5), 457-468.
[http://dx.doi.org/10.1002/ejhf.495] [PMID: 26869172]
[13]
Huang, Z.P.; Wang, D.Z. miR-22 in cardiac remodeling and disease. Trends Cardiovasc. Med., 2014, 24(7), 267-272.
[http://dx.doi.org/10.1016/j.tcm.2014.07.005] [PMID: 25218673]
[14]
Wong, L.L.; Wang, J.; Liew, O.W.; Richards, A.M.; Chen, Y.T. MicroRNA and heart failure. Int. J. Mol. Sci., 2016, 17(4), 502.
[http://dx.doi.org/10.3390/ijms17040502] [PMID: 27058529]
[15]
Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuz-netsova, T.; Lancellotti, P.; Muraru, D.; Picard, M.H.; Rietzschel, E.R.; Rudski, L.; Spencer, K.T.; Tsang, W.; Voigt, J.U. Recommenda-tions for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European association of cardiovascular imaging. J. Am. Soc. Echocardiogr., 2015, 28(1), 1-39.e14.
[http://dx.doi.org/10.1016/j.echo.2014.10.003] [PMID: 25559473]
[16]
Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Fed-eration (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). Circulation, 2018, 138(20), e618-e651.
[http://dx.doi.org/10.1161/CIR.0000000000000617] [PMID: 30571511]
[17]
Sciarretta, S.; De Falco, E.; Frati, G.; Sadoshima, J. How to be young at heart? miR-22 as a potential therapeutic target to boost autopha-gy and protect the old myocardium. Ann. Transl. Med., 2017, 5(3), 52.
[http://dx.doi.org/10.21037/atm.2017.01.52] [PMID: 28251131]
[18]
Rogg, E.M.; Abplanalp, W.T.; Bischof, C.; John, D.; Schulz, M.H.; Krishnan, J.; Fischer, A.; Poluzzi, C.; Schaefer, L.; Bonauer, A.; Zeiher, A.M.; Dimmeler, S. Analysis of cell type-specific effects of microRNA-92a provides novel insights into target regulation and mechanism of action. Circulation, 2018, 138(22), 2545-2558.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.034598] [PMID: 30571345]
[19]
Corsten, M.F.; Dennert, R.; Jochems, S.; Kuznetsova, T.; Devaux, Y.; Hofstra, L.; Wagner, D.R.; Staessen, J.A.; Heymans, S.; Schroen, B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ. Cardiovasc. Genet., 2010, 3(6), 499-506.
[http://dx.doi.org/10.1161/CIRCGENETICS.110.957415] [PMID: 20921333]
[20]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[21]
Ponikowski, P.; Jankowska, E.A. Pathogenesis and clinical presentation of acute heart failure. Rev. Esp. Cardiol. (Engl. Ed.), 2015, 68(4), 331-337.
[http://dx.doi.org/10.1016/j.rec.2015.02.001] [PMID: 25743769]
[22]
Sullivan, R.D.; Mehta, R.M.; Tripathi, R.; Reed, G.L.; Gladysheva, I.P. Renin activity in heart failure with reduced systolic function-new insights. Renin activity in heart failure with reduced systolic function-new insights. Int. J. Mol. Sci., 2019, 20(13), E3182.
[http://dx.doi.org/10.3390/ijms20133182] [PMID: 31261774]
[23]
Florea, V.G.; Cohn, J.N. The autonomic nervous system and heart failure. Circ. Res., 2014, 114(11), 1815-1826.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302589] [PMID: 24855204]
[24]
Roberts, E.; Ludman, A.J.; Dworzynski, K.; Al-Mohammad, A.; Cowie, M.R.; McMurray, J.J.; Mant, J.; Failure, N.G.D.G.A.H. NICE Guideline Development Group for Acute Heart Failure. The diagnostic accuracy of the natriuretic peptides in heart failure: Systematic re-view and diagnostic meta-analysis in the acute care setting. BMJ, 2015, 350, h910.
[http://dx.doi.org/10.1136/bmj.h910] [PMID: 25740799]
[25]
Theofilis, P.; Vogiatzi, G.; Oikonomou, E.; Gazouli, M.; Siasos, G.; Katifelis, H.; Perrea, D.; Vavuranakis, M.; Iliopoulos, D.C.; Tsiou-fis, C.; Tousoulis, D. The effect of microRNA-126 mimic administration on vascular perfusion recovery in an animal model of hind limb ischemia. Front. Mol. Biosci., 2021, 8, 724465.
[http://dx.doi.org/10.3389/fmolb.2021.724465] [PMID: 34513927]
[26]
Theofilis, P.; Oikonomou, E.; Vogiatzi, G.; Antonopoulos, A.S.; Siasos, G.; Iliopoulos, D.C.; Perrea, D.; Tsioufis, C.; Tousoulis, D. The impact of proangiogenic microRNA modulation on blood flow recovery following hind limb ischemia. A systematic review and me-ta-analysis of animal studies. Vascul. Pharmacol., 2021, 141, 106906.
[http://dx.doi.org/10.1016/j.vph.2021.106906] [PMID: 34509635]
[27]
Zakynthinos, G.; Siasos, G.; Oikonomou, E.; Gazouli, M.; Mourouzis, K.; Zaromitidou, M.; Tsigkou, V.; Bletsa, E.; Stampouloglou, P.; Tsouroulas, S.; Marinos, G.; Vlasis, K.; Vavuranakis, M.; Stefanadis, C.; Tousoulis, D. Exploration analysis of microRNAs -146a, -19b, and -21 in patients with acute coronary syndrome. Hellenic J. Cardiol., 2021, 62(3), 260-263.
[http://dx.doi.org/10.1016/j.hjc.2020.08.002] [PMID: 32835809]
[28]
Gurha, P.; Abreu-Goodger, C.; Wang, T.; Ramirez, M.O.; Drumond, A.L.; van Dongen, S.; Chen, Y.; Bartonicek, N.; Enright, A.J.; Lee, B.; Kelm, R.J., Jr; Reddy, A.K.; Taffet, G.E.; Bradley, A.; Wehrens, X.H.; Entman, M.L.; Rodriguez, A. Targeted deletion of mi-croRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction. Circulation, 2012, 125(22), 2751-2761.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.044354] [PMID: 22570371]
[29]
Gupta, S.K.; Foinquinos, A.; Thum, S.; Remke, J.; Zimmer, K.; Bauters, C.; de Groote, P.; Boon, R.A.; de Windt, L.J.; Preissl, S.; Hein, L.; Batkai, S.; Pinet, F.; Thum, T. Preclinical development of a microrna-based therapy for elderly patients with myocardial infarction. J. Am. Coll. Cardiol., 2016, 68(14), 1557-1571.
[http://dx.doi.org/10.1016/j.jacc.2016.07.739] [PMID: 27687198]
[30]
Lopaschuk, G.D.; Karwi, Q.G.; Tian, R.; Wende, A.R.; Abel, E.D. Cardiac energy metabolism in heart failure. Circ. Res., 2021, 128(10), 1487-1513.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.318241] [PMID: 33983836]
[31]
Zhang, Y.; Cheng, J.; Chen, F.; Wu, C.; Zhang, J.; Ren, X.; Pan, Y.; Nie, B.; Li, Q.; Li, Y. Circulating endothelial microparticles and miR-92a in acute myocardial infarction. Biosci. Rep., 2017, 37(2), BSR20170047.
[http://dx.doi.org/10.1042/BSR20170047] [PMID: 28213360]
[32]
Niculescu, L.S.; Simionescu, N.; Sanda, G.M.; Carnuta, M.G.; Stancu, C.S.; Popescu, A.C.; Popescu, M.R.; Vlad, A.; Dimulescu, D.R.; Simionescu, M.; Sima, A.V. MiR-486 and miR-92a identified in circulating HDL discriminate between stable and vulnerable cor-onary artery disease patients. PLoS One, 2015, 10(10), e0140958.
[http://dx.doi.org/10.1371/journal.pone.0140958] [PMID: 26485305]
[33]
Pinchi, E.; Frati, P.; Aromatario, M.; Cipolloni, L.; Fabbri, M.; La Russa, R.; Maiese, A.; Neri, M.; Santurro, A.; Scopetti, M.; Viola, R.V.; Turillazzi, E.; Fineschi, V. miR-1, miR-499 and miR-208 are sensitive markers to diagnose sudden death due to early acute myo-cardial infarction. J. Cell. Mol. Med., 2019, 23(9), 6005-6016.
[http://dx.doi.org/10.1111/jcmm.14463] [PMID: 31240830]
[34]
Adachi, T.; Nakanishi, M.; Otsuka, Y.; Nishimura, K.; Hirokawa, G.; Goto, Y.; Nonogi, H.; Iwai, N. Plasma microRNA 499 as a bi-omarker of acute myocardial infarction. Clin. Chem., 2010, 56(7), 1183-1185.
[http://dx.doi.org/10.1373/clinchem.2010.144121] [PMID: 20395621]
[35]
Zhu, J.; Yao, K.; Wang, Q.; Guo, J.; Shi, H.; Ma, L.; Liu, H.; Gao, W.; Zou, Y.; Ge, J. Ischemic postconditioning-regulated miR-499 protects the rat heart against ischemia/reperfusion injury by inhibiting apoptosis through PDCD4. Cell. Physiol. Biochem., 2016, 39(6), 2364-2380.
[http://dx.doi.org/10.1159/000452506] [PMID: 27832626]
[36]
Victoria, B.; Dhahbi, J.M.; Nunez Lopez, Y.O.; Spinel, L.; Atamna, H.; Spindler, S.R.; Masternak, M.M. Circulating microRNA signa-ture of genotype-by-age interactions in the long-lived Ames dwarf mouse. Aging Cell, 2015, 14(6), 1055-1066.
[http://dx.doi.org/10.1111/acel.12373] [PMID: 26176567]
[37]
de Lucia, C.; Komici, K.; Borghetti, G.; Femminella, G.D.; Bencivenga, L.; Cannavo, A.; Corbi, G.; Ferrara, N.; Houser, S.R.; Koch, W.J.; Rengo, G. microRNA in cardiovascular aging and age-related cardiovascular diseases. Front. Med. (Lausanne), 2017, 4, 74.
[http://dx.doi.org/10.3389/fmed.2017.00074] [PMID: 28660188]
[38]
Jazbutyte, V.; Fiedler, J.; Kneitz, S.; Galuppo, P.; Just, A.; Holzmann, A.; Bauersachs, J.; Thum, T. MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Dordr.), 2013, 35(3), 747-762.
[http://dx.doi.org/10.1007/s11357-012-9407-9] [PMID: 22538858]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy