Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Herbal Compounds as an Antidote Against Snake Bite

Author(s): Priya Dagar and Abha Mishra*

Volume 28, Issue 21, 2022

Published on: 02 June, 2022

Page: [1714 - 1719] Pages: 6

DOI: 10.2174/1381612828666220417134118

Price: $65

Abstract

Snakebites have been declared a neglected health problem that is considered a national disease by the WHO (world health organisation). Asian countries like India have high snakebite death rates due to short antidotes and poorly equipped doctors. In today's scenario, local resources like herbs need to be used to prepare cheap antidotes and are often available to victims. Snake bites should be viewed as an emergency problem and require additional national guidelines, doctor training, expertise, and human concentration for effective and timely treatment-measures to be taken to ensure the availability and mass production of antidotes. Currently available, antidotes have problems with storage, manufacture, and aspects of the results. Attention should be paid to the natural compound Gedunin with antitoxic effects. To determine Gedunin's therapeutic efficacy, well-designed clinical research is required. This article emphasizes and proves the therapeutic effectiveness of the herbal plant active ingredient Gedunin against snakebites.

Keywords: Gedunin, plant-based inhibitors, snake venom, antivenom, antidotes, antitoxic effect.

[1]
Saini RK, Sharma S, Singh S, Pathania NS. Snake bite poisoning: A preliminary report. J Assoc Physicians India 1984; 32(2): 195-7.
[2]
León G, Sánchez L, Hernández A, et al. Immune response towards snake venoms. Inflamm Allergy Drug Targets 2011; 10(5): 381-98.
[http://dx.doi.org/10.2174/187152811797200605 ] [PMID: 21824081]
[3]
Jin H, Varner J. Integrins: Roles in cancer development and astreatment targets. Br J Cancer 2004; 90(3): 561-5.
[http://dx.doi.org/10.1038/sj.bjc.6601576]
[4]
Lake S. Pit vipers: Friends or foe? Archives of the Cold Blooded News 2004; 32(4): 4-7.
[5]
Markland FS Jr. Snake venom fibrinogenolytic and fibrinolytic enzymes: An updated inventory. Thromb Haemost 1998; 79(3): 668-74.
[http://dx.doi.org/10.1055/s-0037-1614964 ] [PMID: 9531060]
[6]
Gomes A, Saha A, Biswas AK, Dasgupta SC. An anti-arrhythmic compound from king cobra venom and a process of purification thereof Patent WO2004050105A1 2003.
[7]
Jain D, Kumar S. Snake venom: A potent anticancer agent. Asian Pac J Cancer Prev 2012; 13(10): 4855-60.
[http://dx.doi.org/10.7314/APJCP.2012.13.10.4855 ] [PMID: 23244070]
[8]
Debnath A, Chatterjee U, Das M, Vedasiromoni JR, Gomes A. Venom of Indian monocellate cobra and Russell’s viper show anticancer activity in experimental models. J Ethnopharmacol 2007; 111(3): 681-4.
[http://dx.doi.org/10.1016/j.jep.2006.12.027 ] [PMID: 17258413]
[9]
Devi CM, Bai MV, Lal AV, Umashankar PR, Krishnan LK. An improved method for isolation of anti-viper venom antibodies from chicken egg yolk. J Biochem Biophys Methods 2002; 51(2): 129-38.
[http://dx.doi.org/10.1016/S0165-022X(02)00002-7 ] [PMID: 12062112]
[10]
Whitaker R, Whitaker S. Venom, antivenom production and the medically necessary snakes of India. Curr Sci 2012; 103(6): 635-53.
[11]
Simpson ID, Jacobsen IM. Antisnake venom production crisis-who told us it was uneconomic and unsustainable? Wilderness Environ Med 2009; 20(2): 144-55.
[http://dx.doi.org/10.1580/08-WEME-CON-273R1.1]
[12]
Gupta YK, Peshin SS. Do herbal medicines have potential for managing snake bite envenomation? Toxicol Int 2012; 19(2): 89-99.
[http://dx.doi.org/10.4103/0971-6580.97194 ] [PMID: 22778503]
[13]
Samy RP, Thwin MM, Gopalakrishnakone P, Ignacimuthu S. Ethnobotanical survey of folk plants for the treatment of snakebites in Southern part of Tamilnadu, India. J Ethnopharmacol 2008; 115(2): 302-12.
[http://dx.doi.org/10.1016/j.jep.2007.10.006 ] [PMID: 18055146]
[14]
Selvanayagam ZE, Gnanavendhan SG, Balakrishna K, et al. Ehretianone, a novel quinonoid xanthene from Ehretia buxifolia with antisnake venom activity. J Nat Prod 1996; 59(7): 664-7.
[http://dx.doi.org/10.1021/np960355p ] [PMID: 8759162]
[15]
Sikdar M, Dutta U. Traditional phytotherapy among the Nath people of Assam. Ethno Med 2008; 2(1): 39-45.
[16]
Dwivedi S, Shrivastava S, Dubey D, Kapoor S. Herbal remedies used to treat scorpion sting and snake bite from the Malwa region of Madhya Pradesh. Ethnobotan Leaflets 2009; 13: 326-8.
[17]
Bhandari S, Dobhal U, Sajwan M, Bisht NS. Trichosanthes tricuspidata: A medicinally important plant. Trees Life J 2008; 3(5)
[18]
Panghal M, Arya V, Yadav S, Kumar S, Yadav JP. Indigenous knowledge of medicinal plants used by Saperas community of Khetawas, Jhajjar District, Haryana, India. J Ethnobiol Ethnomed 2010; 6(1): 4.
[http://dx.doi.org/10.1186/1746-4269-6-4 ] [PMID: 20109179]
[19]
Hiremath VT, Taranath TC. Traditional phytotherapy for snake bites by tribes of Chitradurga District Karnataka, India: Ethnobotan Leaflets 2010;2010(2).
[20]
Gupta YK, Peshin SS. Snake bite in India: Current scenario of an old problem. J Clin Toxicol 2014; 4(1): 1-9.
[21]
Pithayanukul P, Lapett B, Bavovada R, Pakmanee N, Suttisri R. Inhibition of proteolytic and hemorrhagic activities by ethyl acetate extract of Eclipta prostrate, against Malayan pit viper venom article. Pharm Biol 2008; 45(4): 282-8.
[22]
Borges MH, Alves DL, Raslan DS, Piló-Veloso D, Rodrigues VM, Homsi-Brandeburgo MI. Neutralizing Musa paradisiaca L. (Musaceae) juice on phospholipase A2, myotoxic, hemorrhagic and lethal activities of Crotalidae venoms. J Ethnopharmacol 2005; 98(1-2): 21-9.
[23]
Efficacy of tannins from Mimosa pudica and tannic acid in neutralizing cobra (Naja kaouthia) venom. 2008. Available from: https://www.researchgate.net/publication/236019716_Efficacy_of_tannins_from_Mimosa_pudica_and_tannic_acid_in_neutralizing_cobra_Naja_kaouthia_venom
[24]
Núñez V, Otero R, Barona J, et al. Neutralization of the edema-forming, defibrinating and coagulant effects of Bothrops asper venom by extracts of plants used by healers in Colombia. Braz J Med Biol Res 2004; 37(7): 969-77.
[http://dx.doi.org/10.1590/S0100-879X2004000700005 ] [PMID: 15264003]
[25]
da Silva SL, Calgarotto AK, Chaar JS, Marangoni S. Isolation and characterization of ellagic acid derivatives isolated from Casearia sylvestris SW aqueous extract with antiPLA2 activity. Toxicon 2008; 52(6): 655-66.
[http://dx.doi.org/10.1016/j.toxicon.2008.07.011]
[26]
Ushanandini S, Nagaraju S, Nayaka SC, Kumar KH, Kemparaju K, Girish KS. The anti-ophidian properties of Anacardium occidentale bark extract. Immunopharmacol Immunotoxicol 2009; 31(4): 607-15.
[http://dx.doi.org/10.3109/08923970902911909 ] [PMID: 19874230]
[27]
Mendes MM, Oliveira CF, Lopes DS, et al. Anti-snake venom properties of Schizolobium parahyba (Caesalpinoideae) aqueous leaves extract. Phytother Res 2008; 22(7): 859-66.
[http://dx.doi.org/10.1002/ptr.2371 ] [PMID: 18567056]
[28]
Chatterjee I, Chakravarty AK, Gomes A. Daboia russellii and Naja kaouthia venom neutralization by lupeol acetate isolated from the root extract of Indian Sarsaparilla hemidesmus indicus R. Br J Ethnopharmacol 2006; 106(1): 38-43.
[29]
Alam MI, Auddy B, Gomes A. Isolation, purification and partial characterization of viper venom inhibiting factor from the root extract of the Indian medicinal plant Sarsaparilla (Hemidesmus indicus R. Br.). Toxicon 1994; 32(12): 1551-7.
[http://dx.doi.org/10.1016/0041-0101(94)90314-X ] [PMID: 7725324]
[30]
Pithayanukul P, Leanpolchareanchai J, Bavovada R. Inhibitory effect of tea polyphenols on local tissue damage induced by snake venoms. Phytother Res 2010; 24(Suppl. 1): S56-62.
[http://dx.doi.org/10.1002/ptr.2903 ] [PMID: 19585481]
[31]
Girish KS, Mohanakumari HP, Nagaraju S, Vishwanath BS, Kemparaju K. Hyaluronidase and protease activities from Indian snake venoms: Neutralization by Mimosa pudica root extract. Fitoterapia 2004; 75(3-4): 378-80.
[http://dx.doi.org/10.1016/j.fitote.2004.01.006 ] [PMID: 15159000]
[32]
Assafim M, Ferreira MS, Frattani FS, Guimarães JA, Monteiro RQ, Zingali RB. Counteracting effect of glycyrrhizin on the hemostatic abnormalities induced by Bothrops jararaca snake venom. Br J Pharmacol 2006; 148(6): 807-13.
[http://dx.doi.org/10.1038/sj.bjp.0706786 ] [PMID: 16751793]
[33]
Alam MI, Gomes A. Snake venom neutralization by Indian medicinal plants (Vitex negundo and Emblica officinalis) root extracts. J Ethnopharmacol 2003; 86(1): 75-80.
[http://dx.doi.org/10.1016/S0378-8741(03)00049-7 ] [PMID: 12686445]
[34]
Nishijima CM, Rodrigues CM, Silva MA, Lopes-Ferreira M, Vilegas W, Hiruma-Lima CA. Anti-hemorrhagic activity of four Brazilian vegetable species against Bothrops jararaca venom. Molecules 2009; 14(3): 1072-80.
[http://dx.doi.org/10.3390/molecules14031072 ] [PMID: 19305361]
[35]
Leanpolchareanchai J, Pithayanukul P, Bavovada R. Anti-necrosis potential of polyphenols against snake venoms. Immunopharmacol Immunotoxicol 2009; 31(4): 556-62.
[http://dx.doi.org/10.3109/08923970902821702 ] [PMID: 19874222]
[36]
da Silva JO, Fernandes RS, Ticli FK, et al. Triterpenoid saponins, new metalloprotease snake venom inhibitors isolated from Pentaclethra macroloba. Toxicon 2007; 50(2): 283-91.
[http://dx.doi.org/10.1016/j.toxicon.2007.03.024 ] [PMID: 17517426]
[37]
Ferreira LA, Henriques OB, Andreoni AA, et al. Antivenom and biological effects of ar-turmerone isolated from Curcuma longa (Zingiberaceae). Toxicon 1992; 30(10): 1211-8.
[http://dx.doi.org/10.1016/0041-0101(92)90437-A ] [PMID: 1440627]
[38]
Mahadeswaraswamy YH, Devaraja S, Kumar MS, Goutham YN, Kemparaju K. Inhibition of local effects of Indian Daboia/Vipera russelli venom by the methanolic extract of grape (Vitis vinifera L.) seeds. Indian J Biochem Biophys 2009; 46(2): 154-60.
[PMID: 19517992]
[39]
da Silva AJ, Coelho AL, Simas AB, et al. Synthesis and pharmacological evaluation of prenylated and benzylated pterocarpans against snake venom. Bioorg Med Chem Lett 2004; 14(2): 431-5.
[http://dx.doi.org/10.1016/j.bmcl.2003.10.044 ] [PMID: 14698175]
[40]
Castro KN, Carvalho AL, Almeida AP, et al. Preliminary in vitro studies on the Marsypianthes chamaedrys (boia-caá) extracts at fibrinoclotting induced by snake venoms. Toxicon 2003; 41(7): 929-32.
[http://dx.doi.org/10.1016/S0041-0101(03)00087-4 ] [PMID: 12782094]
[41]
Mukherjee AK, Doley R, Saikia D. Isolation of a snake venom phospholipase A2 (PLA2) inhibitor (AIPLAI) from leaves of Azadirachta indica (neem): Mechanism of PLA2 inhibition by AIPLAI in vitro condition. Toxicon 2008; 51(8): 1548-53.
[http://dx.doi.org/10.1016/j.toxicon.2008.03.021 ] [PMID: 18466944]
[42]
Machiah DK, Girish KS, Gowda TV. A glycoprotein from a folk medicinal plant, Withania somnifera, inhibits hyaluronidase activity of snake venoms. Comp Biochem Physiol C Toxicol Pharmacol 2006; 143(2): 158-61.
[http://dx.doi.org/10.1016/j.cbpc.2006.01.006 ] [PMID: 16513428]
[43]
Nunez V, Castro V, Murillo R, Ponce-Soto LA, Merfort I, Lomonte B. Inhibitory effects of Piper umbellatum & Piper peltatum extracts towards myotoxic phospholipases A2 from bothrops snake venoms: Isolation of 4-nerolidycatechol as active principle. Phytochemistry 2005; 66(9): 1017-25.
[44]
Meenatchisundaram S, Parameswari G, Subbraj T, Michael A. Studies on antivenom activity of Andrographis paniculata and Aristolochia indica plant extracts against Echis carinatus venom. The Internet J Toxicol 2009; 2(4): 76-9.
[45]
Vishwanath BS, Kini RM, Gowda TV. Characterization of three edema-inducing phospholipase A2 enzymes from habu (Trimeresurus flavoviridis) venom and their interaction with the alkaloid aristolochic acid. Toxicon 1987; 25(5): 501-15.
[http://dx.doi.org/10.1016/0041-0101(87)90286-8 ] [PMID: 3617087]
[46]
Soares AM, Ticli FK, Marcussi S, et al. Medicinal plants with inhibitory properties against snake venoms. Curr Med Chem 2005; 12(22): 2625-41.
[http://dx.doi.org/10.2174/092986705774370655 ] [PMID: 16248818]
[47]
Guerranti R, Aguiyi JC, Ogueli IG, et al. Protection of Mucuna pruriens seeds against Echis carinatus venom is exerted through a multiform glycoprotein whose oligosaccharide chains are functional in this role. Biochem Biophys Res Commun 2004; 323(2): 484-90.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.122 ] [PMID: 15369777]
[48]
Tan NH, Fung SY, Sim SM, Marinello E, Guerranti R, Aguiyi JC. The protective effect of Mucuna pruriens seeds against snake venom poisoning. J Ethnopharmacol 2009; 123(2): 356-8.
[http://dx.doi.org/10.1016/j.jep.2009.03.025]
[49]
Chatterjee I, Chakravarty AK, Gomes A. Antisnake venom activity of ethanolic seed extract of Strychnos nux vomica linn. Indian J Exp Biol 2004; 42(5): 468-75.
[PMID: 15233470]
[50]
Skaria BP, Joy PP, Mathew G, Mathew S. Zingiberaceous plants in traditional medicine. Proceedings of National seminar on role of medicinal and aromatic plants in Ayurveda, unani and siddha systems of medicine 2005; 4-5.
[51]
Chethankumar M, Srinivas L. New biological activity against phospholipase A2 by turmerin, a protein from Curcuma longa L. Biol Chem 2008; 389(3): 299-303.
[52]
Araya C, Lomonte B. Antitumor effects of cationic synthetic peptides derived from Lys49 phospholipase A2 homologues of snake venoms. Cell Biol Int 2007; 31(3): 263-8.
[http://dx.doi.org/10.1016/j.cellbi.2006.11.007 ] [PMID: 17178238]
[53]
da Silva ML, Marcussi S, Fernandes RS, et al. Anti-snake venom activities of extracts and fractions from callus cultures of Sapindus saponaria. Pharm Biol 2012; 50(3): 366-75.
[http://dx.doi.org/10.3109/13880209.2011.608072 ] [PMID: 22133075]
[54]
Ticli FK, Hage LIS, Cambraia RS, et al. Rosmarinic acid, a new snake venom phospholipase A2 inhibitor from Cordia verbenacea (Boraginaceae): Antiserum action potentiation and molecular interaction. Toxicon 2005; 46(3): 318-27.
[http://dx.doi.org/10.1016/j.toxicon.2005.04.023 ] [PMID: 15992846]
[55]
Rani K, Mumtaz M, Priyank R, et al. Phytochemical screening by FTIR spectroscopic analysis of methanol leaf extract of herb Andrographis echioides. J Ayur Herb Med 2021; 7(4): 257-61.
[http://dx.doi.org/10.31254/jahm.2021.7408. ]
[56]
McConkey BJ, Sobolev V, Edelman M. The performance of current methods in ligand-protein docking. Curr Sci 2002; 83(7): 845-56.
[57]
Kwon H, Mo Y, Park J, Keun J. A new computer-aided method for detecting brain metastases on contrast-enhanced MR images. Inverse Prob Imag 2014; 8(2): 491-505.
[http://dx.doi.org/10.3934/ipi.2014.8.491]
[58]
Hajduk PJ, Huth JR, Fesik SW. Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 2005; 48(7): 2518-25.
[http://dx.doi.org/10.1021/jm049131r ] [PMID: 15801841]
[59]
Redzej A, Waksman G, Orlova E. Structural studies of T4S systems by electron microscopy. AIMS Biophys 2015; 2(2): 184-99.
[http://dx.doi.org/10.3934/biophy.2015.2.184]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy