Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

‘Convalescent Plasma’- An Effective Treatment Option to Prevent Emerging nCOVID-19- A Review

Author(s): Sumel Ashique*, Tahamina Khatun, Garima Sahu, Aakash Upadhyay, Archana Adhana, Shubneesh Kumar, Navjot Sandhu and Nitish Kumar

Volume 22, Issue 8, 2022

Published on: 17 August, 2022

Article ID: e250422203996 Pages: 19

DOI: 10.2174/1871526522666220425103031

Price: $65

Abstract

To date, no accepted therapy exists for treating the emerging infectious disease nCOVID-19 in a safe and effective way. Although various treatment options are under in the developing phase around the world, several studies concerning convalescent plasma (CP) from recovered patients reported promising effects against nCOVID-19 infected critically ill patients nowadays. The therapy showed very few adverse effects, and it helps diminish the viral load when administered at an early stage of infection. Convalescent plasma appears safe for critically ill nCOVID-19 patients by decreasing serum viral loads, and most cases are virus negative after CP transfusion. The convalescent plasma can be good as it has already been utilized to treat previous pandemics like Ebola, influenza, and SARS-CoV infection. In this review article, we pointed out CP's background, rationality, mechanisms, and safety outcomes to treat nCOVID-19 infected patients.

Keywords: Convalescent plasma, nCOVID-19, Previous use in epidemics, clinical trials, Benefits.

Graphical Abstract

[1]
Tanne JH. Covid-19: FDA approves use of convalescent plasma to treat critically ill patients. BMJ 2020; 368(m1256): m1256.
[http://dx.doi.org/10.1136/bmj.m1256] [PMID: 32217555]
[2]
World Health Organization. Available from: https://covid19.who.int [Last accessed on 23 Jan 2021].
[3]
Brown AJ, Won JJ, Graham RL, et al. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res 2019; 169: 104541.
[http://dx.doi.org/10.1016/j.antiviral.2019.104541] [PMID: 31233808]
[4]
Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017; 9(396): eaal3653.
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[5]
Borba MGS, Val FFA, Sampaio VS, et al. Effect of high vs low doses of chloroquinediphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections: A randomized clinical trial. JAMA Netw Open 2020; 3(4): e208857.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.8857] [PMID: 32330277]
[6]
U.S Food and Drug. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-cautions-against-use- [Accessed on 23 Jan 2021].
[7]
Alanagreh LA, Alzoughool F, Atoum M. Risk of using hydroxychloroquine as a treatment of COVID-19. Int J Risk Saf Med 2020; 31(3): 111-6.
[8]
Ripoll JG, van Helmond N, Senefeld JW, et al. Convalescent plasma for infectious diseases: historical framework and use in COVID-19. Clin Microbiol Newsl 2021; 43(4): 23-32.
[http://dx.doi.org/10.1016/j.clinmicnews.2021.02.001] [PMID: 33564204]
[9]
Florescu DF, Kalil AC, Hewlett AL, et al. Administration of brincidofovir and convalescent plasma in a patient with Ebola virus disease. Clin Infect Dis 2015; 61(6): 969-73.
[http://dx.doi.org/10.1093/cid/civ395] [PMID: 25991468]
[10]
Zhang J, Xie B, Hashimoto K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav Immun 2020; 87: 59-73.
[http://dx.doi.org/10.1016/j.bbi.2020.04.046] [PMID: 32334062]
[11]
Zhou M, Zhang X, Qu J. Coronavirus disease 2019 (COVID-19): A clinical update. Front Med 2020; 14(2): 126-35.
[http://dx.doi.org/10.1007/s11684-020-0767-8] [PMID: 32240462]
[12]
Marano G, Vaglio S, Pupella S, et al. Convalescent plasma: new evidence for an old therapeutic tool? Blood Transfus 2016; 14(2): 152-7.
[PMID: 26674811]
[13]
Khan Z. Karataş Y, Rahman H. Anti COVID-19 drugs: need for more clinical evidence and global action. Adv Ther 2020; 37(6): 2575-9.
[http://dx.doi.org/10.1007/s12325-020-01351-9] [PMID: 32350686]
[14]
Soo YO, Cheng Y, Wong R, et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect 2004; 10(7): 676-8.
[http://dx.doi.org/10.1111/j.1469-0691.2004.00956.x] [PMID: 15214887]
[15]
Wong VW, Dai D, Wu AK, Sung JJ. Treatment of severe acute respiratory syndrome with convalescent plasma. Hong Kong Med J 2003; 9(3): 199-201.
[PMID: 12777656]
[16]
Yeh KM, Chiueh TS, Siu LK, et al. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J Antimicrob Chemother 2005; 56(5): 919-22.
[http://dx.doi.org/10.1093/jac/dki346] [PMID: 16183666]
[17]
Zhou B, Zhong N, Guan Y. Treatment with convalescent plasma for influenza A (H5N1) infection. N Engl J Med 2007; 357(14): 1450-1.
[http://dx.doi.org/10.1056/NEJMc070359] [PMID: 17914053]
[18]
Xu Z, Zhou J, Huang Y, et al. Efficacy of convalescent plasma for the treatment of severe influenza. Crit Care 2020; 24(1): 469.
[http://dx.doi.org/10.1186/s13054-020-03189-7] [PMID: 32727526]
[19]
Beigel JH, Tebas P, Elie-Turenne MC, et al. Immune plasma for the treatment of severe influenza: An open-label, multicentre, phase 2 randomised study. Lancet Respir Med 2017; 5(6): 500-11.
[http://dx.doi.org/10.1016/S2213-2600(17)30174-1] [PMID: 28522352]
[20]
Mupapa K, Massamba M, Kibadi K, et al. Treatment of Ebola hemorrhagic fever with blood transfusions from convalescent patients. J Infect Dis 1999; 179 (Suppl. 1): S18-23.
[http://dx.doi.org/10.1086/514298] [PMID: 9988160]
[21]
van Griensven J, Edwards T, de Lamballerie X, et al. Evaluation of convalescent plasma for Ebola virus disease in Guinea. N Engl J Med 2016; 374(1): 33-42.
[http://dx.doi.org/10.1056/NEJMoa1511812] [PMID: 26735992]
[22]
Zhang B, Liu S, Tan T, et al. Treatment with convalescent plasma for critically ill patients with severe acute respiratory syndrome coronavirus 2 infections. Chest 2020; 158(1): e9-e13.
[http://dx.doi.org/10.1016/j.chest.2020.03.039] [PMID: 32243945]
[23]
Focosi D, Anderson AO, Tang JW, Tuccori M. Convalescent plasma therapy for COVID-19: state of the art. Clin Microbiol Rev 2020; 33(4): e00072-20.
[http://dx.doi.org/10.1128/CMR.00072-20] [PMID: 32792417]
[24]
Hsu JL, Safdar N. Polyclonal immunoglobulins and hyperimmune globulins in prevention and management of infectious diseases. Infectious Disease Clinics 2011; 25(4): 773-88.
[http://dx.doi.org/10.1016/j.idc.2011.07.005] [PMID: 22054755]
[25]
Borba M, de Almeida Val F, Sampaio VS, Alexandre MA, Melo GC, Brito M. Chloroquinediphosphate in two different dosages as adjunctive therapy of hospitalized patients with severe respiratory syndrome in the context of coronavirus (SARS-CoV-2) infection: Preliminary safety results of a randomized, double-blinded, phase IIbs clinical trial (CloroCovid-19 Study). Med Rxiv 2020; 1-30.
[26]
Casadevall A, Pirofski LA. The convalescent sera option for containing COVID-19. J Clin Invest 2020; 130(4): 1545-8.
[http://dx.doi.org/10.1172/JCI138003] [PMID: 32167489]
[27]
Drexler M. Institute of Medicine (US). What you need to know about infectious disease Washington. National Academies Press (US) 2010.
[28]
Piyush R, Rajarshi K, Khan R, Ray S. Convalescent plasma therapy: A promising coronavirus disease 2019 treatment strategy. Open Biol 2020; 10(9): 200174.
[http://dx.doi.org/10.1098/rsob.200174] [PMID: 32898468]
[29]
Pulendran B, Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell 2006; 124(4): 849-63.
[http://dx.doi.org/10.1016/j.cell.2006.02.019] [PMID: 16497593]
[30]
Nicholson LB. The immune system. Essays Biochem 2016; 60(3): 275-301.
[http://dx.doi.org/10.1042/EBC20160017] [PMID: 27784777]
[31]
Casadevall A, Pirofski LA. A new synthesis for antibody-mediated immunity. Nat Immunol 2011; 13(1): 21-8.
[http://dx.doi.org/10.1038/ni.2184] [PMID: 22179281]
[32]
Montelongo-Jauregui D, Vila T, Sultan AS, Jabra-Rizk MA. Convalescent serum therapy for COVID-19: A 19th century remedy for a 21st century disease. PLoS Pathog 2020; 16(8): e1008735.
[http://dx.doi.org/10.1371/journal.ppat.1008735] [PMID: 32785259]
[33]
Bloch EM, Shoham S, Casadevall A, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest 2020; 130(6): 2757-65.
[http://dx.doi.org/10.1172/JCI138745] [PMID: 32254064]
[34]
Ranganathan S, Iyer RN. Convalescent plasma - Is it useful for treating SARS Co-V2 infection? Indian J Med Microbiol 2020; 38(3 & 4): 252-60.
[http://dx.doi.org/10.4103/ijmm.IJMM_20_358] [PMID: 33154232]
[35]
Langhi DM. Junior, Santis GC, Bordin JO. COVID-19 convalescent plasma transfusion. Hematol Transfus Cell Ther 2020; 42(2): 113-5.
[http://dx.doi.org/10.1016/j.htct.2020.04.003] [PMID: 32313872]
[36]
Diep BA, Le VT, Badiou C, et al. IVIG-mediated protection against necrotizing pneumonia caused by MRSA. Sci Transl Med 2016; 8(357): 357ra124.
[http://dx.doi.org/10.1126/scitranslmed.aag1153] [PMID: 27655850]
[37]
Luke TC, Casadevall A, Watowich SJ, Hoffman SL, Beigel JH, Burgess TH. Hark back: passive immunotherapy for influenza and other serious infections. Crit Care Med 2010; 38(4) (Suppl.): e66-73.
[http://dx.doi.org/10.1097/CCM.0b013e3181d44c1e] [PMID: 20154602]
[38]
Al‐Riyami AZ, Schäfer R, van den Berg K, et al. Clinical use of convalescent plasma in the covid‐19 pandemic: A transfusion‐focussed gap analysis with recommendations for future research priorities. Vox Sang 2021; 116(1): 88-98.
[PMID: 32542847]
[39]
Beigel JH, Luke TC. A study in scarlet-convalescent plasma for severe influenza. Crit Care Med 2012; 40(3): 1027-8.
[http://dx.doi.org/10.1097/CCM.0b013e31823d77c3] [PMID: 22343871]
[40]
Kraft CS, Hewlett AL, Koepsell S, et al. The use of TKM-100802 and convalescent plasma in 2 patients with Ebola virus disease in the United States. Clin Infect Dis 2015; 61(4): 496-502.
[http://dx.doi.org/10.1093/cid/civ334] [PMID: 25904375]
[41]
Investigational COVID-19 Convalescent Plasma. Available from: www.fda.gov/regulatory-information/search-fda-guidance-documents/investigational-covid-19-convalescent-plasma [Accessed on January 26 2021].
[42]
Rojas M, Rodríguez Y, Monsalve DM, et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev 2020; 19(7): 102554.
[http://dx.doi.org/10.1016/j.autrev.2020.102554] [PMID: 32380316]
[43]
Samad N, Sodunke TE, Banna HA, et al. Convalescent plasma therapy for management of covid-19: perspectives and deployment in the current global pandemic. Risk Manag Healthc Policy 2020; 13: 2707-28.
[http://dx.doi.org/10.2147/RMHP.S281388] [PMID: 33262668]
[44]
Baveja UK. Diagnosis and management of HIV/AIDS: A clinician’s perspective. BI Publications Pvt Ltd 2004.
[45]
Benjamin RJ. Bacterial contamination of blood components. Rossi's Principles of Transfusion Medicine, Eds Simon TL, McCullough J, Snyder EL, Solheim BG, Trauss RGS. John Wiley & Sons, Ltd. 2016; pp. 608-19.
[http://dx.doi.org/10.1002/9781119013020.ch53]
[46]
Maskens C, Downie H, Wendt A, et al. Hospital-based transfusion error tracking from 2005 to 2010: identifying the key errors threatening patient transfusion safety. Transfusion 2014; 54(1): 66-73.
[http://dx.doi.org/10.1111/trf.12240] [PMID: 23672511]
[47]
Crookston KP, Koenig SC, Reyes MD. Transfusion reaction identification and management at the bedside. J Infus Nurs 2015; 38(2): 104-13.
[http://dx.doi.org/10.1097/NAN.0000000000000097] [PMID: 25723832]
[48]
Chaurasia R, Zaman S, Das B, Chatterjee K. Screening donated blood for transfusion transmitted infections by serology along with NAT and response rate to notification of reactive results: An Indian experience. J Blood Transfus 2014; 2014: 412105.
[49]
Allain JP, Goodrich R. Pathogen reduction of whole blood: utility and feasibility. Transfus Med 2017; 27(5) (Suppl. 5): 320-6.
[http://dx.doi.org/10.1111/tme.12456] [PMID: 28875531]
[50]
Eder A, Goldman M, Rossmann S, Waxman D, Bianco C. Selection criteria to protect the blood donor in North America and Europe: past (dogma), present (evidence), and future (hemovigilance). Transfus Med Rev 2009; 23(3): 205-20.
[http://dx.doi.org/10.1016/j.tmrv.2009.03.003] [PMID: 19539875]
[51]
World Health Organization. Blood donor selection: guidelines on assessing donor suitability for blood donation World Health Organization. 2012. Available from: https://apps.who.int/iris/handle/10665/76724
[52]
Flesland Ø, Osselton WJC. Donor vigilance and hemovigilance. Rossi's Principles of Transfusion Medicine, Eds Simon TL, McCullough J, Snyder EL, Solheim BG, Trauss RGS . John Wiley & Sons, Ltd. 2016; pp. 58-68.
[http://dx.doi.org/10.1002/9781119013020.ch06]
[53]
Roberts DJ, Miflin G, Estcourt L. Convalescent plasma for COVID‐19: Back to the future. Transfus Med 2020; 30(3): 174-6.
[54]
Casadevall A, Joyner MJ, Pirofski LA. A randomized trial of convalescent plasma for COVID-19-potentially hopeful signals. JAMA 2020; 324(5): 455-7.
[http://dx.doi.org/10.1001/jama.2020.10218] [PMID: 32492105]
[55]
Zeng H, Wang D, Nie J, et al. The efficacy assessment of convalescent plasma therapy for COVID-19 patients: A multi-center case series. Signal Transduct Target Ther 2020; 5(1): 219.
[http://dx.doi.org/10.1038/s41392-020-00329-x] [PMID: 33024082]
[56]
Khulood D, Adil MS, Sultana R. Nimra. Convalescent plasma appears efficacious and safe in COVID-19. Ther Adv Infect Dis 2020; 7: 2049936120957931.
[http://dx.doi.org/10.1177/2049936120957931] [PMID: 33062267]
[57]
Joyner MJ, Carter RE, Senefeld JW, et al. Convalescent plasma antibody levels and the risk of death from COVID-19. N Engl J Med 2021; 384(11): 1015-27.
[http://dx.doi.org/10.1056/NEJMoa2031893] [PMID: 33523609]
[58]
Mahase E. Covid-19: US approve emergency use of convalescent plasma despite warnings over lack of evidence. BMJ 2020; 370: m3327.
[59]
Zheng K, Liao G, Lalu MM, Tinmouth A, Fergusson DA, Allan DS. A scoping review of registered clinical trials of convalescent plasma for COVID-19 and a Framework for Accelerated Synthesis of Trial Evidence (FAST Evidence). Transfus Med Rev 2020; 34(3): 158-64.
[http://dx.doi.org/10.1016/j.tmrv.2020.06.005] [PMID: 32771272]
[60]
Joyner MJ, Bruno KA, Klassen SA, et al. Safety update: COVID-19 convalescent plasma in 20,000 hospitalized patients. Mayo Clin Proc 2020; 95(9): 1888-97.
[61]
Schwartz SP, Thompson P, Smith M, et al. Convalescent plasma therapy in four critically ill pediatric patients with coronavirus disease 2019: A case series. Crit Care Explor 2020; 2(10): e0237.
[http://dx.doi.org/10.1097/CCE.0000000000000237] [PMID: 33063037]
[62]
Ye M, Fu D, Ren Y, et al. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China. J Med Virol 2020; 92(10): 1890-901.
[http://dx.doi.org/10.1002/jmv.25882] [PMID: 32293713]
[63]
Korley FK, Durkalski-Mauldin V, Yeatts SD, et al. Early convalescent plasma for high-risk outpatients with COVID-19. N Engl J Med 2021; 385(21): 1951-60.
[http://dx.doi.org/10.1056/NEJMoa2103784] [PMID: 34407339]
[64]
Tamburello A, Marando M. Immunoglobulins or convalescent plasma to tackle COVID-19: buying time to save lives–current situation and perspectives. Swiss Med Wkly 2020; 150: w20264.
[65]
Zhang L, Pang R, Xue X, et al. Anti-SARS-CoV-2 virus antibody levels in convalescent plasma of six donors who have recovered from COVID-19. Aging (Albany NY) 2020; 12(8): 6536-42.
[http://dx.doi.org/10.18632/aging.103102] [PMID: 32320384]
[66]
Lu CL, Murakowski DK, Bournazos S, et al. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science 2016; 352(6288): 1001-4.
[http://dx.doi.org/10.1126/science.aaf1279] [PMID: 27199430]
[67]
Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020; 117(17): 9490-6.
[http://dx.doi.org/10.1073/pnas.2004168117] [PMID: 32253318]
[68]
Rajendran K, Krishnasamy N, Rangarajan J, Rathinam J, Natarajan M, Ramachandran A. Convalescent plasma transfusion for the treatment of COVID-19: Systematic review. J Med Virol 2020; 92(9): 1475-83.
[http://dx.doi.org/10.1002/jmv.25961] [PMID: 32356910]
[69]
Gharbharan A, Jordans CC, Geurtsvan KC, et al. Convalescent plasma for COVID-19. A randomized clinical trial. MEDRxiv 2020.
[70]
Li L, Zhang W, Hu Y, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: A randomized clinical trial. JAMA 2020; 324(5): 460-70.
[http://dx.doi.org/10.1001/jama.2020.10044] [PMID: 32492084]
[71]
Avendano-Sola C, Ramos-Martinez A, Munez-Rubio E, Ruiz-Antoran B. Convalescent Plasma for COVID-19: A multicenter, randomized clinical trial. MedRxiv 2020.
[72]
Agarwal A, Mukherjee A, Kumar G, Chatterjee P, Bhatnagar T, Malhotra P. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentrerandomised controlled trial (PLACID Trial). BMJ 2020; 371: m3939.
[73]
Olivares-Gazca JC, Priesca-Marín JM, Ojeda-Laguna M, et al. Infusion of convalescent plasma is associated with clinical improvement in critically ill patients with COVID-19: A pilot study. Rev Invest Clin 2020; 72(3): 159-64.
[http://dx.doi.org/10.24875/RIC.20000237] [PMID: 32584322]
[74]
Liu ST, Lin HM, Baine I, et al. Convalescent plasma treatment of severe COVID-19: A matched control study. MedRxiv 2020.
[http://dx.doi.org/10.1101/2020.05.20.20102236]
[75]
Zeng QL, Yu ZJ, Gou JJ, et al. Effect of convalescent plasma therapy on viral shedding and survival in patients with coronavirus disease 2019. J Infect Dis 2020; 222(1): 38-43.
[http://dx.doi.org/10.1093/infdis/jiaa228] [PMID: 32348485]
[76]
Donato M, Park S, Baker M, et al. Clinical and laboratory evaluation of patients with SARS-CoV-2 pneumonia treated with high-titer convalescent plasma: A prospective study. MedRxiv 2020.
[http://dx.doi.org/10.1101/2020.07.20.20156398]
[77]
Salazar MR, Gonzalez SE, Regairaz L, et al. Effect of convalescent plasma on mortality in patients with COVID-19 pneumonia. Med Rxiv 2020.
[78]
Vickers NJ. Animal communication: when I’m calling you, will you answer too. Curr Biol 2017; 27(14): R713-5.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[79]
Rasheed AM, Fatak DF, Hashim HA, Maulood MF, Kabah KK, Abdulamir AS. The therapeutic potential of convalescent plasma therapy on treating critically-ill COVID-19 patients residing in respiratory care units in hospitals in Baghdad, Iraq. MedRxiv 2020.
[80]
Xia X, Li K, Wu L, et al. Improved clinical symptoms and mortality on severe/critical COVID-19 patients utilizing convalescent plasma transfusion. Blood 2020; 136(6): 755-9.
[http://dx.doi.org/10.1182/blood.2020007079]
[81]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[82]
Valentini R, Dupont J, Fernandez J, et al. Convalescent plasma as potential therapy for severe COVID-19 pneumonia. MedRxiv 2020.
[http://dx.doi.org/10.1101/2020.09.01.20184390]
[83]
Parida SK, Axelsson-Robertson R, Rao MV, et al. Totally drug-resistant tuberculosis and adjunct therapies. J Intern Med 2015; 277(4): 388-405.
[http://dx.doi.org/10.1111/joim.12264] [PMID: 24809736]
[84]
Jin C, Gu J, Yuan Y, et al. Treatment of 6 COVID-19 patients with convalescent plasma. MedRxiv 2020.
[http://dx.doi.org/10.1101/2020.05.21.20109512]
[85]
Jiang J, Miao Y, Zhao Y, et al. Convalescent plasma therapy: Helpful treatment of COVID-19 in a kidney transplant recipient presenting with severe clinical manifestations and complex complications. Clin Transplant 2020; 34(9): e14025.
[http://dx.doi.org/10.1111/ctr.14025] [PMID: 32602952]
[86]
Figlerowicz M, Mania A, Lubarski K, et al. First case of convalescent plasma transfusion in a child with COVID-19-associated severe aplastic anemia. Transfus Apheresis Sci 2020; 59(5): 102866.
[http://dx.doi.org/10.1016/j.transci.2020.102866] [PMID: 32636116]
[87]
Lee E, Jeong K, Lee J, et al. Clinical and Laboratory Findings of Barley Allergy in Korean Children: A Single Hospital Based Retrospective Study. J Korean Med Sci 2020; 35(3): e23.
[http://dx.doi.org/10.3346/jkms.2020.35.e23] [PMID: 31950778]
[88]
Diorio C, Anderson EM, McNerney KO, et al. Convalescent plasma for pediatric patients with SARS-CoV-2-associated acute respiratory distress syndrome. Pediatr Blood Cancer 2020; 67(11): e28693.
[http://dx.doi.org/10.1002/pbc.28693] [PMID: 32885904]
[89]
Ouyang J, Isnard S, Lin J, et al. Convalescent plasma: the relay baton in the race for coronavirus disease 2019 treatment. Front Immunol 2020; 11: 570063.
[http://dx.doi.org/10.3389/fimmu.2020.570063] [PMID: 33072111]
[90]
Bloch EM. Convalescent plasma to treat COVID-19. Blood 2020; 136(6): 654-5.
[http://dx.doi.org/10.1182/blood.2020007714] [PMID: 32761219]
[91]
Joyner MJ, Wright RS, Fairweather D, et al. Early safety indicators of COVID-19 convalescent plasma in 5000 patients. J Clin Invest 2020; 130(9): 4791-7.
[http://dx.doi.org/10.1172/JCI140200] [PMID: 32525844]
[92]
Wooding DJ, Bach H. Treatment of COVID-19 with convalescent plasma: lessons from past coronavirus outbreaks. Clin Microbiol Infect 2020; 26(10): 1436-46.
[http://dx.doi.org/10.1016/j.cmi.2020.08.005] [PMID: 32791241]
[93]
US National Institutes of Health. National Library of Medicine: Clinical Trials. gov. Effects of dexrazoxane hydrochloride on biomarkers associated with cardiomyopathy and heart failure after cancer treatment. Available from: https://clinicaltrials.gov/ct2/show/NCT01790152
[94]
National Library of Medicine: Clinical Trials. gov. Available from: https://www.clinicaltrials.gov/ct2/results?cond=Corona+virus&term=Convalescent+plasma&cntry=&state=&city=&dist [Accessed on January 25 2021].
[95]
Vanderwerf JD, Kumar MA. Management of neurologic complications of coagulopathies. Handb Clin Neurol 2017; 141: 743-64.
[http://dx.doi.org/10.1016/B978-0-444-63599-0.00040-5] [PMID: 28190445]
[96]
Iba T, Levy JH, Levi M, Connors JM, Thachil J. Coagulopathy of coronavirus disease 2019. Crit Care Med 2020; 48(9): 1358-64.
[http://dx.doi.org/10.1097/CCM.0000000000004458] [PMID: 32467443]
[97]
Miesbach W, Makris M. COVID-19: coagulopathy, risk of thrombosis, and the rationale for anticoagulation. Clin Appl Thromb Hemost 2020; 26: 1076029620938149.
[http://dx.doi.org/10.1177/1076029620938149] [PMID: 32677459]
[98]
Levi M, Iba T. COVID-19 coagulopathy: is it disseminated intravascular coagulation. Intern Emerg Med 2021; 16(2): 309-2.
[PMID: 33368021]
[99]
Terpos E, Ntanasis-Stathopoulos I, Elalamy I, et al. Hematological findings and complications of COVID-19. Am J Hematol 2020; 95(7): 834-47.
[http://dx.doi.org/10.1002/ajh.25829] [PMID: 32282949]
[100]
Yu HH, Qin C, Chen M, Wang W, Tian DS. D-dimer level is associated with the severity of COVID-19. Thromb Res 2020; 195: 219-25.
[http://dx.doi.org/10.1016/j.thromres.2020.07.047] [PMID: 32777639]
[101]
Becker RC. COVID-19 update: COVID-19-associated coagulopathy. J Thromb Thrombolysis 2020; 50(1): 54-67.
[http://dx.doi.org/10.1007/s11239-020-02134-3] [PMID: 32415579]
[102]
Garraud O, Heshmati F, Pozzetto B, et al. Plasma therapy against infectious pathogens, as of yesterday, today and tomorrow. Transfusion Clinique etBiologique 2016; 23(1): 39-44.
[http://dx.doi.org/10.1016/j.tracli.2015.12.003]
[103]
Lünemann JD, Nimmerjahn F, Dalakas MC. Intravenous immunoglobulin in neurology--mode of action and clinical efficacy. Nat Rev Neurol 2015; 11(2): 80-9.
[http://dx.doi.org/10.1038/nrneurol.2014.253] [PMID: 25561275]
[104]
Bilgin YM, Brand A. Transfusion-related immunomodulation: A second hit in an inflammatory cascade? Vox Sang 2008; 95(4): 261-71.
[http://dx.doi.org/10.1111/j.1423-0410.2008.01100.x] [PMID: 19138255]
[105]
Refaai MA, Blumberg N. Transfusion immunomodulation from a clinical perspective: An update. Expert Rev Hematol 2013; 6(6): 653-63.
[http://dx.doi.org/10.1586/17474086.2013.850026] [PMID: 24168641]
[106]
Psaltopoulou T, Sergentanis TN, Pappa V, et al. The emerging role of convalescent plasma in the treatment of COVID-19. HemaSphere 2020; 4(3): e409.
[http://dx.doi.org/10.1097/HS9.0000000000000409] [PMID: 32647807]
[107]
Mansourabadi AH, Sadeghalvad M, Mohammadi-Motlagh HR, Rezaei N. The immune system as a target for therapy of SARS-CoV-2: A systematic review of the current immunotherapies for COVID-19. Life Sci 2020; 258: 118185.
[http://dx.doi.org/10.1016/j.lfs.2020.118185] [PMID: 32750438]
[108]
Sharun K, Tiwari R, Iqbal Yatoo M, et al. Antibody-based immunotherapeutics and use of convalescent plasma to counter COVID-19: Advances and prospects. Expert Opin Biol Ther 2020; 20(9): 1033-46.
[http://dx.doi.org/10.1080/14712598.2020.1796963] [PMID: 32744917]
[109]
van Griensven J, Edwards T, Gallian P. Convalescent plasma for ebola virus disease. N Engl J Med 2016; 374(25): 2500.
[PMID: 27332913]
[110]
Lewis GK, Pazgier M, Evans DT, et al. Beyond viral neutralization. AIDS Res Hum Retroviruses 2017; 33(8): 760-4.
[http://dx.doi.org/10.1089/aid.2016.0299] [PMID: 28084796]
[111]
Anand SP, Finzi A. Understudied factors influencing Fc-Mediated immune responses against viral infections. Vaccines (Basel) 2019; 7(3): 103.
[http://dx.doi.org/10.3390/vaccines7030103] [PMID: 31480293]
[112]
Salazar E, Perez KK, Ashraf M, et al. Treatment of coronavirus disease 2019 (COVID-19) patients with convalescent plasma. Am J Pathol 2020; 190(8): 1680-90.
[http://dx.doi.org/10.1016/j.ajpath.2020.05.014] [PMID: 32473109]
[113]
Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020; 20(4): 398-400.
[http://dx.doi.org/10.1016/S1473-3099(20)30141-9] [PMID: 32113510]
[114]
Dalager-Pedersen M, Bodilsen J. Thromboprophylaxis for medical inpatients with coronavirus disease 2019. Clin Microbiol Infect 2020; 26(9): 1125-6.
[http://dx.doi.org/10.1016/j.cmi.2020.05.021] [PMID: 32454190]
[115]
Kumar VG, Jeyanthi V, Ramakrishnan S. A short review on antibody therapy for COVID-19. New Microbes New Infect 2020; 35: 100682.
[http://dx.doi.org/10.1016/j.nmni.2020.100682] [PMID: 32313660]
[116]
da Silva TJA. Convalescent plasma: A possible treatment of COVID-19 in India. Med J Armed Forces India 2020; 15(2): 236-7.
[http://dx.doi.org/10.1016/j.mjafi.2020.04.006]
[117]
Alzoughool F, Alanagreh LA. Coronavirus drugs: Using plasma from recovered patients as a treatment for COVID-19. Int J Risk Saf Med 2020; 13: 1-5.
[118]
Iyer M, Jayaramayya K, Subramaniam MD, et al. COVID-19: An update on diagnostic and therapeutic approaches. BMB Rep 2020; 53(4): 191-205.
[http://dx.doi.org/10.5483/BMBRep.2020.53.4.080] [PMID: 32336317]
[119]
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[120]
Cheng Y, Wong R, Soo YO, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005; 24(1): 44-6.
[http://dx.doi.org/10.1007/s10096-004-1271-9] [PMID: 15616839]
[121]
Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol 2020; 5(10): 1185-91.
[http://dx.doi.org/10.1038/s41564-020-00789-5] [PMID: 32908214]
[122]
Natarajan H, Crowley AR, Butler SE, et al. SARS-CoV-2 antibody signatures robustly predict diverse antiviral functions relevant for convalescent plasma therapy. Med Rxiv 2020.
[123]
Casadevall A, Pirofski LA. Antibody-mediated regulation of cellular immunity and the inflammatory response. Trends Immunol 2003; 24(9): 474-8.
[http://dx.doi.org/10.1016/S1471-4906(03)00228-X] [PMID: 12967670]
[124]
Pathak EB. Convalescent plasma is ineffective for COVID-19. BMJ 2020; 371: m4072.
[http://dx.doi.org/10.1136/bmj.m4072]
[125]
Chen JW, Chen JM. Potential of live pathogen vaccines for defeating the COVID-19 pandemic: History and mechanism. J Med Virol 2020; 92(9): 1469-74.
[http://dx.doi.org/10.1002/jmv.25920] [PMID: 32320059]
[126]
Zhao Q, He Y. Challenges of convalescent plasma therapy on COVID-19. J Clin Virol 2020; 127: 104358.
[http://dx.doi.org/10.1016/j.jcv.2020.104358] [PMID: 32305026]
[127]
Ahn JY, Sohn Y, Lee SH, et al. Use of convalescent plasma therapy in two COVID-19 patients with acute respiratory distress syndrome in Korea. J Korean Med Sci 2020; 35(14): e149.
[http://dx.doi.org/10.3346/jkms.2020.35.e149] [PMID: 32281317]
[128]
Pouladzadeh M, Safdarian M, Eshghi P, et al. A randomized clinical trial evaluating the immunomodulatory effect of convalescent plasma on COVID-19-related cytokine storm. Intern Emerg Med 2021; 16(8): 2181-91.
[http://dx.doi.org/10.1007/s11739-021-02734-8] [PMID: 33837906]
[129]
Vieillard V, Astier A, Sauzay C, Paul M. One-month stability study of a biosimilar of infliximab (Remsima®) after dilution and storage at 4C and 25C. Anns Pharm Franc 2017; 75(1): 17-29.
[130]
González-García J, Gutiérrez-Nicolás F, Nazco-Casariego GJ, Viña-Romero MM. Long-term stability of trastuzumab in plasma and whole blood samples stored under different conditions. Farmaciahospitalaria 2019; 43(2): 50-2.
[131]
Stadlbauer D, Baine I, Amanat F, et al. Anti-SARS-CoV-2 spike antibodies are stable in convalescent plasma when stored at 4° Celsius for at least 6 weeks. Transfusion 2020; 60(10): 2457-9.
[http://dx.doi.org/10.1111/trf.16047] [PMID: 32798271]
[132]
Tonn T, Corman VM, Johnsen M, et al. Stability and neutralising capacity of SARS-CoV-2-specific antibodies in convalescent plasma. Lancet Microbe 2020; 1(2): e63.
[http://dx.doi.org/10.1016/S2666-5247(20)30037-9] [PMID: 32835332]
[133]
Mukhra R, Krishan K, Kanchan T. Agony of the laborers and daily wagers during the COVID-19 induced lockdown in India. Acta Bio Medica 2020; 91(4)
[134]
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA 2020; 323(18): 1824-36.
[http://dx.doi.org/10.1001/jama.2020.6019] [PMID: 32282022]
[135]
Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect 2020; 53(3): 436-43.
[http://dx.doi.org/10.1016/j.jmii.2020.03.034] [PMID: 32307245]
[136]
Verma HK, Merchant N, Verma MK, et al. Current updates on the European and WHO registered clinical trials of coronavirus disease 2019 (COVID-19). Biomed J 2020; 43(5): 424-33.
[http://dx.doi.org/10.1016/j.bj.2020.07.008] [PMID: 32792167]
[137]
Saadah NH, van Hout FMA, Schipperus MR, et al. Comparing transfusion reaction rates for various plasma types: A systematic review and meta-analysis/regression. Transfusion 2017; 57(9): 2104-14.
[http://dx.doi.org/10.1111/trf.14245] [PMID: 28766723]
[138]
Accorsi P, Berti P, de Angelis V, De Silvestro G, Mascaretti L, Ostuni A. Italian Society for Transfusion Medicine Immunohaematology (SIMTI) Italian Society for Hemapheresis cell Manipulation (SIdEM). Position paper on the preparation of immune plasma to be used in the treatment of patients with COVID-19. Transfus Apheresis Sci 2020; 59(4): 102817.
[http://dx.doi.org/10.1016/j.transci.2020.102817]
[139]
Zhao Q, He Y. Application of convalescent plasma therapy on novel coronavirus infection. Zhonghua Jie He He Hu Xi Za Zhi 2020; 43(5): 409-13.
[PMID: 32450629]
[140]
Eckhardt CM, Cummings MJ, Rajagopalan KN, et al. Evaluating the efficacy and safety of human anti-SARS-CoV-2 convalescent plasma in severely ill adults with COVID-19: A structured summary of a study protocol for a randomized controlled trial. Trials 2020; 21(1): 1-3.
[http://dx.doi.org/10.1186/s13063-020-04504-x] [PMID: 31898511]
[141]
Pyrc K, Bosch BJ, Berkhout B, et al. Inhibition of human coronavirus NL63 infection at early stages of the replication cycle. Antimicrob Agents Chemother 2006; 50(6): 2000-8.
[http://dx.doi.org/10.1128/AAC.01598-05] [PMID: 16723558]
[142]
Shoemaker CJ, Schornberg KL, Delos SE, et al. Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and infection. PLoS One 2013; 8(2): e56265.
[http://dx.doi.org/10.1371/journal.pone.0056265] [PMID: 23441171]
[143]
Bleibtreu A, Jaureguiberry S, Houhou N, et al. Clinical management of respiratory syndrome in patients hospitalized for suspected Middle East respiratory syndrome coronavirus infection in the Paris area from 2013 to 2016. BMC Infect Dis 2018; 18(1): 331-40.
[http://dx.doi.org/10.1186/s12879-018-3223-5] [PMID: 30012113]
[144]
Tan EL, Ooi EE, Lin CY, et al. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg Infect Dis 2004; 10(4): 581-6.
[http://dx.doi.org/10.3201/eid1004.030458] [PMID: 15200845]
[145]
Al-Abdely HM, Midgley CM, Alkhamis AM, et al. Middle East respiratory syndrome coronavirus infection dynamics and antibody responses among clinically diverse patients, Saudi Arabia. Emerg Infect Dis 2019; 25(4): 753-66.
[http://dx.doi.org/10.3201/eid2504.181595] [PMID: 30882305]
[146]
Saeed AA, Abedi GR, Alzahrani AG, et al. Surveillance and testing for Middle East respiratory syndrome coronavirus, Saudi Arabia, April 2015- February 2016. Emerg Infect Dis 2017; 23(4): 682-5.
[http://dx.doi.org/10.3201/eid2304.161793] [PMID: 28322710]
[147]
Sumel A, Navjot SK, Sk HN. Koley Kartick, “a recent update on therapeutics to treat emerging n-COVID 19: a review. Coronaviruses 2021; 2(7): e250621188724.
[http://dx.doi.org/10.2174/2666796701999201204123259]
[148]
Falzarano D, de Wit E, Rasmussen AL, et al. Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat Med 2013; 19(10): 1313-7.
[http://dx.doi.org/10.1038/nm.3362] [PMID: 24013700]
[149]
Omrani AS, Saad MM, Baig K, et al. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: A retrospective cohort study. Lancet Infect Dis 2014; 14(11): 1090-5.
[http://dx.doi.org/10.1016/S1473-3099(14)70920-X] [PMID: 25278221]
[150]
Shalhoub S, Farahat F, Al-Jiffri A, et al. IFN-α2a or IFN-β1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: A retrospective study. J Antimicrob Chemother 2015; 70(7): 2129-32.
[http://dx.doi.org/10.1093/jac/dkv085] [PMID: 25900158]
[151]
Agostini ML, Andres EL, Sims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio 2018; 9(2): e00221-18.
[http://dx.doi.org/10.1128/mBio.00221-18] [PMID: 29511076]
[152]
Abd-Elsalam S, Salama M, Soliman S, et al. Remdesivir efficacy in COVID-19 treatment: A randomized controlled trial. Am J Trop Med Hyg 2021; 106(3): 886-90.
[http://dx.doi.org/10.4269/ajtmh.21-0606] [PMID: 34649223]
[153]
Taylor R, Kotian P, Warren T, et al. BCX4430 - A broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease. J Infect Public Health 2016; 9(3): 220-6.
[http://dx.doi.org/10.1016/j.jiph.2016.04.002] [PMID: 27095300]
[154]
Peters HL, Jochmans D, de Wilde AH, et al. Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity. Bioorg Med Chem Lett 2015; 25(15): 2923-6.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.039] [PMID: 26048809]
[155]
Yamamoto N, Yang R, Yoshinaka Y, et al. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem Biophys Res Commun 2004; 318(3): 719-25.
[http://dx.doi.org/10.1016/j.bbrc.2004.04.083] [PMID: 15144898]
[156]
Oldfield V, Plosker GL. Lopinavir/ritonavir: A review of its use in the management of HIV infection. Drugs 2006; 66(9): 1275-99.
[http://dx.doi.org/10.2165/00003495-200666090-00012] [PMID: 16827606]
[157]
Chan KS, Lai ST, Chu CM, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: A multicentre retrospective matched cohort study. Hong Kong Med J 2003; 9(6): 399-406.
[PMID: 14660806]
[158]
Jin YH, Cai L, Cheng ZS, et al. Evidence-based medicine chapter of china international exchange and promotive association for medical and health care (CPAM). A rapid advice guideline for the diagnosis and treatment of 2019; 1-23.
[159]
El-Bendary M, Abd-Elsalam S, Elbaz T, et al. Efficacy of combined Sofosbuvir and Daclatasvir in the treatment of COVID-19 patients with pneumonia: A multicenter Egyptian study. Expert Rev Anti Infect Ther 2022; 20(2): 291-5.
[PMID: 34225541]
[160]
Dabbous HM, Abd-Elsalam S, El-Sayed MH, et al. Efficacy of favipiravir in COVID-19 treatment: A multi-center randomized study. Arch Virol 2021; 166(3): 949-54.
[http://dx.doi.org/10.1007/s00705-021-04956-9] [PMID: 33492523]
[161]
Kuki Á, Nagy L, Zsuga M, Kéki S. Fast identification of phthalic acid esters in poly (vinyl chloride) samples by direct analysis in real time (DART) tandem mass spectrometry. Int J Mass Spectrom 2011; 303(2-3): 225-8.
[http://dx.doi.org/10.1016/j.ijms.2011.02.011]
[162]
Ghasemnejad-Berenji M, Pashapour S. Favipiravir and COVID-19: A simplified summary. Drug Res (Stuttg) 2021; 71(3): 166-70.
[http://dx.doi.org/10.1055/a-1296-7935] [PMID: 33176367]
[163]
Saijo M, Morikawa S, Fukushi S, et al. Inhibitory effect of mizoribine and ribavirin on the replication of severe acute respiratory syndrome (SARS)-associated coronavirus. Antiviral Res 2005; 66(2-3): 159-63.
[http://dx.doi.org/10.1016/j.antiviral.2005.01.003] [PMID: 15911031]
[164]
Greenough TC, Babcock GJ, Roberts A, et al. Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. J Infect Dis 2005; 191(4): 507-14.
[http://dx.doi.org/10.1086/427242] [PMID: 15655773]
[165]
Shen C, Wang Z, Zhao F, et al. posting date. Treatment of 5 critically ill patients with COVID19 with convalescent plasma. JAMA 2020; 323(16): 1582.
[http://dx.doi.org/10.1001/jama.2020.4783]
[166]
Abd-Elsalam S, Noor RA, Badawi R, et al. Clinical study evaluating the efficacy of ivermectin in COVID-19 treatment: A randomized controlled study. J Med Virol 2021; 93(10): 5833-8.
[http://dx.doi.org/10.1002/jmv.27122] [PMID: 34076901]
[167]
Liu STH, Lin HM, Baine I, et al. Convalescent plasma treatment of severe COVID-19: A propensity score-matched control study. Nat Med 2020; 26(11): 1708-13.
[http://dx.doi.org/10.1038/s41591-020-1088-9] [PMID: 32934372]
[168]
Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol 2020; 214: 108393.
[http://dx.doi.org/10.1016/j.clim.2020.108393] [PMID: 32222466]
[169]
Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020; 19(3): 149-50.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[170]
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020; 178: 104787.
[171]
Ng OW, Tan YJ. Understanding bat SARS-like coronaviruses for the preparation of future coronavirus outbreaks - Implications for coronavirus vaccine development. Hum Vaccin Immunother 2017; 13(1): 186-9.
[http://dx.doi.org/10.1080/21645515.2016.1228500] [PMID: 27644155]
[172]
Abd-Elsalam S, Soliman S, Esmail ES, et al. Do zinc supplements enhance the clinical efficacy of hydroxychloroquine?: A randomized, multicenter trial. Biol Trace Elem Res 2021; 199(10): 3642-6.
[http://dx.doi.org/10.1007/s12011-020-02512-1] [PMID: 33247380]
[173]
Szarpak L, Pruc M, Gasecka A, et al. Should we supplement zinc in COVID-19 patients? Evidence from a meta-analysis. Pol Arch Intern Med 2021; 131(9): 802-7.
[http://dx.doi.org/10.20452/pamw.16048] [PMID: 34180610]
[174]
Roback JD, Guarner J. Convalescent plasma to treat COVID-19: possibilities and challenges. JAMA 2020; 323(16): 1561-2.
[http://dx.doi.org/10.1001/jama.2020.4940] [PMID: 32219429]
[175]
Leider JP, Brunker PA, Ness PM. Convalescent transfusion for pandemic influenza: preparing blood banks for a new plasma product? Transfusion 2010; 50(6): 1384-98.
[http://dx.doi.org/10.1111/j.1537-2995.2010.02590.x] [PMID: 20158681]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy