Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Efficacy of Flavonoids in Combating Fluconazole Resistant Oral Candidiasis

Author(s): Dipti Srivastava, Aarti Yadav, Salma Naqvi*, Himani Awasthi and Zeeshan Fatima

Volume 28, Issue 21, 2022

Published on: 12 May, 2022

Page: [1703 - 1713] Pages: 11

DOI: 10.2174/1381612828666220324140257

Price: $65

Abstract

Background: Candida is an opportunistic fungus often present in the oral mucosa. In the compromised immune system, it may become pathogenic and cause oral candidiasis. This infection is more common with Candida albicans; though, non-albicans Candida spp also have significant relevance. Current treatment guidelines include polyenes, azoles and echinocandins, where fluconazole is the primary therapeutic option. However, both inherited and acquired resistance to fluconazole is exhaustively reported. The development of resistance has resulted in the worsening of the original and re-emergence of new fungal diseases. Thus, the development of an anti-candidiasis therapy with a satisfactory outcome is the urgent need of the hour.

Objective: This review article aims to stimulate research in establishing the synergistic efficacy of various flavonoids with fluconazole to combat the resistance and develop an effective pharmacotherapy for the treatment of oral candidiasis. Further, in this article, we discuss in detail the mechanisms of action of fluconazole, along with the molecular basis of the development of resistance in Candida species.

Methods: PubMed and other databases were used for literature search.

Results: The designing of natural drugs from the plant-derived phytochemicals are the promising alternatives in modern medicine. The challenge today is the development of alternative anti-oral candidiasis drugs with increased efficacy, bioavailability and better outcome which can combat azole resistance. Identifying the flavonoids with potential antifungal action at low concentrations seems to meet the challenges.

Conclusion: Phyto-active constituents, either alone or in combination with conventional antibiotics may be an effective approach to deal with global antimicrobial resistance. The efficacy of herbal therapy for decades suggests that bacteria, fungi, and viruses may have a reduced ability to adapt and resistance to these natural antimicrobial regimes.

Keywords: Candida, oral candidiasis, flavonoids, fluconazole, resistance, antifungal.

[1]
Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: A persistent public health problem. Clin Microbiol Rev 2007; 20(1): 133-63.
[http://dx.doi.org/10.1128/CMR.00029-06 ] [PMID: 17223626]
[2]
Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the infectious diseases society of America. Clin Infect Dis 2016; 62(4): e1-e50.
[http://dx.doi.org/10.1093/cid/civ933 ] [PMID: 26679628]
[3]
Matthaiou DK, Christodoulopoulou T, Dimopoulos G. How to treat fungal infections in ICU patients. BMC Infect Dis 2015; 15(1): 205.
[http://dx.doi.org/10.1186/s12879-015-0934-8 ] [PMID: 25930035]
[4]
Lionakis MS, Netea MG. Candida and host determinants of susceptibility to invasive candidiasis. PLoS Pathog 2013; 9(1): e1003079.
[http://dx.doi.org/10.1371/journal.ppat.1003079 ] [PMID: 23300452]
[5]
Barchiesi F, Orsetti E, Osimani P, Catassi C, Santelli F, Manso E. Factors related to outcome of bloodstream infections due to Candida parapsilosis complex. BMC Infect Dis 2016; 16(1): 387.
[http://dx.doi.org/10.1186/s12879-016-1704-y ] [PMID: 27507170]
[6]
Lucas VS. Association of psychotropic drugs, prevalence of denture-related stomatitis and oral candidosis. Community Dent Oral Epidemiol 1993; 21(5): 313-6.
[http://dx.doi.org/10.1111/j.1600-0528.1993.tb00782.x ] [PMID: 7900956]
[7]
de Oliveira Santos GC, Vasconcelos CC, Lopes AJO, et al. Candida infections and therapeutic strategies: Mechanisms of action for traditional and alternative agents. Front Microbiol 2018; 9: 1351.
[http://dx.doi.org/10.3389/fmicb.2018.01351 ] [PMID: 30018595]
[8]
Diebold S, Overbeck M. Soft tissue disorders of the mouth. Emerg Med Clin North Am 2019; 37(1): 55-68.
[http://dx.doi.org/10.1016/j.emc.2018.09.006 ] [PMID: 30454780]
[9]
Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. Oral candidiasis: A disease of opportunity. J Fungi (Basel) 2020; 6(1): 15.
[http://dx.doi.org/10.3390/jof6010015 ] [PMID: 31963180]
[10]
Millsop JW, Fazel N. Oral candidiasis. Clin Dermatol 2016; 34(4): 487-94.
[http://dx.doi.org/10.1016/j.clindermatol.2016.02.022 ] [PMID: 27343964]
[11]
Guida RA. Candidiasis of the oropharynx and esophagus. Ear Nose Throat J 1988; 67(11): 832-840, 834-836, 838-840.
[PMID: 3073941]
[12]
Kirchner FR, Littringer K, Altmeier S, et al. Persistence of Candida albicans in the oral mucosa induces a curbed inflammatory host response that is independent of immunosuppression. Front Immunol 2019; 10: 330.
[http://dx.doi.org/10.3389/fimmu.2019.00330 ] [PMID: 30873177]
[13]
Gacon I, Loster JE, Wieczorek A. Relationship between oral hygiene and fungal growth in patients: Users of an acrylic denture without signs of inflammatory process. Clin Interv Aging 2019; 14: 1297-302.
[http://dx.doi.org/10.2147/CIA.S193685 ] [PMID: 31409979]
[14]
Lalla RV, Latortue MC, Hong CH, et al. A systematic review of oral fungal infections in patients receiving cancer therapy. SCC 2010; 18(8): 985-92.
[http://dx.doi.org/10.1007/s00520-010-0892-z ] [PMID: 20449755]
[15]
Fraser VJ, Jones M, Dunkel J, Storfer S, Medoff G, Dunagan WC. Candidemia in a tertiary care hospital: Epidemiology, risk factors, and predictors of mortality. Clin Infect Dis 1992; 15(3): 414-21.
[http://dx.doi.org/10.1093/clind/15.3.414 ] [PMID: 1520786]
[16]
Spalanzani RN, Mattos K, Marques LI, et al. Clinical and laboratorial features of oral candidiasis in HIV-positive patients. Rev Soc Bras Med Trop 2018; 51(3): 352-6.
[http://dx.doi.org/10.1590/0037-8682-0241-2017 ] [PMID: 29972567]
[17]
Dupont B, Graybill J, Armstrong D, et al. Fungal infections in AIDS patients. J Med Vet Mycol 1992; 30(Suppl. 1): 19-28.
[http://dx.doi.org/10.1080/02681219280000731]
[18]
Epstein JB. Antifungal therapy in oropharyngeal mycotic infections. Oral Surg Oral Med Oral Pathol 1990; 69(1): 32-41.
[http://dx.doi.org/10.1016/0030-4220(90)90265-T ] [PMID: 2404226]
[19]
Pfaller MA, Diekema DJ, Gibbs DL, et al. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: A 10.5-year analysis of susceptibilities of Candida species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol 2010; 48(4): 1366-77.
[http://dx.doi.org/10.1128/JCM.02117-09 ] [PMID: 20164282]
[20]
Tinoush B, Shirdel I, Wink M. Phytochemicals: Potential lead molecules for MDR reversal. Front Pharmacol 2020; 11: 832.
[http://dx.doi.org/10.3389/fphar.2020.00832 ] [PMID: 32636741]
[21]
Lillehoj H, Liu Y, Calsamiglia S, et al. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet Res 2018; 49(1): 76.
[http://dx.doi.org/10.1186/s13567-018-0562-6 ] [PMID: 30060764]
[22]
Khameneh B, Iranshahy M, Soheili V, Fazly Bazzaz BS. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob Resist Infect Control 2019; 8(1): 118.
[http://dx.doi.org/10.1186/s13756-019-0559-6 ] [PMID: 31346459]
[23]
Arulmozhi P, Vijayakumar S, Kumar T. Phytochemical analysis and antimicrobial activity of some medicinal plants against selected pathogenic microorganisms. Microb Pathog 2018; 123: 219-26.
[http://dx.doi.org/10.1016/j.micpath.2018.07.009 ] [PMID: 30009969]
[24]
Reinhardt LC, Nascente PDS, Ribeiro JS, Etges A, Lund RG. A single-center 18-year experience with oral candidiasis in Brazil: A retrospective study of 1,534 cases. Braz Oral Res 2018; 32: e92.
[http://dx.doi.org/10.1590/1807-3107bor-2018.vol32.0092 ] [PMID: 30231172]
[25]
Stelzner A, F.C. Odds. Candida and Candidosis, a review and bibliography. X+ 468 S., 97 Abb., 92 Tab. u. 22 Farbtafeln. London- Philadelphia-Toronto-Sydney-Tokyo 1988. Baillière Tindall (W.B. Saunders). In: J Basic Microbiol 1990; 30: pp. (5)382-3.
[http://dx.doi.org/10.1002/jobm.3620300522]
[26]
Chau AS, Gurnani M, Hawkinson R, Laverdiere M, Cacciapuoti A, McNicholas PM. Inactivation of sterol Δ5,6-desaturase attenuates virulence in Candida albicans. Antimicrob Agents Chemother 2005; 49(9): 3646-51.
[http://dx.doi.org/10.1128/AAC.49.9.3646-3651.2005 ] [PMID: 16127034]
[27]
Patil S, Rao RS, Majumdar B, Anil S. Clinical appearance of oral Candida infection and therapeutic strategies. Front Microbiol 2015; 6: 1391.
[http://dx.doi.org/10.3389/fmicb.2015.01391 ] [PMID: 26733948]
[28]
Acharya S, Lohe V, Bhowate R. Diagnosis and management of Pseudomembranous candidiasis. J Otolaryngol Res 2017; 8(3): 1-4.
[29]
Sharma A. Oral candidiasis: An opportunistic infection: A review. Int J Applied Dent Sci 2019; 5(1): 23-7.
[30]
Lamey PJ, Lewis MA, MacDonald DG. Treatment of Candida leukoplakia with fluconazole. Br Dent J 1989; 166(8): 296-8.
[http://dx.doi.org/10.1038/sj.bdj.4806796 ] [PMID: 2541752]
[31]
Sitheeque MA, Samaranayake LP. Chronic hyperplastic candidosis/candidiasis (candidal leukoplakia). Crit Rev Oral Biol Med 2003; 14(4): 253-67.
[http://dx.doi.org/10.1177/154411130301400403 ] [PMID: 12907694]
[32]
Lund RG, da Silva Nascente P, Etges A, Ribeiro GA, Rosalen PL, Del Pino FA. Occurrence, isolation and differentiation of Candida spp. and prevalence of variables associated to chronic atrophic candidiasis. Mycoses 2010; 53(3): 232-8.
[http://dx.doi.org/10.1111/j.1439-0507.2009.01697.x ] [PMID: 19389071]
[33]
Edziri H, Mastouri M, Mahjoub MA, Mighri Z, Mahjoub A, Verschaeve L. Antibacterial, antifungal and cytotoxic activities of two flavonoids from Retama raetam flowers. Molecules 2012; 17(6): 7284-93.
[http://dx.doi.org/10.3390/molecules17067284 ] [PMID: 22695233]
[34]
Goregen M, Miloglu O, Buyukkurt MC, Caglayan F, Aktas AE. Median rhomboid glossitis: A clinical and microbiological study. Eur J Dent 2011; 5(4): 367-72.
[http://dx.doi.org/10.1055/s-0039-1698907 ] [PMID: 21912494]
[35]
Rogers RS III, Bruce AJ. The tongue in clinical diagnosis. J Eur Acad Dermatol Venereol 2004; 18(3): 254-9.
[http://dx.doi.org/10.1111/j.1468-3083.2004.00769.x ] [PMID: 15096129]
[36]
Suryana K, Suharsono H, Antara IGPJ. Factors associated with oral candidiasis in people living with HIV/AIDS: A case control study. HIV AIDS (Auckl) 2020; 12: 33-9.
[http://dx.doi.org/10.2147/HIV.S236304 ] [PMID: 32021484]
[37]
Akpan A, Morgan R. Oral candidiasis. Postgrad Med J 2002; 78(922): 455-9.
[http://dx.doi.org/10.1136/pmj.78.922.455 ] [PMID: 12185216]
[38]
Oza N, Doshi JJ. Angular cheilitis: A clinical and microbial study. Indian J Dent Res 2017; 28(6): 661-5.
[http://dx.doi.org/10.4103/ijdr.IJDR_668_16 ] [PMID: 29256466]
[39]
Pfaller MA, Moet GJ, Messer SA, Jones RN, Castanheira M. Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: Report from the SENTRY antimicrobial surveillance program (2008 to 2009). J Clin Microbiol 2011; 49(1): 396-9.
[http://dx.doi.org/10.1128/JCM.01398-10 ] [PMID: 21068282]
[40]
Hu L, He C, Zhao C, Chen X, Hua H, Yan Z. Characterization of oral candidiasis and the Candida species profile in patients with oral mucosal diseases. Microb Pathog 2019; 134: 103575.
[http://dx.doi.org/10.1016/j.micpath.2019.103575 ] [PMID: 31175972]
[41]
Singh BN, Upreti DK, Singh BR, et al. Quercetin sensitizes fluconazole-resistant Candida albicans to induce apoptotic cell death by modulating quorum sensing. Antimicrob Agents Chemother 2015; 59(4): 2153-68.
[http://dx.doi.org/10.1128/AAC.03599-14 ] [PMID: 25645848]
[42]
Salvatori O, Puri S, Tati S, Edgerton M. Innate immunity and saliva in Candida albicans–mediated oral diseases. J Dent Res 2016; 95(4): 365-71.
[http://dx.doi.org/10.1177/0022034515625222 ] [PMID: 26747422]
[43]
Vila T, Rizk AM, Sultan AS, Jabra-Rizk MA. The power of saliva: Antimicrobial and beyond. PLoS Pathog 2019; 15(11): e1008058.
[http://dx.doi.org/10.1371/journal.ppat.1008058 ] [PMID: 31725797]
[44]
Mandell GLBJ, Dolin R. Anti-fungal agents. 4th ed. New York: Churchill Livingstone 1994.
[45]
Sroussi HY, Epstein JB, Bensadoun RJ, et al. Common oral complications of head and neck cancer radiation therapy: Mucositis, infections, saliva change, fibrosis, sensory dysfunctions, dental caries, periodontal disease, and osteoradionecrosis. Cancer Med 2017; 6(12): 2918-31.
[http://dx.doi.org/10.1002/cam4.1221 ] [PMID: 29071801]
[46]
Iinuma T, Arai Y, Fukumoto M, et al. Maximum occlusal force and physical performance in the oldest old: The Tokyo oldest old survey on total health. J Am Geriatr Soc 2012; 60(1): 68-76.
[http://dx.doi.org/10.1111/j.1532-5415.2011.03780.x ] [PMID: 22211666]
[47]
Anwar F, Al-Abbasi FA, Nadeem MS, et al. Biochemical evaluation of Nigella sativa L. seeds on fluconazole toxicity in Wistar rats. J Taibah Univ Sci 2020; 14(1): 734-41.
[http://dx.doi.org/10.1080/16583655.2020.1774134]
[48]
Spampinato C, Leonardi D. Candida infections, causes, targets, and resistance mechanisms: Traditional and alternative antifungal agents. BioMed Res Int 2013; 2013: 204237.
[PMID: 23878798]
[49]
Galgiani JN, Ampel NM, Blair JE, et al. 2016 Infectious diseases society of America (IDSA) clinical practice guideline for the treatment of coccidioidomycosis. Clin Infect Dis 2016; 63(6): e112-46.
[http://dx.doi.org/10.1093/cid/ciw360 ] [PMID: 27470238]
[50]
Govindarajan A, Bistas KG, Aboeed A. Fluconazole. StatPearls 2022.
[PMID: 30725843]
[51]
Bandara HMHN, Wood DLA, Vanwonterghem I, Hugenholtz P, Cheung BPK, Samaranayake LP. Fluconazole resistance in Candida albicans is induced by Pseudomonas aeruginosa quorum sensing. Sci Rep 2020; 10(1): 7769.
[http://dx.doi.org/10.1038/s41598-020-64761-3 ] [PMID: 32385378]
[52]
Hitchcock CA. Cytochrome P-450-dependent 14 α-sterol demethylase of Candida albicans and its interaction with azole antifungals. Biochem Soc Trans 1991; 19(3): 782-7.
[http://dx.doi.org/10.1042/bst0190782 ] [PMID: 1783216]
[53]
Joseph-Horne T, Hollomon DW. Molecular mechanisms of azole resistance in fungi. FEMS Microbiol Lett 1997; 149(2): 141-9.
[http://dx.doi.org/10.1111/j.1574-6968.1997.tb10321.x ] [PMID: 9141655]
[54]
Berkow EL, Manigaba K, Parker JE, Barker KS, Kelly SL, Rogers PD. Multidrug transporters and alterations in sterol biosynthesis contribute to azole antifungal resistance in Candida parapsilosis. Antimicrob Agents Chemother 2015; 59(10): 5942-50.
[http://dx.doi.org/10.1128/AAC.01358-15 ] [PMID: 26169412]
[55]
Franklin IM, Elias E, Hirsch C. Fluconazole-induced jaundice. Lancet 1990; 336(8714): 565.
[http://dx.doi.org/10.1016/0140-6736(90)92120-7 ] [PMID: 1975057]
[56]
Re VL III, Carbonari DM, Lewis JD, et al. Oral azole antifungal medications and risk of acute liver injury, overall and by chronic liver disease status. Am J Med 2016; 129(3): 283-91.
[57]
Gayam V, Khalid M, Dahal S, Garlapati P, Gill A. Hyperacute liver injury following intravenous fluconazole: A rare case of dose-independent hepatotoxicity. J Family Med Prim Care 2018; 7(2): 451-4.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_330_17 ] [PMID: 30090793]
[58]
Spernovasilis N, Kofteridis DP. Pre-existing liver disease and toxicity of antifungals. J Fungi (Basel) 2018; 4(4): 133.
[http://dx.doi.org/10.3390/jof4040133 ] [PMID: 30544724]
[59]
Paul S, Kannan I, Mohanram K. Extensive ERG11 mutations associated with fluconazole-resistant Candida albicans isolated from HIV-infected patients. Curr Med Mycol 2019; 5(3): 1-6.
[http://dx.doi.org/10.18502/cmm.5.3.1739 ] [PMID: 31850389]
[60]
MacPherson S, Akache B, Weber S, De Deken X, Raymond M, Turcotte B. Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother 2005; 49(5): 1745-52.
[http://dx.doi.org/10.1128/AAC.49.5.1745-1752.2005 ] [PMID: 15855491]
[61]
Flowers SA, Barker KS, Berkow EL, et al. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot Cell 2012; 11(10): 1289-99.
[http://dx.doi.org/10.1128/EC.00215-12 ] [PMID: 22923048]
[62]
Yang H, Tong J, Lee CW, Ha S, Eom SH, Im YJ. Structural mechanism of ergosterol regulation by fungal sterol transcription factor Upc2. Nat Commun 2015; 6(1): 6129.
[http://dx.doi.org/10.1038/ncomms7129 ] [PMID: 25655993]
[63]
Souza ACR, Fuchs BB, Pinhati HM, et al. Candida parapsilosis resistance to fluconazole: Molecular mechanisms and in vivo impact in infected Galleria mellonella larvae. Antimicrob Agents Chemother 2015; 59(10): 6581-7.
[http://dx.doi.org/10.1128/AAC.01177-15 ] [PMID: 26259795]
[64]
Sanglard D, Ischer F, Koymans L, Bille J. Amino acid substitutions in the cytochrome P-450 lanosterol 14α-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Chemother 1998; 42(2): 241-53.
[http://dx.doi.org/10.1128/AAC.42.2.241 ] [PMID: 9527767]
[65]
Morio F, Loge C, Besse B, Hennequin C, Le Pape P. Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: New substitutions and a review of the literature. Diagn Microbiol Infect Dis 2010; 66(4): 373-84.
[http://dx.doi.org/10.1016/j.diagmicrobio.2009.11.006 ] [PMID: 20226328]
[66]
Warrilow AG, Martel CM, Parker JE, et al. Azole binding properties of Candida albicans sterol 14-α demethylase (CaCYP51). Antimicrob Agents Chemother 2010; 54(10): 4235-45.
[http://dx.doi.org/10.1128/AAC.00587-10 ] [PMID: 20625155]
[67]
Martel CM, Parker JE, Bader O, et al. Identification and characterization of four azole-resistant erg3 mutants of Candida albicans. Antimicrob Agents Chemother 2010; 54(11): 4527-33.
[http://dx.doi.org/10.1128/AAC.00348-10 ] [PMID: 20733039]
[68]
Miyazaki T, Miyazaki Y, Izumikawa K, et al. Fluconazole treatment is effective against a Candida albicans erg3/erg3 mutant in vivo despite in vitro resistance. Antimicrob Agents Chemother 2006; 50(2): 580-6.
[http://dx.doi.org/10.1128/AAC.50.2.580-586.2006 ] [PMID: 16436713]
[69]
Sanglard D, Ischer F, Parkinson T, Falconer D, Bille J. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother 2003; 47(8): 2404-12.
[http://dx.doi.org/10.1128/AAC.47.8.2404-2412.2003 ] [PMID: 12878497]
[70]
Prasad R, Goffeau A. Yeast ATP-binding cassette transporters conferring multidrug resistance. Annu Rev Microbiol 2012; 66: 39-63.
[http://dx.doi.org/10.1146/annurev-micro-092611-150111 ] [PMID: 22703054]
[71]
Rees DC, Johnson E, Lewinson O. ABC transporters: The power to change. Nat Rev Mol Cell Biol 2009; 10(3): 218-27.
[http://dx.doi.org/10.1038/nrm2646 ] [PMID: 19234479]
[72]
Tsao S, Rahkhoodaee F, Raymond M. Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrob Agents Chemother 2009; 53(4): 1344-52.
[http://dx.doi.org/10.1128/AAC.00926-08 ] [PMID: 19223631]
[73]
Schillig R, Morschhäuser J. Analysis of a fungus-specific transcription factor family, the Candida albicans zinc cluster proteins, by artificial activation. Mol Microbiol 2013; 89(5): 1003-17.
[http://dx.doi.org/10.1111/mmi.12327 ] [PMID: 23844834]
[74]
Rustchenko E. Chromosome instability in Candida albicans. FEMS Yeast Res 2007; 7(1): 2-11.
[http://dx.doi.org/10.1111/j.1567-1364.2006.00150.x ] [PMID: 17311580]
[75]
Costa C, Ribeiro J, Miranda IM, et al. Clotrimazole drug resistance in Candida glabrata clinical isolates correlates with increased expression of the drug: H+ antiporters CgAqr1, CgTpo1_1, CgTpo3, and CgQdr2. Front Microbiol 2016; 7: 526.
[http://dx.doi.org/10.3389/fmicb.2016.00526 ] [PMID: 27148215]
[76]
Chen X, Magee BB, Dawson D, Magee PT, Kumamoto CA. Chromosome 1 trisomy compromises the virulence of Candida albicans. Mol Microbiol 2004; 51(2): 551-65.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03852.x ] [PMID: 14756793]
[77]
Selmecki A, Forche A, Berman J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 2006; 313(5785): 367-70.
[http://dx.doi.org/10.1126/science.1128242 ] [PMID: 16857942]
[78]
Coste A, Selmecki A, Forche A, et al. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell 2007; 6(10): 1889-904.
[http://dx.doi.org/10.1128/EC.00151-07 ] [PMID: 17693596]
[79]
Seervai RN, Jones SK Jr, Hirakawa MP, Porman AM, Bennett RJ. Parasexuality and ploidy change in Candida tropicalis. Eukaryot Cell 2013; 12(12): 1629-40.
[http://dx.doi.org/10.1128/EC.00128-13 ] [PMID: 24123269]
[80]
Harrison BD, Hashemi J, Bibi M, et al. A tetraploid intermediate precedes aneuploid formation in yeasts exposed to fluconazole. PLoS Biol 2014; 12(3): e1001815.
[http://dx.doi.org/10.1371/journal.pbio.1001815 ] [PMID: 24642609]
[81]
Aboody MSA, Mickymaray S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics (Basel) 2020; 9(2): 45.
[http://dx.doi.org/10.3390/antibiotics9020045 ] [PMID: 31991883]
[82]
Jin YS. Recent advances in natural antifungal flavonoids and their derivatives. Bioorg Med Chem Lett 2019; 29(19): 126589.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.048 ] [PMID: 31427220]
[83]
Andrae-Marobela K, Ghislain FW, Okatch H, Majinda RR. Polyphenols: A diverse class of multi-target anti-HIV-1 agents. Curr Drug Metab 2013; 14(4): 392-413.
[http://dx.doi.org/10.2174/13892002113149990095 ] [PMID: 23330927]
[84]
ElSohly HN, Joshi AS, Nimrod AC, Walker LA, Clark AM. Antifungal chalcones from Maclura tinctoria. Planta Med 2001; 67(1): 87-9.
[http://dx.doi.org/10.1055/s-2001-10621 ] [PMID: 11270732]
[85]
Ahmad A, Wani MY, Patel M, et al. Synergistic antifungal effect of cyclized chalcone derivatives and fluconazole against Candida albicans. MedChemComm 2017; 8(12): 2195-207.
[http://dx.doi.org/10.1039/C7MD00440K ] [PMID: 30108736]
[86]
Belofsky G, Kolaczkowski M, Adams E, et al. Fungal ABC transporter-associated activity of isoflavonoids from the root extract of Dalea formosa. J Nat Prod 2013; 76(5): 915-25.
[http://dx.doi.org/10.1021/np4000763 ] [PMID: 23631483]
[87]
Pérez C, Tiraboschi I, Ortega M, et al. Further Antimicrobial Studies of 2‘4’-dihidroxy-5′-(1?-dimethylallyl)-6-prenylpinocembrin from Dalea elegans. Pharm Biol 2003; 41(3): 171-4.
[http://dx.doi.org/10.1076/phbi.41.3.171.15090]
[88]
Seleem D, Pardi V, Murata RM. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch Oral Biol 2017; 76: 76-83.
[http://dx.doi.org/10.1016/j.archoralbio.2016.08.030 ] [PMID: 27659902]
[89]
Tsang PW-K, Chau K-Y, Yang H-P. Baicalein exhibits inhibitory effect on the energy-dependent efflux pump activity in non-albicans Candida fungi. J Chemother 2015; 27(1): 61-2.
[http://dx.doi.org/10.1179/1973947814Y.0000000177 ] [PMID: 24548098]
[90]
Kang K, Fong W-P, Tsang PW-K. Antifungal activity of baicalein against Candida krusei does not involve apoptosis. Mycopathologia 2010; 170(6): 391-6.
[http://dx.doi.org/10.1007/s11046-010-9341-2 ] [PMID: 20614252]
[91]
Serpa R, França EJG, Furlaneto-Maia L, Andrade CGTJ, Diniz A, Furlaneto MC. In vitro antifungal activity of the flavonoid baicalein against Candida species. J Med Microbiol 2012; 61(Pt 12): 1704-8.
[http://dx.doi.org/10.1099/jmm.0.047852-0 ] [PMID: 22918868]
[92]
Huang S, Cao YY, Dai BD, et al. In vitro synergism of fluconazole and baicalein against clinical isolates of Candida albicans resistant to fluconazole. Biol Pharm Bull 2008; 31(12): 2234-6.
[http://dx.doi.org/10.1248/bpb.31.2234 ] [PMID: 19043205]
[93]
Cao Y, Dai B, Wang Y, et al. In vitro activity of baicalein against Candida albicans biofilms. Int J Antimicrob Agents 2008; 32(1): 73-7.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.01.026 ] [PMID: 18374543]
[94]
Herrera CL, Alvear M, Barrientos L, et al. The antifungal effect of six commercial extracts of Chilean propolis on Candida spp. Cienc Investig Agrar 2010; 37(1): 75-84.
[http://dx.doi.org/10.4067/S0718-16202010000100007]
[95]
Yousefbeyk F, Gohari AR, Hashemighahderijani Z, et al. Bioactive terpenoids and flavonoids from Daucus littoralis Smith subsp. hyrcanicus Rech. f, an endemic species of Iran. Daru 2014; 22(1): 1-6.
[PMID: 24386961]
[96]
Yang Y-X, An M-M. Jin Y-S, Chen HS. Chemical constituents from the rhizome of Polygonum paleaceum and their antifungal activity. J Asian Nat Prod Res 2017; 19(1): 47-52.
[http://dx.doi.org/10.1080/10286020.2016.1196672 ] [PMID: 27309618]
[97]
Liu W, Li LP, Zhang JD, et al. Synergistic antifungal effect of glabridin and fluconazole. PLoS One 2014; 9(7): e103442.
[http://dx.doi.org/10.1371/journal.pone.0103442 ] [PMID: 25058485]
[98]
Robbins N, Caplan T, Cowen LE. Molecular evolution of antifungal drug resistance. Annu Rev Microbiol 2017; 71: 753-75.
[http://dx.doi.org/10.1146/annurev-micro-030117-020345 ] [PMID: 28886681]
[99]
Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005; 26(5): 343-56.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002 ] [PMID: 16323269]
[100]
Peralta MA, da Silva MA, Ortega MG, Cabrera JL, Paraje MG. Antifungal activity of a prenylated flavonoid from Dalea elegans against Candida albicans biofilms. Phytomedicine 2015; 22(11): 975-80.
[http://dx.doi.org/10.1016/j.phymed.2015.07.003 ] [PMID: 26407939]
[101]
Srinivas NR. Combination of flavonoids with azole drugs for fungal infections: Key pharmacokinetic challenges. Future Microbiol 2019; 733-8.
[PMID: 31271062]
[102]
Dash RP, Rais R, Srinivas NR. Key pharmacokinetic essentials of fixed-dosed combination products: Case studies and perspectives. Clin Pharmacokinet 2018; 57(4): 419-26.
[http://dx.doi.org/10.1007/s40262-017-0589-2 ] [PMID: 28791593]
[103]
Wang Y-H, Dong H-H, Zhao F, et al. The synthesis and synergistic antifungal effects of chalcones against drug resistant Candida albicans. Bioorg Med Chem Lett 2016; 26(13): 3098-102.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.013 ] [PMID: 27210436]
[104]
da Silva CR, de Andrade Neto JB, de Sousa Campos R, et al. Synergistic effect of the flavonoid catechin, quercetin, or epigallocatechin gallate with fluconazole induces apoptosis in Candida tropicalis resistant to fluconazole. Antimicrob Agents Chemother 2014; 58(3): 1468-78.
[http://dx.doi.org/10.1128/AAC.00651-13 ] [PMID: 24366745]
[105]
Miao Q, Wang Z, Zhang Y, et al. In vitro potential modulation of baicalin and baicalein on P-glycoprotein activity and expression in Caco-2 cells and rat gut sacs. Pharm Biol 2016; 54(9): 1548-56.
[http://dx.doi.org/10.3109/13880209.2015.1107744 ] [PMID: 26810690]
[106]
Limtrakul P, Khantamat O, Pintha K. Inhibition of P-glycoprotein function and expression by kaempferol and quercetin. J Chemother 2005; 17(1): 86-95.
[http://dx.doi.org/10.1179/joc.2005.17.1.86 ] [PMID: 15828450]
[107]
Lempers VJ, van den Heuvel JJ, Russel FG, et al. Inhibitory potential of antifungal drugs on ATP-binding cassette transporters P-glycoprotein, MRP1 to MRP5, BCRP, and BSEP. Antimicrob Agents Chemother 2016; 60(6): 3372-9.
[http://dx.doi.org/10.1128/AAC.02931-15 ] [PMID: 27001813]
[108]
Alvarez AI, Real R, Pérez M, Mendoza G, Prieto JG, Merino G. Modulation of the activity of ABC transporters (P-glycoprotein, MRP2, BCRP) by flavonoids and drug response. J Pharm Sci 2010; 99(2): 598-617.
[http://dx.doi.org/10.1002/jps.21851 ] [PMID: 19544374]
[109]
Wu LX, Guo CX, Chen WQ, et al. Inhibition of the organic anion-transporting polypeptide 1B1 by quercetin: An in vitro and in vivo assessment. Br J Clin Pharmacol 2012; 73(5): 750-7.
[http://dx.doi.org/10.1111/j.1365-2125.2011.04150.x ] [PMID: 22114872]
[110]
Ravikumar Reddy D, Khurana A, Bale S, et al. Natural flavonoids silymarin and quercetin improve the brain distribution of co-administered P-gp substrate drugs. Springerplus 2016; 5(1): 1618.
[http://dx.doi.org/10.1186/s40064-016-3267-1 ] [PMID: 27652191]
[111]
Tomaszewski M, Stępień KM, Tomaszewska J, Czuczwar SJ. Statin-induced myopathies. Pharmacol Rep 2011; 63(4): 859-66.
[http://dx.doi.org/10.1016/S1734-1140(11)70601-6 ] [PMID: 22001973]
[112]
Mohana S, Ganesan M, Agilan B, et al. Screening dietary flavonoids for the reversal of P-glycoprotein-mediated multidrug resistance in cancer. Mol Biosyst 2016; 12(8): 2458-70.
[http://dx.doi.org/10.1039/C6MB00187D ] [PMID: 27216424]
[113]
Brüggemann RJ, Alffenaar J-WC, Blijlevens NM, et al. Clinical relevance of the pharmacokinetic interactions of azole antifungal drugs with other coadministered agents. Clin Infect Dis 2009; 48(10): 1441-58.
[http://dx.doi.org/10.1086/598327 ] [PMID: 19361301]
[114]
Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection 2017; 45(6): 737-79.
[http://dx.doi.org/10.1007/s15010-017-1042-z ] [PMID: 28702763]
[115]
Manach C, Donovan JL. Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic Res 2004; 38(8): 771-85.
[http://dx.doi.org/10.1080/10715760410001727858 ] [PMID: 15493450]
[116]
Oh J-H, Lee JH. Evaluation of the Mrp2-mediated flavonoid-drug interaction potential of quercetin in rats and in vitro models. Asian J Pharm Sci 2019; 14(6): 621-30.
[PMID: 32104488]
[117]
Elbarbry F, Ung A, Abdelkawy K. Studying the inhibitory effect of quercetin and thymoquinone on human cytochrome P450 enzyme activities. Pharmacogn Mag 2018; 13(Suppl. 4): S895-9.
[PMID: 29491651]
[118]
Chalet C, Rubbens J, Tack J, Duchateau GS, Augustijns P. Intestinal disposition of quercetin and its phase-II metabolites after oral administration in healthy volunteers. J Pharm Pharmacol 2018; 70(8): 1002-8.
[http://dx.doi.org/10.1111/jphp.12929 ] [PMID: 29761870]
[119]
Xing J, Chen X, Zhong D. Absorption and enterohepatic circulation of baicalin in rats. Life Sci 2005; 78(2): 140-6.
[http://dx.doi.org/10.1016/j.lfs.2005.04.072 ] [PMID: 16107266]
[120]
Fang J, Huang B, Ding Z. Efficacy of antifungal drugs in the treatment of oral candidiasis: A Bayesian network meta-analysis. J Prosthet Dent 2021; 125(2): 257-65.
[http://dx.doi.org/10.1016/j.prosdent.2019.12.025 ] [PMID: 32165010]
[121]
Matsukawa N, Matsumoto M, Hara H. High biliary excretion levels of quercetin metabolites after administration of a quercetin glycoside in conscious bile duct cannulated rats. Biosci Biotechnol Biochem 2009; 73(8): 1863-5.
[http://dx.doi.org/10.1271/bbb.90031 ] [PMID: 19661706]
[122]
ABE K-i. Inoue O, Yumioka E. Biliary excretion of metabolites of baicalin and baicalein in rats. Chem Pharm Bull (Tokyo) 1990; 38(1): 208-11.
[http://dx.doi.org/10.1248/cpb.38.208]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy