Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

A Strategic Investigation on Diabetic Nephropathy; Its Conceptual Model and clinical Manifestations: A Review

Author(s): Pranay Wal*, Sachin Tyagi, Rashmi Saxena Pal, Anil Yadav and Riya Jaiswal

Volume 19, Issue 5, 2023

Published on: 20 August, 2022

Article ID: e260422204036 Pages: 19

DOI: 10.2174/1573399818666220426091238

Price: $65

Abstract

Diabetes is a major health issue, and its complications can lead to various health problems. Nephropathy has been recognised since the 1930s, when Kimmelstiel and Wilson first reported the characteristic nodular glomerulosclerosis lesions in diabetic kidneys. Diabetic nephropathy (DN), commonly known as diabetic kidney disease, is a condition in which people with diabetes have excessive quantities of urine albumin excretion, diabetic glomerular lesions, and a reduction in their glomerular filtration rate (GFR). Type 1 diabetes (autoimmune -cell destruction and absolute insulin insufficiency), type 2 diabetes (relative insulin deficit and resistance), and others are the three forms of diabetes (e.g., pancreatic disease). Diabetes nephropathy is the leading cause of chronic kidney disease and end-stage renal failure worldwide. Much research has been conducted in both basic science and clinical therapies to enhance the understanding of the mechanism of diabetic nephropathy and expand available therapeutics. Diabetic nephropathy prevention continues to rely on screening for microalbuminuria and treating hyperglycemia. However, several studies suggest that managing diabetic kidney disease is more challenging. Despite comparable hyperglycemic management, some studies suggest that the incidence of renal problems varies by patient. As a result, there has been a great deal of interest in studying the inherent renal protective effects of various antihyperglycemic drugs. This study aims to provide information about the diabetic kidney disease conceptual model, pathogenesis, screening, and diagnosis. It will also address the treatment and prevention of diabetic nephropathy, focusing on comparing the mechanisms, safety profiles, and efficacy of different antihyperglycemic medications.

Keywords: Diabetic nephropathy, kidney disease, inflammation, glomerular basement membrane, glomerular filtration rate

[1]
Byrne C, Caskey F, Castledine C, et al. UK renal registry: 20th annual report of the renal association. Nephron 2018; 139 (Suppl. 1): 24-35.
[2]
Koye DN, Shaw JE, Reid CM, Atkins RC, Reutens AT, Magliano DJ. Incidence of chronic kidney disease among people with diabetes: A systematic review of observational studies. Diabet Med 2017; 34(7): 887-901.
[http://dx.doi.org/10.1111/dme.13324] [PMID: 28164387]
[3]
Andrésdóttir G, Jensen ML, Carstensen B, et al. Improved prognosis of diabetic nephropathy in type 1 diabetes. Kidney Int 2015; 87(2): 417-26.
[http://dx.doi.org/10.1038/ki.2014.206] [PMID: 24918158]
[4]
Astrup AS, Tarnow L, Rossing P, Pietraszek L, Riis Hansen P, Parving HH. Improved prognosis in type 1 diabetic patients with nephropathy: A prospective follow-up study. Kidney Int 2005; 68(3): 1250-7.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00521.x] [PMID: 16105058]
[5]
Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med 2003; 348(23): 2285-93.
[http://dx.doi.org/10.1056/NEJMoa021835] [PMID: 12788992]
[6]
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013; 3: 1-150.
[7]
Pugliese G. Updating the natural history of diabetic nephropathy. Acta Diabetol 2014; 51: 905-15.
[http://dx.doi.org/10.1007/s00592-014-0650-7]
[8]
American Diabetes Association. Standards of medical care in diabetes. Diabetes Care 2018; 41 (Suppl. 1): S1e159.
[9]
National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am J Kidney Dis 2002; 39: S1-S266.
[10]
Levey AS, Coresh J, Balk E, et al. National Kidney Foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Ann Intern Med 2003; 139(2): 137-47.
[http://dx.doi.org/10.7326/0003-4819-139-2-200307150-00013] [PMID: 12859163]
[11]
Levey AS, Eckardt KU, Tsukamoto Y, et al. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2005; 67(6): 2089-100.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00365.x] [PMID: 15882252]
[12]
Levey AS, Schoolwerth AC, Burrows NR, Williams DE, Stith KR, McClellan W. Comprehensive public health strategies for preventing the development, progression, and complications of CKD: Report of an expert panel convened by the Centers for Disease Control and Prevention. Am J Kidney Dis 2009; 53(3): 522-35.
[http://dx.doi.org/10.1053/j.ajkd.2008.11.019] [PMID: 19231739]
[13]
Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: Challenges, progress & possibilities. Clin J Am Soc Nephrol 2017; 12(12): 2032-45.
[http://dx.doi.org/10.2215/CJN.11491116] [PMID: 28522654]
[14]
Taal MW. Risk factors and chronic kidney disease. In: Skorecki K, Ed. Brenner and Rector’s The Kidney. (10th ed.). Amsterdam: Elsevier 2015; pp. 669-692.e7.
[15]
Gall MA, Hougaard P, Borch-Johnsen K, Parving HH. Risk factors for development of incipient and overt diabetic nephropathy in patients with non-insulin dependent diabetes mellitus: Prospective, observational study. BMJ 1997; 314(7083): 783-8.
[http://dx.doi.org/10.1136/bmj.314.7083.783] [PMID: 9080995]
[16]
Caramori ML, Parks A, Mauer M. Renal lesions predict progression of diabetic nephropathy in type 1 diabetes. J Am Soc Nephrol 2013; 24(7): 1175-81.
[http://dx.doi.org/10.1681/ASN.2012070739] [PMID: 23687360]
[17]
The Diabetes Control and Complications (DCCT) Research Group. Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. Kidney Int 1995; 47(6): 1703-20.
[http://dx.doi.org/10.1038/ki.1995.236] [PMID: 7643540]
[18]
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837-53.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6] [PMID: 9742976]
[19]
Tonna S, El-Osta A, Cooper ME, Tikellis C. Metabolic memory and diabetic nephropathy: Potential role for epigenetic mechanisms. Nat Rev Nephrol 2010; 6(6): 332-41.
[http://dx.doi.org/10.1038/nrneph.2010.55] [PMID: 20421885]
[20]
Nathan DM. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview. Diabetes Care 2014; 37(1): 9-16.
[http://dx.doi.org/10.2337/dc13-2112] [PMID: 24356592]
[21]
de Boer IH, Sun W, Cleary PA, et al. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med 2011; 365(25): 2366-76.
[http://dx.doi.org/10.1056/NEJMoa1111732]
[22]
Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-Year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359(15): 1577-89.
[http://dx.doi.org/10.1056/NEJMoa0806470] [PMID: 18784090]
[23]
Bilous R. Microvascular disease: What does the UKPDS tell us about diabetic nephropathy? Diabet Med 2008; 25 (Suppl. 2): 25-9.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02496.x] [PMID: 18717975]
[24]
Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 2006; 55(6): 1832-9.
[http://dx.doi.org/10.2337/db05-1620] [PMID: 16731850]
[25]
Bakris GL, Weir MR, Shanifar S, et al. Effects of blood pressure level on progression of diabetic nephropathy: Results from the RENAAL study. Arch Intern Med 2003; 163(13): 1555-65.
[http://dx.doi.org/10.1001/archinte.163.13.1555] [PMID: 12860578]
[26]
Pohl MA, Blumenthal S, Cordonnier DJ, et al. Independent and additive impact of blood pressure control and angiotensin II receptor blockade on renal outcomes in the irbesartan diabetic nephropathy trial: Clinical implications and limitations. J Am Soc Nephrol 2005; 16(10): 3027-37.
[http://dx.doi.org/10.1681/ASN.2004110919] [PMID: 16120823]
[27]
Freedman BI, Spray BJ, Tuttle AB, Buckalew VM Jr. The familial risk of end-stage renal disease in African Americans. Am J Kidney Dis 1993; 21(4): 387-93.
[http://dx.doi.org/10.1016/S0272-6386(12)80266-6]
[28]
Pavkov ME, Knowler WC, Bennett PH, Looker HC, Krakoff J, Nelson RG. Increasing incidence of proteinuria and declining incidence of end-stage renal disease in diabetic Pima Indians. Kidney Int 2006; 70(10): 1840-6.
[http://dx.doi.org/10.1038/sj.ki.5001882] [PMID: 17003816]
[29]
Wu AY, Kong NC, de Leon FA, et al. An alarmingly high prevalence of diabetic nephropathy in Asian type 2 diabetic patients: The MicroAlbuminuria Prevalence (MAP) Study. Diabetologia 2005; 48(1): 17-26.
[http://dx.doi.org/10.1007/s00125-004-1599-9] [PMID: 15616801]
[30]
Freedman BI, Volkova NV, Satko SG, et al. Population-based screening for family history of end-stage renal disease among incident dialysis patients. Am J Nephrol 2005; 25(6): 529-35.
[http://dx.doi.org/10.1159/000088491] [PMID: 16179780]
[31]
McClellan W, Speckman R, McClure L, et al. Prevalence and characteristics of a family history of end-stage renal disease among adults in the United States population: Reasons for Geographic and Racial Differences in Stroke (REGARDS) renal cohort study. J Am Soc Nephrol 2007; 18(4): 1344-52.
[http://dx.doi.org/10.1681/ASN.2006090952]
[32]
Bohlender JM, Franke S, Stein G, Wolf G. Advanced glycation end products and the kidney. Am J Physiol Renal Physiol 2004; 289(4): F645-59.
[http://dx.doi.org/10.1152/ajprenal.00398.2004]
[33]
Wautier JL, Zoukourian C, Chappey O, et al. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest 1996; 97(1): 238-43.
[http://dx.doi.org/10.1172/JCI118397] [PMID: 8550841]
[34]
Tan AL, Forbes JM, Cooper ME. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol 2007; 27(2): 130-43.
[http://dx.doi.org/10.1016/j.semnephrol.2007.01.006] [PMID: 17418682]
[35]
Schena FP, Gesualdo L. Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol 2005; 16(3): S30-3.
[http://dx.doi.org/10.1681/ASN.2004110970] [PMID: 15938030]
[36]
Miura J, Yamagishi S, Uchigata Y, et al. Serum levels of non-carboxymethyllysine advanced glycation endproducts are correlated to severity of microvascular complications in patients with type 1 diabetes. J Diabetes Complications 2003; 17(1): 16-21.
[http://dx.doi.org/10.1016/S1056-8727(02)00183-6] [PMID: 12505751]
[37]
Wautier MP, Massin P, Guillausseau PJ, et al. N(carboxymethyl)lysine as a biomarker for microvascular complications in type 2 diabetic patients. Diabetes Metab 2003; 29(1): 44-52.
[http://dx.doi.org/10.1016/S1262-3636(07)70006-X] [PMID: 12629447]
[38]
Suzuki D, Miyata T, Saotome N, et al. Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions. J Am Soc Nephrol 1999; 10(4): 822-32.
[http://dx.doi.org/10.1681/ASN.V104822] [PMID: 10203367]
[39]
Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 2005; 54(12): 3427-34.
[http://dx.doi.org/10.2337/diabetes.54.12.3427] [PMID: 16306358]
[40]
Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med 2015; 66(1): 255-70.
[http://dx.doi.org/10.1146/annurev-med-051013-110046] [PMID: 25341005]
[41]
Gnudi L, Coward RJ, Long DA. Diabetic nephropathy: Perspective on novel molecular mechanisms. Trends Endocrinol Metab 2016; 27(11): 820-30.
[http://dx.doi.org/10.1016/j.tem.2016.07.002]
[42]
Fujita H, Morii T, Fujishima H, et al. The protective roles of GLP-1R signaling in diabetic nephropathy: Possible mechanism and therapeutic potential. Kidney Int 2014; 85(3): 579-89.
[http://dx.doi.org/10.1038/ki.2013.427] [PMID: 24152968]
[43]
Molitch ME, DeFronzo RA, Franz MJ, et al. Nephropathy in diabetes. Diabetes Care 2004; 27 (Suppl. 1): S79-83.
[http://dx.doi.org/10.2337/diacare.27.2007.S79] [PMID: 14693934]
[44]
Drummond K, Mauer M. The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes 2002; 51(5): 1580-7.
[http://dx.doi.org/10.2337/diabetes.51.5.1580] [PMID: 11978659]
[45]
Tapp RJ, Shaw JE, Zimmet PZ, et al. Albuminuria is evident in the early stages of diabetes onset: results from the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Am J Kidney Dis 2004; 44(5): 792-8.
[http://dx.doi.org/10.1016/S0272-6386(04)01079-0] [PMID: 15492944]
[46]
Bruno G, Merletti F, Biggeri A, et al. Progression to overt nephropathy in type 2 diabetes: The Casale Monferrato Study. Diabetes Care 2003; 26(7): 2150-5.
[http://dx.doi.org/10.2337/diacare.26.7.2150] [PMID: 12832328]
[47]
Johnson DW, Jones GR, Mathew TH, et al. Chronic kidney disease and measurement of albuminuria or proteinuria: A position statement. Med J Aust 2012; 197(4): 224-5.
[http://dx.doi.org/10.5694/mja11.11468] [PMID: 22900872]
[48]
American Diabetes Association. Standards of medical care in diabetes--2014. Diabetes Care 2014; 37 (Suppl. 1): S14-80.
[http://dx.doi.org/10.2337/dc14-S014] [PMID: 24357209]
[49]
Mazzucco G, Bertani T, Fortunato M, et al. Different patterns of renal damage in type 2 diabetes mellitus: A multicentric study on 393 biopsies. Am J Kidney Dis 2002; 39(4): 713-20.
[http://dx.doi.org/10.1053/ajkd.2002.31988] [PMID: 11920336]
[50]
Mak SK, Gwi E, Chan KW, et al. Clinical predictors of non-diabetic renal disease in patients with non-insulin dependent diabetes mellitus. Nephrol Dial Transplant 1997; 12(12): 2588-91.
[http://dx.doi.org/10.1093/ndt/12.12.2588] [PMID: 9430856]
[51]
Sharma SG, Bomback AS, Radhakrishnan J, et al. The modern spectrum of renal biopsy findings in patients with diabetes. Clin J Am Soc Nephrol 2013; 8(10): 1718-24.
[http://dx.doi.org/10.2215/CJN.02510213] [PMID: 23886566]
[52]
Parving HH, Hommel E, Mathiesen E, et al. Prevalence of microalbuminuria, arterial hypertension, retinopathy and neuropathy in patients with insulin dependent diabetes. Br Med J (Clin Res Ed) 1988; 296(6616): 156-60.
[http://dx.doi.org/10.1136/bmj.296.6616.156] [PMID: 3122980]
[53]
Rossing P, Hougaard P, Parving HH. Progression of microalbuminuria in type 1 diabetes: Ten-year prospective observational study. Kidney Int 2005; 68(4): 1446-50.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00556.x] [PMID: 16164620]
[54]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract 2019; 157: 107843.
[55]
Parving HH, Lewis JB, Ravid M, Remuzzi G, Hunsicker LG. Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: A global perspective. Kidney Int 2006; 69(11): 2057-63.
[http://dx.doi.org/10.1038/sj.ki.5000377] [PMID: 16612330]
[56]
Family Investigation of Nephropathy and Diabetes Research Group. Genetic determinants of diabetic nephropathy: The family investigation of nephropathy and diabetes (FIND). J Am Soc Nephrol 2003; 14(7) (Suppl. 2): S202-4.
[PMID: 12819329]
[57]
Ali MK, Bullard KM, Saydah S, Imperatore G, Gregg EW. Cardiovascular and renal burdens of prediabetes in the USA: Analysis of data from serial cross-sectional surveys, 1988-2014. Lancet Diabetes Endocrinol 2018; 6(5): 392-403.
[http://dx.doi.org/10.1016/S2213-8587(18)30027-5] [PMID: 29500121]
[58]
He F, Xia X, Wu XF, Yu XQ, Huang FX. Diabetic retinopathy in predicting diabetic nephropathy in patients with type 2 diabetes and renal disease: A meta-analysis. Diabetologia 2013; 56(3): 457-66.
[http://dx.doi.org/10.1007/s00125-012-2796-6] [PMID: 23232641]
[59]
Parving HH, Gall MA, Skøtt P, et al. Prevalence and causes of albuminuria in non-insulin-dependent diabetic patients. Kidney Int 1992; 41(4): 758-62.
[http://dx.doi.org/10.1038/ki.1992.118] [PMID: 1513098]
[60]
Zhou J, Chen X, Xie Y, Li J, Yamanaka N, Tong X. A differential diagnostic model of diabetic nephropathy and non-diabetic renal diseases. Nephrol Dial Transplant 2008; 23(6): 1940-5.
[http://dx.doi.org/10.1093/ndt/gfm897] [PMID: 18156459]
[61]
Gambara V, Mecca G, Remuzzi G, Bertani T. Heterogeneous nature of renal lesions in type II diabetes. J Am Soc Nephrol 1993; 3(8): 1458-66.
[http://dx.doi.org/10.1681/ASN.V381458] [PMID: 8490117]
[62]
Fioretto P, Mauer M, Brocco E, et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia 1996; 39(12): 1569-76.
[http://dx.doi.org/10.1007/s001250050616] [PMID: 8960844]
[63]
Waikar SS, Rebholz CM, Zheng Z, et al. Biological variability of estimated GFR and albuminuria in CKD. Am J Kidney Dis 2018; 72(4): 538-46.
[http://dx.doi.org/10.1053/j.ajkd.2018.04.023] [PMID: 30031564]
[64]
Leong A, Ekinci EI, Nguyen C, et al. Long-term intra-individual variability of albuminuria in type 2 diabetes mellitus: Implications for categorization of albumin excretion rate. BMC Nephrol 2017; 18(1): 355.
[http://dx.doi.org/10.1186/s12882-017-0767-3] [PMID: 29207965]
[65]
American Diabetes Association. Microvascular complications and foot care: Standards of medical care in diabetes—2019. Diabetes Care 2019; 42 (Suppl. 1): S124-38.
[http://dx.doi.org/10.2337/dc19-S011] [PMID: 30559237]
[66]
Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2020; 41(2): 255-323.
[http://dx.doi.org/10.1093/eurheartj/ehz486] [PMID: 31497854]
[67]
National Institute for Health and Care Excellence. Type 2 diabetes in adults: management. NICE guideline. NG28 2015. Available from: https://www.nice. org.uk/guidance/ng28
[68]
National Institute for Health and Care Excellence. Chronic kidney disease in adults: Assessment and management. Clinical guideline [CG182] 2015. Available from: https://www.nice.org.uk/guidance/cg182 (Accessed on: December 29, 2019).
[69]
Dwyer JP, Lewis JB. Nonproteinuric diabetic nephropathy: when diabetics don’t read the textbook. Med Clin North Am 2013; 97(1): 53-8.
[http://dx.doi.org/10.1016/j.mcna.2012.10.006] [PMID: 23290729]
[70]
Krolewski AS, Niewczas MA, Skupien J, et al. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care 2014; 37(1): 226-34.
[http://dx.doi.org/10.2337/dc13-0985] [PMID: 23939543]
[71]
Shimizu M, Furuichi K, Yokoyama H, et al. Kidney lesions in diabetic patients with normoalbuminuric renal insufficiency. Clin Exp Nephrol 2014; 18(2): 305-12.
[http://dx.doi.org/10.1007/s10157-013-0870-0] [PMID: 24081589]
[72]
Ekinci EI, Jerums G, Skene A, et al. Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabetes Care 2013; 36(11): 3620-6.
[http://dx.doi.org/10.2337/dc12-2572] [PMID: 23835690]
[73]
Budhiraja P, Thajudeen B, Popovtzer M. Absence of albuminuria in type 2 diabetics with classical diabetic nephropathy: Clinical pathological study. J Biomed Sci Eng 2013; 6(5): 20-5.
[http://dx.doi.org/10.4236/jbise.2013.65A005]
[74]
Yamanouchi M, Furuichi K, Hoshino J, et al. Nonproteinuric versus proteinuric phenotypes in diabetic kidney disease: A propensity score-matched analysis of a nationwide, biopsy-based cohort study. Diabetes Care 2019; 42(5): 891-902.
[http://dx.doi.org/10.2337/dc18-1320] [PMID: 30833372]
[75]
Zoccali C, Mallamaci F. Nonproteinuric progressive diabetic kidney disease. Curr Opin Nephrol Hypertens 2019; 28(3): 227-32.
[http://dx.doi.org/10.1097/MNH.0000000000000489] [PMID: 30672815]
[76]
Koye DN, Magliano DJ, Reid CM, et al. Risk of progression of nonalbuminuric CKD to end-stage kidney disease in people with diabetes: The CRIC (chronic renal insufficiency cohort) study. Am J Kidney Dis 2018; 72(5): 653-61.
[http://dx.doi.org/10.1053/j.ajkd.2018.02.364] [PMID: 29784612]
[77]
Molitch ME, Steffes M, Sun W, et al. Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care 2010; 33(7): 1536-43.
[http://dx.doi.org/10.2337/dc09-1098] [PMID: 20413518]
[78]
Buyadaa O, Magliano DJ, Salim A, Koye DN, Shaw JE. Risk of rapid kidney function decline, all-cause mortality, and major cardiovascular events in nonalbuminuric chronic kidney disease in type 2 diabetes. Diabetes Care 2020; 43(1): 122-9.
[http://dx.doi.org/10.2337/dc19-1438] [PMID: 31796570]
[79]
MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 2004; 27(1): 195-200.
[http://dx.doi.org/10.2337/diacare.27.1.195] [PMID: 14693989]
[80]
Klessens CQ, Woutman TD, Veraar KA, et al. An autopsy study suggests that diabetic nephropathy is underdiagnosed. Kidney Int 2016; 90(1): 149-56.
[http://dx.doi.org/10.1016/j.kint.2016.01.023] [PMID: 27165826]
[81]
Nathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329(14): 977-86.
[http://dx.doi.org/10.1056/NEJM199309303291401] [PMID: 8366922]
[82]
Perkovic V, Heerspink HL, Chalmers J, et al. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney Int 2013; 83(3): 517-23.
[http://dx.doi.org/10.1038/ki.2012.401] [PMID: 23302714]
[83]
Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009; 360(2): 129-39.
[http://dx.doi.org/10.1056/NEJMoa0808431] [PMID: 19092145]
[84]
Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358(24): 2545-59.
[http://dx.doi.org/10.1056/NEJMoa0802743] [PMID: 18539917]
[85]
Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: An analysis of the ACCORD randomised trial. Lancet 2010; 376(9739): 419-30.
[http://dx.doi.org/10.1016/S0140-6736(10)60576-4] [PMID: 20594588]
[86]
Ko GJ, Kang YS, Han SY, et al. Pioglitazone attenuates diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. Nephrol Dial Transplant 2008; 23(9): 2750-60.
[http://dx.doi.org/10.1093/ndt/gfn157] [PMID: 18388116]
[87]
Ohga S, Shikata K, Yozai K, et al. Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-kappaB activation. Am J Physiol Renal Physiol 2007; 292(4): F1141-50.
[http://dx.doi.org/10.1152/ajprenal.00288.2005] [PMID: 17190910]
[88]
Zhang H, Saha J, Byun J, et al. Rosiglitazone reduces renal and plasma markers of oxidative injury and reverses urinary metabolite abnormalities in the amelioration of diabetic nephropathy. Am J Physiol Renal Physiol 2008; 295(4): F1071-81.
[http://dx.doi.org/10.1152/ajprenal.90208.2008] [PMID: 18667486]
[89]
Bakris GL, Ruilope LM, McMorn SO, et al. Rosiglitazone reduces microalbuminuria and blood pressure independently of glycemia in type 2 diabetes patients with microalbuminuria. J Hypertens 2006; 24(10): 2047-55.
[http://dx.doi.org/10.1097/01.hjh.0000244955.39491.88] [PMID: 16957566]
[90]
Kodera R, Shikata K, Takatsuka T, et al. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes. Biochem Biophys Res Commun 2014; 443(3): 828-33.
[http://dx.doi.org/10.1016/j.bbrc.2013.12.049] [PMID: 24342619]
[91]
Mori H, Okada Y, Arao T, Tanaka Y. Sitagliptin improves albuminuria in patients with type 2 diabetes mellitus. J Diabetes Investig 2014; 5(3): 313-9.
[http://dx.doi.org/10.1111/jdi.12142] [PMID: 24843780]
[92]
Fujita H, Taniai H, Murayama H, et al. DPP-4 inhibition with alogliptin on top of angiotensin II type 1 receptor blockade ameliorates albuminuria via up-regulation of SDF-1α in type 2 diabetic patients with incipient nephropathy. Endocr J 2014; 61(2): 159-66.
[http://dx.doi.org/10.1507/endocrj.EJ13-0305] [PMID: 24225429]
[93]
Cherney DZ, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 2014; 129(5): 587-97.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.005081] [PMID: 24334175]
[94]
Viberti G, Mogensen CE, Groop LC, Pauls JF. Effect of captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. JAMA 1994; 271(4): 275-9.
[http://dx.doi.org/10.1001/jama.1994.03510280037029] [PMID: 8295285]
[95]
The Microalbuminuria Captopril Study Group. Captopril reduces the risk of nephropathy in IDDM patients with microalbuminuria. Diabetologia 1996; 39(5): 587-93.
[http://dx.doi.org/10.1007/BF00403306] [PMID: 8739919]
[96]
Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med 1993; 329(20): 1456-62.
[http://dx.doi.org/10.1056/NEJM199311113292004] [PMID: 8413456]
[97]
Wilmer WA, Hebert LA, Lewis EJ, et al. Remission of nephrotic syndrome in type 1 diabetes: long-term follow-up of patients in the Captopril Study. Am J Kidney Dis 1999; 34(2): 308-14.
[http://dx.doi.org/10.1016/S0272-6386(99)70360-4] [PMID: 10430979]
[98]
Hovind P, Rossing P, Tarnow L, Toft H, Parving J, Parving HH. Remission of nephrotic-range albuminuria in type 1 diabetic patients. Diabetes Care 2001; 24(11): 1972-7.
[http://dx.doi.org/10.2337/diacare.24.11.1972] [PMID: 11679467]
[99]
Hovind P, Tarnow L, Rossing P, Carstensen B, Parving HH. Improved survival in patients obtaining remission of nephrotic range albuminuria in diabetic nephropathy. Kidney Int 2004; 66(3): 1180-6.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00870.x] [PMID: 15327415]
[100]
de Galan BE, Zoungas S, Chalmers J, et al. Cognitive function and risks of cardiovascular disease and hypoglycaemia in patients with type 2 diabetes: The Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial. Diabetologia 2009; 52(11): 2328-36.
[http://dx.doi.org/10.1007/s00125-009-1484-7] [PMID: 19688336]
[101]
Ruggenenti P, Fassi A, Ilieva AP, et al. Preventing microalbuminuria in type 2 diabetes. N Engl J Med 2004; 351(19): 1941-51.
[http://dx.doi.org/10.1056/NEJMoa042167] [PMID: 15516697]
[102]
Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345(12): 851-60.
[http://dx.doi.org/10.1056/NEJMoa011303] [PMID: 11565517]
[103]
Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345(12): 861-9.
[http://dx.doi.org/10.1056/NEJMoa011161] [PMID: 11565518]
[104]
Eijkelkamp WB, Zhang Z, Remuzzi G, et al. Albuminuria is a target for renoprotective therapy independent from blood pressure in patients with type 2 diabetic nephropathy: post hoc analysis from the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. J Am Soc Nephrol 2007; 18(5): 1540-6.
[http://dx.doi.org/10.1681/ASN.2006050445] [PMID: 17409317]
[105]
Haller H, Ito S, Izzo JL Jr, et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med 2011; 364(10): 907-17.
[http://dx.doi.org/10.1056/NEJMoa1007994] [PMID: 21388309]
[106]
Barnett AH, Bain SC, Bouter P, et al. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med 2004; 351(19): 1952-61.
[http://dx.doi.org/10.1056/NEJMoa042274] [PMID: 15516696]
[107]
Lv J, Perkovic V, Foote CV, Craig ME, Craig JC, Strippoli GF. Antihypertensive agents for preventing diabetic kidney disease. Cochrane Database Syst Rev 2012; 12: CD004136.
[http://dx.doi.org/10.1002/14651858.CD004136.pub3] [PMID: 23235603]
[108]
Wolf G. Renal injury due to reninangiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int 2006; 70(11): 1914-9.
[http://dx.doi.org/10.1038/sj.ki.5001846] [PMID: 16985515]
[109]
Huang W, Xu C, Kahng KW, Noble NA, Border WA, Huang Y. Aldosterone and TGF-beta1 synergistically increase PAI-1 and decrease matrix degradation in rat renal mesangial and fibroblast cells. Am J Physiol Renal Physiol 2008; 294(6): F1287-95.
[http://dx.doi.org/10.1152/ajprenal.00017.2008] [PMID: 18367662]
[110]
Schjoedt KJ, Rossing K, Juhl TR, et al. Beneficial impact of spironolactone in diabetic nephropathy. Kidney Int 2005; 68(6): 2829-36.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00756.x] [PMID: 16316360]
[111]
Rossing K, Schjoedt KJ, Smidt UM, Boomsma F, Parving HH. Beneficial effects of adding spironolactone to recommended antihypertensive treatment in diabetic nephropathy: A randomized, double-masked, cross-over study. Diabetes Care 2005; 28(9): 2106-12.
[http://dx.doi.org/10.2337/diacare.28.9.2106] [PMID: 16123474]
[112]
Han SY, Kim CH, Kim HS, et al. Spironolactone prevents diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. J Am Soc Nephrol 2006; 17(5): 1362-72.
[http://dx.doi.org/10.1681/ASN.2005111196] [PMID: 16571782]
[113]
Epstein M, Williams GH, Weinberger M, et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol 2006; 1(5): 940-51.
[http://dx.doi.org/10.2215/CJN.00240106] [PMID: 17699311]
[114]
Bakris GL, Copley JB, Vicknair N, Sadler R, Leurgans S. Calcium channel blockers versus other antihypertensive therapies on progression of NIDDM associated nephropathy. Kidney Int 1996; 50(5): 1641-50.
[http://dx.doi.org/10.1038/ki.1996.480] [PMID: 8914031]
[115]
Bakris GL, Barnhill BW, Sadler R. Treatment of arterial hypertension in diabetic humans: importance of therapeutic selection. Kidney Int 1992; 41(4): 912-9.
[http://dx.doi.org/10.1038/ki.1992.139] [PMID: 1325010]
[116]
Bakris GL, Weir MR, DeQuattro V, McMahon FG. Effects of an ACE inhibitor/calcium antagonist combination on proteinuria in diabetic nephropathy. Kidney Int 1998; 54(4): 1283-9.
[http://dx.doi.org/10.1046/j.1523-1755.1998.00083.x] [PMID: 9767545]
[117]
Ruggenenti P, Fassi A, Ilieva A, et al. Effects of verapamil added-on trandolapril therapy in hypertensive type 2 diabetes patients with microalbuminuria: the BENEDICT-B randomized trial. J Hypertens 2011; 29(2): 207-16.
[http://dx.doi.org/10.1097/HJH.0b013e32834069bd] [PMID: 21243736]
[118]
Viberti G, Wheeldon NM. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: A blood pressure-independent effect. Circulation 2002; 106(6): 672-8.
[http://dx.doi.org/10.1161/01.CIR.0000024416.33113.0A] [PMID: 12163426]
[119]
Herlitz H, Harris K, Risler T, et al. The effects of an ACE inhibitor and a calcium antagonist on the progression of renal disease: the Nephros Study. Nephrol Dial Transplant 2001; 16(11): 2158-65.
[http://dx.doi.org/10.1093/ndt/16.11.2158] [PMID: 11682661]
[120]
Ruggenenti P, Perna A, Loriga G, et al. Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial. Lancet 2005; 365(9463): 939-46.
[http://dx.doi.org/10.1016/S0140-6736(05)71082-5] [PMID: 15766995]
[121]
Sacks FM, Hermans MP, Fioretto P, et al. Association between plasma triglycerides and high-density lipoprotein cholesterol and microvascular kidney disease and retinopathy in type 2 diabetes mellitus: A global case-control study in 13 countries. Circulation 2014; 129(9): 999-1008.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002529] [PMID: 24352521]
[122]
Krolewski AS, Warram JH, Christlieb AR. Hypercholesterolemia--a determinant of renal function loss and deaths in IDDM patients with nephropathy. Kidney Int Suppl 1994; 45: S125-31.
[PMID: 8158881]
[123]
Ishibashi Y, Yamagishi S, Matsui T, et al. Pravastatin inhibits advanced glycation end products (AGEs)-induced proximal tubular cell apoptosis and injury by reducing receptor for AGEs (RAGE) level. Metabolism 2012; 61(8): 1067-72.
[http://dx.doi.org/10.1016/j.metabol.2012.01.006] [PMID: 22386936]
[124]
Gao P, Wu X, Shui H, Jia R. Fluvastatin inhibits high glucose-induced nuclear factor kappa B activation in renal tubular epithelial cells. J Nephrol 2013; 26(2): 289-96.
[http://dx.doi.org/10.5301/jn.5000128] [PMID: 22641573]
[125]
Toba H, Mitani T, Takahashi T, et al. Inhibition of the renal renin-angiotensin system and renoprotection by pitavastatin in type1 diabetes. Clin Exp Pharmacol Physiol 2010; 37(11): 1064-70.
[http://dx.doi.org/10.1111/j.1440-1681.2010.05436.x] [PMID: 20678154]
[126]
Tonolo G, Velussi M, Brocco E, et al. Simvastatin maintains steady patterns of GFR and improves AER and expression of slit diaphragm proteins in type II diabetes. Kidney Int 2006; 70(1): 177-86.
[http://dx.doi.org/10.1038/sj.ki.5001515] [PMID: 16710349]
[127]
Abe M, Maruyama N, Okada K, Matsumoto S, Matsumoto K, Soma M. Effects of lipid-lowering therapy with rosuvastatin on kidney function and oxidative stress in patients with diabetic nephropathy. J Atheroscler Thromb 2011; 18(11): 1018-28.
[http://dx.doi.org/10.5551/jat.9084] [PMID: 21921413]
[128]
Collins R, Armitage J, Parish S, Sleigh P, Peto R. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: A randomised placebo-controlled trial. Lancet 2003; 361(9374): 2005-16.
[http://dx.doi.org/10.1016/S0140-6736(03)13636-7] [PMID: 12814710]
[129]
Colhoun HM, Betteridge DJ, Durrington PN, et al. Effects of atorvastatin on kidney outcomes and cardiovascular disease in patients with diabetes: An analysis from the Collaborative Atorvastatin Diabetes Study (CARDS). Am J Kidney Dis 2009; 54(5): 810-9.
[http://dx.doi.org/10.1053/j.ajkd.2009.03.022] [PMID: 19540640]
[130]
Gerstein HC, Mann JF, Yi Q, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 2001; 286(4): 421-6.
[http://dx.doi.org/10.1001/jama.286.4.421] [PMID: 11466120]
[131]
Zhang Z, Zhang Y, Ning G, Deb DK, Kong J, Li YC. Combination therapy with AT1 blocker and vitamin D analog markedly ameliorates diabetic nephropathy: blockade of compensatory renin increase. Proc Natl Acad Sci USA 2008; 105(41): 15896-901.
[http://dx.doi.org/10.1073/pnas.0803751105] [PMID: 18838678]
[132]
Wang Y, Deb DK, Zhang Z, et al. Vitamin D receptor signaling in podocytes protects against diabetic nephropathy. J Am Soc Nephrol 2012; 23(12): 1977-86.
[http://dx.doi.org/10.1681/ASN.2012040383] [PMID: 23123403]
[133]
Xiong M, Gong J, Liu Y, Xiang R, Tan X. Loss of vitamin D receptor in chronic kidney disease: A potential mechanism linking inflammation to epithelial-to-mesenchymal transition. Am J Physiol Renal Physiol 2012; 303(7): F1107-15.
[http://dx.doi.org/10.1152/ajprenal.00151.2012] [PMID: 22791341]
[134]
Nakai K, Fujii H, Kono K, et al. Vitamin D activates the Nrf2-Keap1 antioxidant pathway and ameliorates nephropathy in diabetic rats. Am J Hypertens 2014; 27(4): 586-95.
[http://dx.doi.org/10.1093/ajh/hpt160] [PMID: 24025724]
[135]
Fernández-Juárez G, Luño J, Barrio V, et al. 25 (OH) vitamin D levels and renal disease progression in patients with type 2 diabetic nephropathy and blockade of the renin-angiotensin system. Clin J Am Soc Nephrol 2013; 8(11): 1870-6.
[http://dx.doi.org/10.2215/CJN.00910113] [PMID: 24135218]
[136]
de Zeeuw D, Agarwal R, Amdahl M, et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): A randomised controlled trial. Lancet 2010; 376(9752): 1543-51.
[http://dx.doi.org/10.1016/S0140-6736(10)61032-X] [PMID: 21055801]
[137]
Brown JM, Secinaro K, Williams JS, Vaidya A. Evaluating hormonal mechanisms of vitamin D receptor agonist therapy in diabetic kidney disease: the VALIDATE-D study. BMC Endocr Disord 2013; 13(1): 33.
[http://dx.doi.org/10.1186/1472-6823-13-33] [PMID: 23971740]
[138]
Makura CB, Nirantharakumar K, Girling AJ, Saravanan P, Narendran P. Effects of physical activity on the development and progression of microvascular complications in type 1 diabetes: retrospective analysis of the DCCT study. BMC Endocr Disord 2013; 13(1): 37.
[http://dx.doi.org/10.1186/1472-6823-13-37] [PMID: 24083407]
[139]
Wing RR, Bolin P, Brancati FL, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 2013; 369(2): 145-54.
[http://dx.doi.org/10.1056/NEJMoa1212914] [PMID: 23796131]
[140]
Nezu U, Kamiyama H, Kondo Y, Sakuma M, Morimoto T, Ueda S. Effect of low-protein diet on kidney function in diabetic nephropathy: meta-analysis of randomised controlled trials. BMJ Open 2013; 3(5): e002934.
[http://dx.doi.org/10.1136/bmjopen-2013-002934] [PMID: 23793703]
[141]
Anderson JW. Beneficial effects of soy protein consumption for renal function. Asia Pac J Clin Nutr 2008; 17 (Suppl. 1): 324-8.
[PMID: 18296369]
[142]
Kwakernaak AJ, Krikken JA, Binnenmars SH, et al. Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy: A randomised clinical trial. Lancet Diabetes Endocrinol 2014; 2(5): 385-95.
[http://dx.doi.org/10.1016/S2213-8587(14)70030-0] [PMID: 24795252]
[143]
Houlihan CA, Allen TJ, Baxter AL, et al. A low-sodium diet potentiates the effects of losartan in type 2 diabetes. Diabetes Care 2002; 25(4): 663-71.
[http://dx.doi.org/10.2337/diacare.25.4.663] [PMID: 11919122]
[144]
Bohman SO, Tydén G, Wilczek H, et al. Prevention of kidney graft diabetic nephropathy by pancreas transplantation in man. Diabetes 1985; 34(3): 306-8.
[http://dx.doi.org/10.2337/diab.34.3.306] [PMID: 3918902]
[145]
Bilous RW, Mauer SM, Sutherland DE, Najarian JS, Goetz FC, Steffes MW. The effects of pancreas transplantation on the glomerular structure of renal allografts in patients with insulin-dependent diabetes. N Engl J Med 1989; 321(2): 80-5.
[http://dx.doi.org/10.1056/NEJM198907133210204] [PMID: 2659996]
[146]
Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 1998; 339(2): 69-75.
[http://dx.doi.org/10.1056/NEJM199807093390202] [PMID: 9654536]
[147]
Fioretto P, Sutherland DE, Najafian B, Mauer M. Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int 2006; 69(5): 907-12.
[http://dx.doi.org/10.1038/sj.ki.5000153] [PMID: 16518350]
[148]
Kelly DJ, Zhang Y, Moe G, Naik G, Gilbert RE. Aliskiren, a novel renin inhibitor, is renoprotective in a model of advanced diabetic nephropathy in rats. Diabetologia 2007; 50(11): 2398-404.
[http://dx.doi.org/10.1007/s00125-007-0795-9] [PMID: 17828524]
[149]
Persson F, Rossing P, Schjoedt KJ, et al. Time course of the antiproteinuric and antihypertensive effects of direct renin inhibition in type 2 diabetes. Kidney Int 2008; 73(12): 1419-25.
[http://dx.doi.org/10.1038/ki.2008.68] [PMID: 18337712]
[150]
Parving HH, Persson F, Lewis JB, Lewis EJ, Hollenberg NK. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med 2008; 358(23): 2433-46.
[http://dx.doi.org/10.1056/NEJMoa0708379] [PMID: 18525041]
[151]
Parving HH, Brenner BM, McMurray JJ, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med 2012; 367(23): 2204-13.
[http://dx.doi.org/10.1056/NEJMoa1208799] [PMID: 23121378]
[152]
Sasser JM, Sullivan JC, Hobbs JL, et al. Endothelin A receptor blockade reduces diabetic renal injury via an anti-inflammatory mechanism. J Am Soc Nephrol 2007; 18(1): 143-54.
[http://dx.doi.org/10.1681/ASN.2006030208] [PMID: 17167119]
[153]
Gagliardini E, Corna D, Zoja C, et al. Unlike each drug alone, lisinopril if combined with avosentan promotes regression of renal lesions in experimental diabetes. Am J Physiol Renal Physiol 2009; 297(5): F1448-56.
[http://dx.doi.org/10.1152/ajprenal.00340.2009] [PMID: 19675181]
[154]
Mann JF, Green D, Jamerson K, et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol 2010; 21(3): 527-35.
[http://dx.doi.org/10.1681/ASN.2009060593] [PMID: 20167702]
[155]
Wenzel RR, Littke T, Kuranoff S, et al. Avosentan reduces albumin excretion in diabetics with macroalbuminuria. J Am Soc Nephrol 2009; 20(3): 655-64.
[http://dx.doi.org/10.1681/ASN.2008050482] [PMID: 19144760]
[156]
de Zeeuw D, Coll B, Andress D, et al. The endothelin antagonist atrasentan lowers residual albuminuria in patients with type 2 diabetic nephropathy. J Am Soc Nephrol 2014; 25(5): 1083-93.
[http://dx.doi.org/10.1681/ASN.2013080830] [PMID: 24722445]
[157]
Sidharta PN, Wagner FD, Bohnemeier H, et al. Pharmacodynamics and pharmacokinetics of the urotensin II receptor antagonist palosuran in macroalbuminuric, diabetic patients. Clin Pharmacol Ther 2006; 80(3): 246-56.
[http://dx.doi.org/10.1016/j.clpt.2006.05.013] [PMID: 16952491]
[158]
Vogt L, Chiurchiu C, Chadha-Boreham H, et al. Effect of the urotensin receptor antagonist palosuran in hypertensive patients with type 2 diabetic nephropathy. Hypertension 2010; 55(5): 1206-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.149559] [PMID: 20231521]
[159]
Schäfer S, Linz W, Vollert H, et al. The vasopeptidase inhibitor AVE7688 ameliorates type 2 diabetic nephropathy. Diabetologia 2004; 47(1): 98-103.
[http://dx.doi.org/10.1007/s00125-003-1264-8] [PMID: 14618238]
[160]
Davis BJ, Johnston CI, Burrell LM, et al. Renoprotective effects of vasopeptidase inhibition in an experimental model of diabetic nephropathy. Diabetologia 2003; 46(7): 961-71.
[http://dx.doi.org/10.1007/s00125-003-1121-9] [PMID: 12838387]
[161]
Koya D, Haneda M, Nakagawa H, et al. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J 2000; 14(3): 439-47.
[http://dx.doi.org/10.1096/fasebj.14.3.439] [PMID: 10698958]
[162]
Wu Y, Wu G, Qi X, et al. Protein kinase C beta inhibitor LY333531 attenuates intercellular adhesion molecule-1 and monocyte chemotactic protein-1 expression in the kidney in diabetic rats. J Pharmacol Sci 2006; 101(4): 335-43.
[http://dx.doi.org/10.1254/jphs.FP0050896] [PMID: 16891764]
[163]
Gilbert RE, Kim SA, Tuttle KR, et al. Effect of ruboxistaurin on urinary transforming growth factor-beta in patients with diabetic nephropathy and type 2 diabetes. Diabetes Care 2007; 30(4): 995-6.
[http://dx.doi.org/10.2337/dc06-2079] [PMID: 17229944]
[164]
Tuttle KR, Bakris GL, Toto RD, McGill JB, Hu K, Anderson PW. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care 2005; 28(11): 2686-90.
[http://dx.doi.org/10.2337/diacare.28.11.2686] [PMID: 16249540]
[165]
Tuttle KR, McGill JB, Haney DJ, Lin TE, Anderson PW. Kidney outcomes in long-term studies of ruboxistaurin for diabetic eye disease. Clin J Am Soc Nephrol 2007; 2(4): 631-6.
[http://dx.doi.org/10.2215/CJN.00840207] [PMID: 17699475]
[166]
Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int 2013; 83(6): 1029-41.
[http://dx.doi.org/10.1038/ki.2012.439] [PMID: 23325084]
[167]
Pergola PE, Raskin P, Toto RD, et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med 2011; 365(4): 327-36.
[http://dx.doi.org/10.1056/NEJMoa1105351] [PMID: 21699484]
[168]
de Zeeuw D, Akizawa T, Audhya P, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med 2013; 369(26): 2492-503.
[http://dx.doi.org/10.1056/NEJMoa1306033] [PMID: 24206459]
[169]
Zoja C, Corna D, Nava V, et al. Analogs of bardoxolone methyl worsen diabetic nephropathy in rats with additional adverse effects. Am J Physiol Renal Physiol 2013; 304(6): F808-19.
[http://dx.doi.org/10.1152/ajprenal.00376.2012] [PMID: 23136004]
[170]
Ka SM, Yeh YC, Huang XR, et al. Kidney-targeting Smad7 gene transfer inhibits renal TGF-β/MAD homologue (SMAD) and nuclear factor κB (NF-κB) signalling pathways, and improves diabetic nephropathy in mice. Diabetologia 2012; 55(2): 509-19.
[http://dx.doi.org/10.1007/s00125-011-2364-5] [PMID: 22086159]
[171]
Zhang Z, Wu F, Zheng F, Li H. Adenovirus-mediated decorin gene transfection has therapeutic effects in a streptozocin-induced diabetic rat model. Nephron, Exp Nephrol 2010; 116(1): e11-21.
[http://dx.doi.org/10.1159/000314669] [PMID: 20502052]
[172]
Flaquer M, Franquesa M, Vidal A, et al. Hepatocyte growth factor gene therapy enhances infiltration of macrophages and may induce kidney repair in db/db mice as a model of diabetes. Diabetologia 2012; 55(7): 2059-68.
[http://dx.doi.org/10.1007/s00125-012-2535-z] [PMID: 22460762]
[173]
Kosugi T, Nakayama T, Li Q, et al. Soluble Flt-1 gene therapy ameliorates albuminuria but accelerates tubulointerstitial injury in diabetic mice. Am J Physiol Renal Physiol 2010; 298(3): F609-16.
[http://dx.doi.org/10.1152/ajprenal.00377.2009] [PMID: 20015944]
[174]
Li D, Wang N, Zhang L, et al. Mesenchymal stem cells protect podocytes from apoptosis induced by high glucose via secretion of epithelial growth factor. Stem Cell Res Ther 2013; 4(5): 103.
[http://dx.doi.org/10.1186/scrt314] [PMID: 24004644]
[175]
Zhang Y, Yuen DA, Advani A, et al. Early-outgrowth bone marrow cells attenuate renal injury and dysfunction via an antioxidant effect in a mouse model of type 2 diabetes. Diabetes 2012; 61(8): 2114-25.
[http://dx.doi.org/10.2337/db11-1365] [PMID: 22596053]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy