Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Resveratrol Augments Doxorubicin and Cisplatin Chemotherapy: A Novel Therapeutic Strategy

Author(s): Sepideh Mirzaei, Mohammad Hossein Gholami, Amirhossein Zabolian, Hossein Saleki, Morteza Bagherian, Seyed Mohammadreza Torabi, Seyed Omid Sharifzadeh, Kiavash Hushmandi, Kaila R. Fives, Haroon Khan, Milad Ashrafizadeh, Ali Zarrabi* and Anupam Bishayee*

Volume 16, Issue 3, 2023

Published on: 08 September, 2022

Article ID: e150422203670 Pages: 27

DOI: 10.2174/1874467215666220415131344

Price: $65

Abstract

Background: The treatment of cancer is a current challenge for public health, causing high rates of morbidity and mortality worldwide. Doxorubicin (DOX) and cisplatin (CP) are two well-known chemotherapeutic agents approved by the Food and Drug Administration to treat cancer patients. However, there are two problems associated with DOX and CP: drug resistance and adverse impact. Resveratrol (Res) belongs to the stilbene class and possesses various health-promoting effects, such as antioxidant, anti-inflammatory, anticancer, hepatoprotective, and neuroprotective effects.

Objective: The present review aims to give special attention to the therapeutic impacts of Res in potentiating DOX and CP’s antitumor activities and reducing their side effects.

Methods: PubMed, Science Direct, and Google Scholar were used to search articles for the current manuscripts.

Results: Co-administration of Res can prevent chemoresistance and potentiate the induction of apoptosis and cell cycle arrest in cancer cells. Res can enhance the sensitivity of cancer cells to DOX and CP chemotherapy by inhibiting the migration and metastasis of cancer cells. Simultaneously, Res, due to its therapeutic actions ameliorates the adverse impacts of DOX and CP on normal cells and organs, including the liver, kidney, brain, and testes. As Res suffers from poor bioavailability, nanoformulations have been developed with promising results to improve its antitumor activity and protective effects.

Conclusion: Based on preclinical studies, it is obvious that Res is a promising adjsuvant for CP and DOX chemotherapy, and its benefits can be utilized in the clinical course.

Keywords: Resveratrol, doxorubicin, cisplatin, cancer chemotherapy, chemoresistance, chemoprotection, antitumor activity

[1]
Talib, W.H.; Alsayed, A.R.; Farhan, F.; Al Kury, L.T. Resveratrol and tumor microenvironment: Mechanistic basis and therapeutic targets. Molecules, 2020, 25(18), 4282.
[http://dx.doi.org/10.3390/molecules25184282] [PMID: 32961987]
[2]
Bhaskara, V.K.; Mittal, B.; Mysorekar, V.V.; Amaresh, N.; Simal-Gandara, J. Resveratrol, cancer and cancer stem cells: A review on past to future. Curr. Res. Food Sci., 2020, 3, 284-295.
[3]
Yang, M.F.; Yao, X.; Chen, L.M.; Gu, J.Y.; Yang, Z.H.; Chen, H.F.; Zheng, X.; Zheng, Z.T. Synthesis and biological evaluation of resveratrol derivatives with anti-breast cancer activity. Arch. Pharm. (Weinheim), 2020, 353(7), e2000044.
[http://dx.doi.org/10.1002/ardp.202000044] [PMID: 32342549]
[4]
Meng, X.; Zhou, J.; Zhao, C-N.; Gan, R-Y.; Li, H-B. Health benefits and molecular mechanisms of resveratrol: A narrative review. Foods, 2020, 9(3), 340.
[http://dx.doi.org/10.3390/foods9030340] [PMID: 32183376]
[5]
Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem., 2002, 50(11), 3337-3340.
[http://dx.doi.org/10.1021/jf0112973] [PMID: 12010007]
[6]
Shrikanta, A.; Kumar, A.; Govindaswamy, V. Resveratrol content and antioxidant properties of underutilized fruits. J. Food Sci. Technol., 2015, 52(1), 383-390.
[http://dx.doi.org/10.1007/s13197-013-0993-z] [PMID: 25593373]
[7]
Kollár, P.; Hotolová, H. Biological effects of resveratrol and other constituents of wine. Ceska Slov. Farm., 2003, 52(6), 272-281.
[PMID: 14661366]
[8]
Almeida, L.; Vaz-da-Silva, M.; Falcão, A.; Soares, E.; Costa, R.; Loureiro, A.I.; Fernandes-Lopes, C.; Rocha, J.F.; Nunes, T.; Wright, L.; Soares-da-Silva, P. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol. Nutr. Food Res., 2009, 53(Suppl. 1), S7-S15.
[http://dx.doi.org/10.1002/mnfr.200800177] [PMID: 19194969]
[9]
Berretta, M.; Bignucolo, A.; Di Francia, R.; Comello, F.; Facchini, G.; Ceccarelli, M.; Iaffaioli, R.V.; Quagliariello, V.; Maurea, N. Resveratrol in cancer patients: from bench to bedside. Int. J. Mol. Sci., 2020, 21(8), 2945.
[http://dx.doi.org/10.3390/ijms21082945] [PMID: 32331450]
[10]
Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; Borras, C. Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev., 2015, 2015, 837042.
[http://dx.doi.org/10.1155/2015/837042] [PMID: 26221416]
[11]
Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E., Jr; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos., 2004, 32(12), 1377-1382.
[http://dx.doi.org/10.1124/dmd.104.000885] [PMID: 15333514]
[12]
Wenzel, E.; Somoza, V. Metabolism and bioavailability of trans-resveratrol. Mol. Nutr. Food Res., 2005, 49(5), 472-481.
[http://dx.doi.org/10.1002/mnfr.200500010] [PMID: 15779070]
[13]
Sergides, C. Chirilă M.; Silvestro, L.; Pitta, D.; Pittas, A. Bioavailability and safety study of resveratrol 500 mg tablets in healthy male and female volunteers. Exp. Ther. Med., 2016, 11(1), 164-170.
[http://dx.doi.org/10.3892/etm.2015.2895] [PMID: 26889234]
[14]
Windholz, M.; Budavari, S.; Stroumtsos, L.Y.; Fertig, M.N. The Merck index. An encyclopedia of chemicals and drugs; Merck & Co., 1976.
[15]
Wang, F.; Chatterjee, S. Dominant carbons in trans- and cis-resveratrol isomerization. J. Phys. Chem. B, 2017, 121(18), 4745-4755.
[http://dx.doi.org/10.1021/acs.jpcb.7b02115] [PMID: 28402662]
[16]
Zupančič Š.; Lavrič Z.; Kristl, J. Stability and solubility of trans-resveratrol are strongly influenced by pH and temperature. Eur. J. Pharm. Biopharm., 2015, 93, 196-204.
[http://dx.doi.org/10.1016/j.ejpb.2015.04.002] [PMID: 25864442]
[17]
Li, C.; Tan, Y.; Wu, J.; Ma, Q.; Bai, S.; Xia, Z.; Wan, X.; Liang, J. Resveratrol improves bnip3-related mitophagy and attenuates high-fat-induced endothelial dysfunction. Front. Cell Dev. Biol., 2020, 8, 796.
[http://dx.doi.org/10.3389/fcell.2020.00796] [PMID: 32923443]
[18]
Ma, Y.; Liu, S.; Shu, H.; Crawford, J.; Xing, Y.; Tao, F. Resveratrol alleviates temporomandibular joint inflammatory pain by recovering disturbed gut microbiota. Brain Behav. Immun., 2020, 87, 455-464.
[http://dx.doi.org/10.1016/j.bbi.2020.01.016] [PMID: 32001342]
[19]
Simas, J.N.; Mendes, T.B.; Fischer, L.W.; Vendramini, V.; Miraglia, S.M. Resveratrol improves sperm DNA quality and reproductive capacity in type 1 diabetes. Andrology, 2021, 9(1), 384-399.
[http://dx.doi.org/10.1111/andr.12891] [PMID: 32808479]
[20]
Ye, M.; Wu, H.; Li, S. Resveratrol alleviates oxygen/glucose deprivation/reoxygenation-induced neuronal damage through induction of mitophagy. Mol. Med. Rep., 2021, 23, 73.
[21]
Feng, H.; Mou, S.Q.; Li, W.J.; Zhang, N.; Zhou, Z.Y.; Ding, W.; Bian, Z.Y.; Liao, H.H. Resveratrol inhibits ischemia-induced myocardial senescence signals and nlrp3 inflammasome activation. Oxid. Med. Cell. Longev., 2020, 2020, 2647807.
[http://dx.doi.org/10.1155/2020/2647807] [PMID: 32908628]
[22]
Yu, T.; Wang, Z.; You, X.; Zhou, H.; He, W.; Li, B.; Xia, J.; Zhu, H.; Zhao, Y.; Yu, G.; Xiong, Y.; Yang, Y. Resveratrol promotes osteogenesis and alleviates osteoporosis by inhibiting p53. Aging (Albany NY), 2020, 12(11), 10359-10369.
[http://dx.doi.org/10.18632/aging.103262] [PMID: 32459661]
[23]
Sun, L.; Fan, X.; Zeng, Y.; Wang, L.; Zhu, Z.; Li, R.; Tian, X.; Wang, Y.; Lin, Y.; Wu, D.; Zeng, W. Resveratrol protects boar sperm in vitrovia its antioxidant capacity. Zygote, 2020, 25(17), 1-8.
[http://dx.doi.org/10.1017/S0967199420000271] [PMID: 32482196]
[24]
Salla, M.; Pandya, V.; Bhullar, K.S.; Kerek, E.; Wong, Y.F.; Losch, R.; Ou, J.; Aldawsari, F.S.; Velazquez-Martinez, C.; Thiesen, A.; Dyck, J.R.B.; Hubbard, B.P.; Baksh, S. Resveratrol and resveratrol-aspirin hybrid compounds as potent intestinal anti-inflammatory and anti-tumor drugs. Molecules, 2020, 25(17), 25.
[http://dx.doi.org/10.3390/molecules25173849] [PMID: 32847114]
[25]
Mestre Citrinovitz, A.C.; Langer, L.; Strowitzki, T.; Germeyer, A. Resveratrol enhances decidualization of human endometrial stromal cells. Reproduction, 2020, 159(4), 453-463.
[http://dx.doi.org/10.1530/REP-19-0425] [PMID: 31990677]
[26]
Marumo, M.; Ekawa, K.; Wakabayashi, I. Resveratrol inhibits Ca2+ signals and aggregation of platelets. Environ. Health Prev. Med., 2020, 25(1), 70.
[http://dx.doi.org/10.1186/s12199-020-00905-1] [PMID: 33160329]
[27]
Jiang, Y.; Luo, W.; Wang, B.; Wang, X.; Gong, P.; Xiong, Y. Resveratrol promotes osteogenesis via activating SIRT1/FoxO1 pathway in osteoporosis mice. Life Sci., 2020, 246, 117422.
[http://dx.doi.org/10.1016/j.lfs.2020.117422] [PMID: 32057903]
[28]
Petrella, C.; Carito, V.; Carere, C.; Ferraguti, G.; Ciafrè, S.; Natella, F.; Bello, C.; Greco, A.; Ralli, M.; Mancinelli, R.; Messina, M.P.; Fiore, M.; Ceccanti, M. Oxidative stress inhibition by resveratrol in alcohol-dependent mice. Nutrition, 2020, 79-80, 110783.
[http://dx.doi.org/10.1016/j.nut.2020.110783] [PMID: 32569950]
[29]
Rahman, M.H.; Akter, R.; Bhattacharya, T.; Abdel-Daim, M.M.; Alkahtani, S.; Arafah, M.W.; Al-Johani, N.S.; Alhoshani, N.M.; Alkeraishan, N.; Alhenaky, A.; Abd-Elkader, O.H.; El-Seedi, H.R.; Kaushik, D.; Mittal, V. Resveratrol and neuroprotection: Impact and its therapeutic potential in Alzheimer’s Disease. Front. Pharmacol., 2020, 11, 619024.
[http://dx.doi.org/10.3389/fphar.2020.619024] [PMID: 33456444]
[30]
Vicari, E.; Arancio, A.; Catania, V.E.; Vicari, B.O.; Sidoti, G.; Castiglione, R.; Malaguarnera, M. Resveratrol reduces inflammation-related prostate fibrosis. Int. J. Med. Sci., 2020, 17(13), 1864-1870.
[http://dx.doi.org/10.7150/ijms.44443] [PMID: 32788865]
[31]
Shin, J.W.; Lee, H.S.; Na, J.I.; Huh, C.H.; Park, K.C.; Choi, H.R. Resveratrol inhibits particulate matter-induced inflammatory responses in human keratinocytes. Int. J. Mol. Sci., 2020, 21(10), 21.
[http://dx.doi.org/10.3390/ijms21103446] [PMID: 32414118]
[32]
Brockmueller, A.; Sameri, S.; Liskova, A.; Zhai, K.; Varghese, E.; Samuel, S.M.; Büsselberg, D.; Kubatka, P.; Shakibaei, M. Resveratrol’s anti-cancer effects through the modulation of tumor glucose metabolism. Cancers (Basel), 2021, 13(2), 188.
[http://dx.doi.org/10.3390/cancers13020188] [PMID: 33430318]
[33]
Kubatka, P.; Kello, M.; Kajo, K.; Samec, M.; Liskova, A.; Jasek, K.; Koklesova, L.; Kuruc, T.; Adamkov, M.; Smejkal, K.; Svajdlenka, E.; Solar, P.; Pec, M.; Büsselberg, D.; Sadlonova, V.; Mojzis, J. Rhus coriaria L. (Sumac) demonstrates oncostatic activity in the therapeutic and preventive model of breast carcinoma. Int. J. Mol. Sci., 2020, 22(1), 183.
[http://dx.doi.org/10.3390/ijms22010183] [PMID: 33375383]
[34]
Zhai, K.; Brockmüller, A.; Kubatka, P.; Shakibaei, M.; Büsselberg, D. Curcumin’s beneficial effects on neuroblastoma: Mechanisms, challenges, and potential solutions. Biomolecules, 2020, 10(11), 1469.
[http://dx.doi.org/10.3390/biom10111469] [PMID: 33105719]
[35]
Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules, 2020, 10(2), 221.
[http://dx.doi.org/10.3390/biom10020221] [PMID: 32028623]
[36]
Varghese, E.; Liskova, A.; Kubatka, P.; Mathews Samuel, S.; Büsselberg, D. Anti-Angiogenic effects of phytochemicals on miRNA regulating breast cancer progression. Biomolecules, 2020, 10(2), 191.
[http://dx.doi.org/10.3390/biom10020191] [PMID: 32012744]
[37]
Bishayee, A. Cancer prevention and treatment with resveratrol: From rodent studies to clinical trials. Cancer Prev. Res. (Phila.), 2009, 2(5), 409-418.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0160] [PMID: 19401532]
[38]
Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 18.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[39]
Dariya, B.; Behera, S.K.; Srivani, G.; Aliya, S.; Alam, A.; Nagaraju, G.P. Resveratrol binds and activates RKIP protein in colorectal cancer. Amino Acids, 2020, 52(9), 1299-1306.
[http://dx.doi.org/10.1007/s00726-020-02889-2] [PMID: 32918615]
[40]
Xia, X.; Wang, S.; Ni, B.; Xing, S.; Cao, H.; Zhang, Z.; Yu, F.; Zhao, E.; Zhao, G. Hypoxic gastric cancer-derived exosomes promote progression and metastasis via MiR-301a-3p/PHD3/HIF-1α positive feedback loop. Oncogene, 2020, 39(39), 6231-6244.
[http://dx.doi.org/10.1038/s41388-020-01425-6] [PMID: 32826951]
[41]
Srivani, G.; Behera, S.K.; Dariya, B.; Aliya, S.; Alam, A.; Nagaraju, G.P. Resveratrol binds and inhibits transcription factor HIF-1α in pancreatic cancer. Exp. Cell Res., 2020, 394(1), 112126.
[http://dx.doi.org/10.1016/j.yexcr.2020.112126] [PMID: 32485183]
[42]
Kim, S.; Kim, W.; Kim, D.H.; Jang, J.H.; Kim, S.J.; Park, S.A.; Hahn, H.; Han, B.W.; Na, H.K.; Chun, K.S.; Choi, B.Y.; Surh, Y.J. Resveratrol suppresses gastric cancer cell proliferation and survival through inhibition of PIM-1 kinase activity. Arch. Biochem. Biophys., 2020, 689, 108413.
[http://dx.doi.org/10.1016/j.abb.2020.108413] [PMID: 32473133]
[43]
Hashemi, V.; Ahmadi, A.; Malakotikhah, F.; Chaleshtari, M.G.; Baghi Moornani, M.; Masjedi, A.; Sojoodi, M.; Atyabi, F.; Nikkhoo, A.; Rostami, N.; Baradaran, B.; Azizi, G.; Yousefi, B.; Ghalamfarsa, G.; Jadidi-Niaragh, F. Silencing of p68 and STAT3 synergistically diminishes cancer progression. Life Sci., 2020, 249, 117499.
[http://dx.doi.org/10.1016/j.lfs.2020.117499] [PMID: 32142763]
[44]
Sun, X.; Xu, Q.; Zeng, L.; Xie, L.; Zhao, Q.; Xu, H.; Wang, X.; Jiang, N.; Fu, P.; Sang, M. Resveratrol suppresses the growth and metastatic potential of cervical cancer by inhibiting STAT3Tyr705 phosphorylation. Cancer Med., 2020, 9(22), 8685-8700.
[http://dx.doi.org/10.1002/cam4.3510] [PMID: 33040485]
[45]
Schmidt, B.; Ferreira, C.; Alves Passos, C.L.; Silva, J.L.; Fialho, E. Resveratrol, curcumin and piperine alter human glyoxalase 1 in MCF-7 breast cancer cells. Int. J. Mol. Sci., 2020, 21(15), 21.
[http://dx.doi.org/10.3390/ijms21155244] [PMID: 32721999]
[46]
Sun, X.; Fu, P.; Xie, L.; Chai, S.; Xu, Q.; Zeng, L.; Wang, X.; Jiang, N.; Sang, M. Resveratrol inhibits the progression of cervical cancer by suppressing the transcription and expression of HPV E6 and E7 genes. Int. J. Mol. Med., 2021, 47(1), 335-345.
[http://dx.doi.org/10.3892/ijmm.2020.4789] [PMID: 33236130]
[47]
Sun, H.; Zhang, T.; Liu, R.; Cao, W.; Zhang, Z.; Liu, Z.; Qian, W.; Wang, D.; Yu, D.; Zhong, C. Resveratrol inhibition of renal cancer stem cell characteristics and modulation of the sonic hedgehog pathway. Nutr. Cancer, 2020, 1-11.
[PMID: 32586140]
[48]
Sudha, T.; El-Far, A.H.; Mousa, D.S.; Mousa, S.A. Resveratrol and its nanoformulation attenuate growth and the angiogenesis of xenograft and orthotopic colon cancer models. Molecules, 2020, 25(6), 25.
[http://dx.doi.org/10.3390/molecules25061412] [PMID: 32244860]
[49]
Poltronieri, P.; Xu, B.; Giovinazzo, G. Resveratrol and other Stilbenes: Effects on dysregulated gene expression in cancers and novel delivery systems. Anticancer. Agents Med. Chem., 2020, 21(5), 567-574.
[50]
Senthil Kumar, C.; Thangam, R.; Mary, S.A.; Kannan, P.R.; Arun, G.; Madhan, B. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr. Polym., 2020, 231, 115682.
[http://dx.doi.org/10.1016/j.carbpol.2019.115682] [PMID: 31888816]
[51]
Lin, Y.S.; Hsieh, C.Y.; Kuo, T.T.; Lin, C.C.; Lin, C.Y.; Sher, Y.P. Resveratrol-mediated ADAM9 degradation decreases cancer progression and provides synergistic effects in combination with chemotherapy. Am. J. Cancer Res., 2020, 10(11), 3828-3837.
[PMID: 33294270]
[52]
Singh, S.K.; Banerjee, S.; Acosta, E.P.; Lillard, J.W.; Singh, R. Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/p21WAF1/CIP1 and p27KIP1 pathway. Oncotarget, 2017, 8(10), 17216-17228.
[http://dx.doi.org/10.18632/oncotarget.15303] [PMID: 28212547]
[53]
Fukui, M.; Yamabe, N.; Zhu, B.T. Resveratrol attenuates the anticancer efficacy of paclitaxel in human breast cancer cells in vitro and in vivo. Eur. J. Cancer, 2010, 46(10), 1882-1891.
[http://dx.doi.org/10.1016/j.ejca.2010.02.004] [PMID: 20223651]
[54]
Sprouse, A.A.; Herbert, B.S. Resveratrol augments paclitaxel treatment in MDA-MB-231 and paclitaxel-resistant MDA-MB-231 breast cancer cells. Anticancer Res., 2014, 34(10), 5363-5374.
[PMID: 25275030]
[55]
Li, X.; Yang, S.; Wang, L.; Liu, P.; Zhao, S.; Li, H.; Jiang, Y.; Guo, Y.; Wang, X. Resveratrol inhibits paclitaxel-induced neuropathic pain by the activation of PI3K/Akt and SIRT1/PGC1α pathway. J. Pain Res., 2019, 12, 879-890.
[http://dx.doi.org/10.2147/JPR.S185873] [PMID: 30881098]
[56]
Xiao, B.; Hong, L.; Cai, X.; Mei, S.; Zhang, P.; Shao, L. The true colors of autophagy in doxorubicin-induced cardiotoxicity. Oncol. Lett., 2019, 18(3), 2165-2172.
[http://dx.doi.org/10.3892/ol.2019.10576] [PMID: 31452719]
[57]
Damiani, R.M.; Moura, D.J.; Viau, C.M.; Caceres, R.A.; Henriques, J.A.P.; Saffi, J. Pathways of cardiac toxicity: Comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch. Toxicol., 2016, 90(9), 2063-2076.
[http://dx.doi.org/10.1007/s00204-016-1759-y] [PMID: 27342245]
[58]
Shabalala, S.; Muller, C.J.F.; Louw, J.; Johnson, R. Polyphenols, autophagy and doxorubicin-induced cardiotoxicity. Life Sci., 2017, 180, 160-170.
[http://dx.doi.org/10.1016/j.lfs.2017.05.003] [PMID: 28478263]
[59]
Varela-López, A.; Battino, M.; Navarro-Hortal, M.D.; Giampieri, F.; Forbes-Hernández, T.Y.; Romero-Márquez, J.M.; Collado, R.; Quiles, J.L. An update on the mechanisms related to cell death and toxicity of doxorubicin and the protective role of nutrients. Food Chem. Toxicol., 2019, 134, 110834.
[http://dx.doi.org/10.1016/j.fct.2019.110834] [PMID: 31577924]
[60]
Hilmer, S.N.; Cogger, V.C.; Muller, M.; Le Couteur, D.G. The hepatic pharmacokinetics of doxorubicin and liposomal doxorubicin. Drug Metab. Dispos., 2004, 32(8), 794-799.
[http://dx.doi.org/10.1124/dmd.32.8.794] [PMID: 15258103]
[61]
Cagel, M.; Grotz, E.; Bernabeu, E.; Moretton, M.A.; Chiappetta, D.A. Doxorubicin: Nanotechnological overviews from bench to bedside. Drug Discov. Today, 2017, 22(2), 270-281.
[http://dx.doi.org/10.1016/j.drudis.2016.11.005] [PMID: 27890669]
[62]
Thorn, C.F.; Oshiro, C.; Marsh, S.; Hernandez-Boussard, T.; McLeod, H.; Klein, T.E.; Altman, R.B. Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenet. Genomics, 2011, 21(7), 440-446.
[http://dx.doi.org/10.1097/FPC.0b013e32833ffb56] [PMID: 21048526]
[63]
La Ferla, B.; Airoldi, C.; Zona, C.; Orsato, A.; Cardona, F.; Merlo, S.; Sironi, E.; D’Orazio, G.; Nicotra, F. Natural glycoconjugates with antitumor activity. Nat. Prod. Rep., 2011, 28(3), 630-648.
[http://dx.doi.org/10.1039/C0NP00055H] [PMID: 21120227]
[64]
Zhu, Y.; Xu, J.; Hu, W.; Wang, F.; Zhou, Y.; Xu, W.; Gong, W.; Shao, L. TFAM depletion overcomes hepatocellular carcinoma resistance to doxorubicin and sorafenib through AMPK activation and mitochondrial dysfunction. Gene, 2020, 753, 144807.
[http://dx.doi.org/10.1016/j.gene.2020.144807] [PMID: 32461017]
[65]
Zaleskis, G. Garberytė S.; Pavliukevičienė B.; Valinčius, G.; Characiejus, D.; Mauricas, M.; Kraśko, J.A.; Žilionytė K.; Žvirblė M.; Pašukonienė V. Doxorubicin uptake in ascitic lymphoma model: Resistance or curability is governed by tumor cell density and prolonged drug retention. J. Cancer, 2020, 11(22), 6497-6506.
[http://dx.doi.org/10.7150/jca.46066] [PMID: 33046971]
[66]
Lu, M.; Xie, K.; Lu, X.; Lu, L.; Shi, Y.; Tang, Y. Notoginsenoside R1 counteracts mesenchymal stem cell-evoked oncogenesis and doxorubicin resistance in osteosarcoma cells by blocking IL-6 secretion-induced JAK2/STAT3 signaling. Invest. New Drugs, 2021, 39(2), 416-425.
[PMID: 33128383]
[67]
Wang, S.; Cheng, M.; Zheng, X.; Zheng, L.; Liu, H.; Lu, J.; Liu, Y.; Chen, W. Interactions between lncRNA TUG1 and miR-9-5p modulate the resistance of breast cancer cells to Doxorubicin by regulating eIF5A2. OncoTargets Ther., 2020, 13, 13159-13170.
[http://dx.doi.org/10.2147/OTT.S255113] [PMID: 33380806]
[68]
Ji, Y.; Liu, J.; Zhu, W.; Ji, J. circ_0002060 enhances doxorubicin resistance in osteosarcoma by regulating the miR-198/ABCB1 Axis. Cancer Biother. Radiopharm., 2020.
[http://dx.doi.org/10.1089/cbr.2020.4240] [PMID: 33351694]
[69]
Yuan, Y.; Fan, S.; Shu, L.; Huang, W.; Xie, L.; Bi, C.; Yu, H.; Wang, Y.; Li, Y. Exploration the mechanism of doxorubicin-induced heart failure in rats by integration of proteomics and metabolomics data. Front. Pharmacol., 2020, 11, 600561.
[http://dx.doi.org/10.3389/fphar.2020.600561] [PMID: 33362553]
[70]
Wali, A.F.; Rashid, S.; Rashid, S.M.; Ansari, M.A.; Khan, M.R.; Haq, N.; Alhareth, D.Y.; Ahmad, A.; Rehman, M.U. Naringenin regulates doxorubicin-induced liver dysfunction: Impact on oxidative stress and inflammation. Plants, 2020, 9(4), 9.
[http://dx.doi.org/10.3390/plants9040550] [PMID: 32344607]
[71]
Khan, T.H.; Ganaie, M.A.; Alharthy, K.M.; Madkhali, H.; Jan, B.L.; Sheikh, I.A. Naringenin prevents doxorubicin-induced toxicity in kidney tissues by regulating the oxidative and inflammatory insult in Wistar rats. Arch. Physiol. Biochem., 2020, 126(4), 300-307.
[http://dx.doi.org/10.1080/13813455.2018.1529799] [PMID: 30406686]
[72]
Yu, X.; Yu, W.; Han, X.; Chen, Z.; Wang, S.; Zhai, H. Sensitive analysis of doxorubicin and curcumin by micellar electromagnetic chromatography with a double wavelength excitation source. Anal. Bioanal. Chem., 2021, 413(2), 469-478.
[http://dx.doi.org/10.1007/s00216-020-03017-5] [PMID: 33118040]
[73]
Hassan, S.; Peluso, J.; Chalhoub, S.; Idoux Gillet, Y.; Benkirane-Jessel, N.; Rochel, N.; Fuhrmann, G.; Ubeaud-Sequier, G. Quercetin potentializes the respective cytotoxic activity of gemcitabine or doxorubicin on 3D culture of AsPC-1 or HepG2 cells, through the inhibition of HIF-1α and MDR1. PLoS One, 2020, 15(10), e0240676.
[http://dx.doi.org/10.1371/journal.pone.0240676] [PMID: 33052979]
[74]
Yang, Z.; Liu, J.; Lu, Y. Doxorubicin and CD CUR inclusion complex co loaded in thermosensitive hydrogel PLGA PEG PLGA localized administration for osteosarcoma. Int. J. Oncol., 2020, 57(2), 433-444.
[http://dx.doi.org/10.3892/ijo.2020.5067] [PMID: 32468050]
[75]
Abedi, F.; Davaran, S.; Hekmati, M.; Akbarzadeh, A.; Baradaran, B.; Moghaddam, S.V. An improved method in fabrication of smart dual-responsive nanogels for controlled release of doxorubicin and curcumin in HT-29 colon cancer cells. J. Nanobiotechnology, 2021, 19(1), 18.
[http://dx.doi.org/10.1186/s12951-020-00764-6] [PMID: 33422062]
[76]
Lee, J.H.; Mohan, C.D.; Deivasigamani, A.; Jung, Y.Y.; Rangappa, S.; Basappa, S.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.; Garg, M.; Lin, Z-X.; Rangappa, K.S.; Sethi, G.; Hui, K.M.; Ahn, K.S. Brusatol suppresses STAT3-driven metastasis by downregulating epithelial-mesenchymal transition in hepatocellular carcinoma. J. Adv. Res., 2020, 26, 83-94.
[http://dx.doi.org/10.1016/j.jare.2020.07.004] [PMID: 33133685]
[77]
Huyut, Z.; Alp, H.H.; Yaman, T. Keleş Ö.F.; Yener, Z.; Türkan, F.; Ayengin, K. Comparison of the protective effects of curcumin and caffeic acid phenethyl ester against doxorubicin-induced testicular toxicity. Andrologia, 2020, e13919.
[PMID: 33289171]
[78]
Mohammed, H.S.; Hosny, E.N.; Khadrawy, Y.A.; Magdy, M.; Attia, Y.S.; Sayed, O.A. AbdElaal, M. Protective effect of curcumin nanoparticles against cardiotoxicity induced by doxorubicin in rat. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(5), 165665.
[http://dx.doi.org/10.1016/j.bbadis.2020.165665] [PMID: 31918005]
[79]
Zhang, F.; Jia, Y.; Zheng, X.; Shao, D.; Zhao, Y.; Wang, Z.; Dawulieti, J.; Liu, W.; Sun, M.; Sun, W.; Pan, Y.; Cui, L.; Wang, Y.; He, K.; Zhang, M.; Li, J.; Dong, W.F.; Chen, L. Janus nanocarrier-based co-delivery of doxorubicin and berberine weakens chemotherapy-exacerbated hepatocellular carcinoma recurrence. Acta Biomater., 2019, 100, 352-364.
[http://dx.doi.org/10.1016/j.actbio.2019.09.034] [PMID: 31563690]
[80]
Yahuafai, J.; Asai, T.; Oku, N.; Siripong, P. Anticancer efficacy of the combination of Berberine and PEGylated liposomal doxorubicin in meth a sarcoma-bearing mice. Biol. Pharm. Bull., 2018, 41(7), 1103-1106.
[http://dx.doi.org/10.1248/bpb.b17-00989] [PMID: 29962406]
[81]
Lee, J.H.; Chinnathambi, A.; Alharbi, S.A.; Shair, O.H.M.; Sethi, G.; Ahn, K.S. Farnesol abrogates epithelial to mesenchymal transition process through regulating Akt/mTOR pathway. Pharmacol. Res., 2019, 150, 104504.
[http://dx.doi.org/10.1016/j.phrs.2019.104504] [PMID: 31678208]
[82]
Georgakopoulos-Soares, I.; Chartoumpekis, D.V.; Kyriazopoulou, V.; Zaravinos, A. EMT Factors and metabolic pathways in cancer. Front. Oncol., 2020, 10, 499.
[http://dx.doi.org/10.3389/fonc.2020.00499] [PMID: 32318352]
[83]
Recouvreux, M.V.; Moldenhauer, M.R.; Galenkamp, K.M.O.; Jung, M.; James, B.; Zhang, Y.; Lowy, A.; Bagchi, A.; Commisso, C. Glutamine depletion regulates Slug to promote EMT and metastasis in pancreatic cancer. J. Exp. Med., 2020, 217(9), 217.
[http://dx.doi.org/10.1084/jem.20200388] [PMID: 32510550]
[84]
Tao, L.; Shu-Ling, W.; Jing-Bo, H.; Ying, Z.; Rong, H.; Xiang-Qun, L.; Wen-Jie, C.; Lin-Fu, Z. MiR-451a attenuates doxorubicin resistance in lung cancer via suppressing epithelialmesenchymal transition (EMT) through targeting c-Myc. Biomed. Pharmacother., 2020, 125, 109962.
[http://dx.doi.org/10.1016/j.biopha.2020.109962] [PMID: 32106373]
[85]
Li, X.; He, J.; Ren, X.; Zhao, H.; Zhao, H. Circ_0003998 enhances doxorubicin resistance in hepatocellular carcinoma by regulating miR-218-5p/EIF5A2 pathway. Diagn. Pathol., 2020, 15(1), 141.
[http://dx.doi.org/10.1186/s13000-020-01056-1] [PMID: 33308276]
[86]
Jin, X.; Wei, Y.; Liu, Y.; Lu, X.; Ding, F.; Wang, J.; Yang, S. Resveratrol promotes sensitization to Doxorubicin by inhibiting epithelial-mesenchymal transition and modulating SIRT1/β-catenin signaling pathway in breast cancer. Cancer Med., 2019, 8(3), 1246-1257.
[http://dx.doi.org/10.1002/cam4.1993] [PMID: 30697969]
[87]
Csolle, M.P.; Ooms, L.M.; Papa, A.; Mitchell, C.A. PTEN and other PtdIns(3,4,5)P3 lipid phosphatases in breast cancer. Int. J. Mol. Sci., 2020, 21(23), 21.
[http://dx.doi.org/10.3390/ijms21239189] [PMID: 33276499]
[88]
Ashrafizadeh, M.; Zarrabi, A.; Samarghandian, S.; Najafi, M. PTEN: What we know of the function and regulation of this onco-suppressor factor in bladder cancer? Eur. J. Pharmacol., 2020, 881, 173226.
[http://dx.doi.org/10.1016/j.ejphar.2020.173226] [PMID: 32485246]
[89]
Conciatori, F.; Bazzichetto, C.; Falcone, I.; Ciuffreda, L.; Ferretti, G.; Vari, S.; Ferraresi, V.; Cognetti, F.; Milella, M. PTEN Function at the interface between cancer and tumor microenvironment: Implications for response to immunotherapy. Int. J. Mol. Sci., 2020, 21(15), 21.
[http://dx.doi.org/10.3390/ijms21155337] [PMID: 32727102]
[90]
Ma, Z.; Lou, S.; Jiang, Z. PHLDA2 regulates EMT and autophagy in colorectal cancer via the PI3K/AKT signaling pathway. Aging (Albany NY), 2020, 12(9), 7985-8000.
[http://dx.doi.org/10.18632/aging.103117] [PMID: 32385195]
[91]
Tian, H.; Lian, R.; Li, Y.; Liu, C.; Liang, S.; Li, W.; Tao, T.; Wu, X.; Ye, Y.; Yang, X.; Han, J.; Chen, X.; Li, J.; He, Y.; Li, M.; Wu, J.; Cai, J. AKT-induced lncRNA VAL promotes EMT-independent metastasis through diminishing Trim16-dependent Vimentin degradation. Nat. Commun., 2020, 11(1), 5127.
[http://dx.doi.org/10.1038/s41467-020-18929-0] [PMID: 33046716]
[92]
Xu, J.; Liu, D.; Niu, H.; Zhu, G.; Xu, Y.; Ye, D.; Li, J.; Zhang, Q. Resveratrol reverses doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. J. Exp. Clin. Cancer Res., 2017, 36(1), 19.
[http://dx.doi.org/10.1186/s13046-016-0487-8] [PMID: 28126034]
[93]
Hallajian, F.; Ghasmi, M.; Abedi, S.M.; Behzadi, R.; Hayati, E.; Sadeghzadeh, N.; Rezazadeh, F.; Karimi, H. Evaluation of the effect of resveratrol and doxorubicin on 99mTc-MIBI uptake in breast cancer cell xenografts in mice. Cancer Biother. Radiopharm., 2018, 33(9), 403-410.
[http://dx.doi.org/10.1089/cbr.2018.2523] [PMID: 30040447]
[94]
Zhong, J.; Sun, P.; Xu, N.; Liao, M.; Xu, C.; Ding, Y.; Cai, J.; Zhang, Y.; Xie, W. Canagliflozin inhibits p-gp function and early autophagy and improves the sensitivity to the antitumor effect of doxorubicin. Biochem. Pharmacol., 2020, 175, 113856.
[http://dx.doi.org/10.1016/j.bcp.2020.113856] [PMID: 32061772]
[95]
Liu, Y.; Bai, H.; Guo, K.; Wang, P. Hypocrellin B triggered sonodynamic therapy reverses multidrug resistance of doxorubicin-resistant SGC7901/ADR cells via down-regulation of P-gp expression. J. Chemother., 2020, 32(7), 385-393.
[http://dx.doi.org/10.1080/1120009X.2020.1778242] [PMID: 32530372]
[96]
Al-Abd, A.M.; Mahmoud, A.M.; El-Sherbiny, G.A.; El-Moselhy, M.A.; Nofal, S.M.; El-Latif, H.A.; El-Eraky, W.I.; El-Shemy, H.A. Resveratrol enhances the cytotoxic profile of docetaxel and doxorubicin in solid tumour cell lines in vitro. Cell Prolif., 2011, 44(6), 591-601.
[http://dx.doi.org/10.1111/j.1365-2184.2011.00783.x] [PMID: 22011009]
[97]
Ding, H.; Song, Y.; Huang, X.; Wang, L.; Luo, S.; Zhang, H.; Pan, H.; Jiang, W.; Qian, J.; Yao, G.; Wen, L.; Zhang, Y. mTORC1-dependent TFEB nucleus translocation and pro-survival autophagy induced by zeolitic imidazolate framework-8. Biomater. Sci., 2020, 8(15), 4358-4369.
[http://dx.doi.org/10.1039/D0BM00773K] [PMID: 32608399]
[98]
Xia, X.; Wang, Q.; Ye, T.; Liu, Y.; Liu, D.; Song, S.; Zheng, C. NRF2/ABCB1-mediated efflux and PARP1-mediated dampening of DNA damage contribute to doxorubicin resistance in chronic hypoxic HepG2 cells. Fundam. Clin. Pharmacol., 2020, 34(1), 41-50.
[http://dx.doi.org/10.1111/fcp.12505] [PMID: 31420991]
[99]
Ryoo, I.G.; Kim, G.; Choi, B.H.; Lee, S.H.; Kwak, M.K. Involvement of NRF2 signaling in doxorubicin resistance of cancer stem cell-enriched colonospheres. Biomol. Ther. (Seoul), 2016, 24(5), 482-488.
[http://dx.doi.org/10.4062/biomolther.2016.145] [PMID: 27582554]
[100]
Rai, G.; Mishra, S.; Suman, S.; Shukla, Y. Resveratrol improves the anticancer effects of doxorubicin in vitro and in vivo models: A mechanistic insight. Phytomedicine, 2016, 23(3), 233-242.
[http://dx.doi.org/10.1016/j.phymed.2015.12.020] [PMID: 26969377]
[101]
Vargas, J.E.; Puga, R.; Lenz, G.; Trindade, C.; Filippi-Chiela, E. Cellular mechanisms triggered by the cotreatment of resveratrol and doxorubicin in breast cancer: A translational in vitro-in silico model. Oxid. Med. Cell. Longev., 2020, 2020, 5432651.
[http://dx.doi.org/10.1155/2020/5432651] [PMID: 33204396]
[102]
Wang, Y.; Liu, Y.; Du, X.; Ma, H.; Yao, J. Berberine reverses doxorubicin resistance by inhibiting autophagy through the PTEN/Akt/mTOR signaling pathway in breast cancer. OncoTargets Ther., 2020, 13, 1909-1919.
[http://dx.doi.org/10.2147/OTT.S241632] [PMID: 32184626]
[103]
Rezk, Y.A.; Balulad, S.S.; Keller, R.S.; Bennett, J.A. Use of resveratrol to improve the effectiveness of cisplatin and doxorubicin: Study in human gynecologic cancer cell lines and in rodent heart. Am. J. Obstet. Gynecol., 2006, 194(5), e23-e26.
[http://dx.doi.org/10.1016/j.ajog.2005.11.030] [PMID: 16647892]
[104]
Osman, A.M.; Al-Harthi, S.E.; AlArabi, O.M.; Elshal, M.F.; Ramadan, W.S.; Alaama, M.N.; Al-Kreathy, H.M.; Damanhouri, Z.A.; Osman, O.H. Chemosensetizing and cardioprotective effects of resveratrol in doxorubicin- treated animals. Cancer Cell Int., 2013, 13, 52.
[http://dx.doi.org/10.1186/1475-2867-13-52] [PMID: 23714221]
[105]
El-Readi, M.Z.; Eid, S.; Abdelghany, A.A.; Al-Amoudi, H.S.; Efferth, T.; Wink, M. Resveratrol mediated cancer cell apoptosis, and modulation of multidrug resistance proteins and metabolic enzymes. Phytomedicine, 2019, 55, 269-281.
[http://dx.doi.org/10.1016/j.phymed.2018.06.046] [PMID: 30668439]
[106]
Gatouillat, G.; Balasse, E.; Joseph-Pietras, D.; Morjani, H.; Madoulet, C. Resveratrol induces cell-cycle disruption and apoptosis in chemoresistant B16 melanoma. J. Cell. Biochem., 2010, 110(4), 893-902.
[http://dx.doi.org/10.1002/jcb.22601] [PMID: 20564188]
[107]
Wantoch von Rekowski, K.; König, P.; Henze, S.; Schlesinger, M.; Zawierucha, P.; Januchowski, R.; Bendas, G. Insight into cisplatin-resistance signaling of W1 ovarian cancer cells emerges mTOR and HSP27 as targets for sensitization strategies. Int. J. Mol. Sci., 2020, 21(23), 21.
[http://dx.doi.org/10.3390/ijms21239240] [PMID: 33287446]
[108]
Liu, Z.; Liu, Y.; Long, Y.; Liu, B.; Wang, X. Role of HSP27 in the multidrug sensitivity and resistance of colon cancer cells. Oncol. Lett., 2020, 19(3), 2021-2027.
[http://dx.doi.org/10.3892/ol.2020.11255] [PMID: 32194698]
[109]
Hwang, S.Y.; Choi, S.K.; Seo, S.H.; Jo, H.; Shin, J.H.; Na, Y.; Lee, Y.S.; Kwon, Y. Specific roles of HSP27 S15 phosphorylation augmenting the nuclear function of HER2 to promote trastuzumab resistance. Cancers (Basel), 2020, 12(6), 12.
[http://dx.doi.org/10.3390/cancers12061540] [PMID: 32545363]
[110]
He, Z.; Shen, F.; Qi, P.; Zhai, Z.; Wang, Z. miR-541-3p enhances the radiosensitivity of prostate cancer cells by inhibiting HSP27 expression and downregulating β-catenin. Cell Death Discov., 2021, 7(1), 18.
[http://dx.doi.org/10.1038/s41420-020-00387-8] [PMID: 33462201]
[111]
Díaz-Chávez, J.; Fonseca-Sánchez, M.A.; Arechaga-Ocampo, E.; Flores-Pérez, A.; Palacios-Rodríguez, Y.; Domínguez-Gómez, G.; Marchat, L.A.; Fuentes-Mera, L.; Mendoza-Hernández, G.; Gariglio, P.; López-Camarillo, C. Proteomic profiling reveals that resveratrol inhibits HSP27 expression and sensitizes breast cancer cells to doxorubicin therapy. PLoS One, 2013, 8(5), e64378.
[http://dx.doi.org/10.1371/journal.pone.0064378] [PMID: 23724044]
[112]
Kim, T.H.; Shin, Y.J.; Won, A.J.; Lee, B.M.; Choi, W.S.; Jung, J.H.; Chung, H.Y.; Kim, H.S. Resveratrol enhances chemosensitivity of doxorubicin in multidrug-resistant human breast cancer cells via increased cellular influx of doxorubicin. Biochim. Biophys. Acta, 2014, 1840(1), 615-625.
[http://dx.doi.org/10.1016/j.bbagen.2013.10.023] [PMID: 24161697]
[113]
Chen, J.M.; Bai, J.Y.; Yang, K.X. Effect of resveratrol on doxorubicin resistance in breast neoplasm cells by modulating PI3K/Akt signaling pathway. IUBMB Life, 2018, 70(6), 491-500.
[http://dx.doi.org/10.1002/iub.1749] [PMID: 29637742]
[114]
Pouyafar, A.; Zadi Heydarabad, M.; Aghdam, S.B.; Khaksar, M.; Azimi, A.; Rahbarghazi, R.; Talebi, M. Resveratrol potentially increased the tumoricidal effect of doxorubicin on SKOV3 cancer stem cells in vitro. J. Cell. Biochem., 2019.
[http://dx.doi.org/10.1002/jcb.28129] [PMID: 30609135]
[115]
Harati, K.; Slodnik, P.; Chromik, A.M.; Goertz, O.; Hirsch, T.; Kapalschinski, N.; Klein-Hitpass, L.; Kolbenschlag, J.; Uhl, W.; Lehnhardt, M.; Daigeler, A. Resveratrol induces apoptosis and alters gene expression in human fibrosarcoma cells. Anticancer Res., 2015, 35(2), 767-774.
[PMID: 25667456]
[116]
Duraj, J.; Bodo, J.; Sulikova, M.; Rauko, P.; Sedlak, J. Diverse resveratrol sensitization to apoptosis induced by anticancer drugs in sensitive and resistant leukemia cells. Neoplasma, 2006, 53(5), 384-392.
[PMID: 17013532]
[117]
Kilic Eren, M.; Kilincli, A.; Eren, Ö. Resveratrol induced premature senescence is associated with DNA damage mediated SIRT1 and SIRT2 down-regulation. PLoS One, 2015, 10(4), e0124837.
[http://dx.doi.org/10.1371/journal.pone.0124837] [PMID: 25924011]
[118]
Khaleel, S.A.; Al-Abd, A.M.; Ali, A.A.; Abdel-Naim, A.B. Didox and resveratrol sensitize colorectal cancer cells to doxorubicin via activating apoptosis and ameliorating P-glycoprotein activity. Sci. Rep., 2016, 6, 36855.
[http://dx.doi.org/10.1038/srep36855] [PMID: 27841296]
[119]
Mitani, T.; Ito, Y.; Harada, N.; Nakano, Y.; Inui, H.; Ashida, H.; Yamaji, R. Resveratrol reduces the hypoxia-induced resistance to doxorubicin in breast cancer cells. J. Nutr. Sci. Vitaminol. (Tokyo), 2014, 60(2), 122-128.
[http://dx.doi.org/10.3177/jnsv.60.122] [PMID: 24975222]
[120]
Osman, A.M.; Bayoumi, H.M.; Al-Harthi, S.E.; Damanhouri, Z.A.; Elshal, M.F. Modulation of doxorubicin cytotoxicity by resveratrol in a human breast cancer cell line. Cancer Cell Int., 2012, 12(1), 47.
[http://dx.doi.org/10.1186/1475-2867-12-47] [PMID: 23153194]
[121]
Kweon, S.H.; Song, J.H.; Kim, T.S. Resveratrol-mediated reversal of doxorubicin resistance in acute myeloid leukemia cells via downregulation of MRP1 expression. Biochem. Biophys. Res. Commun., 2010, 395(1), 104-110.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.147] [PMID: 20350534]
[122]
Ghorbani, A.; Zand, H.; Jeddi-Tehrani, M.; Koohdani, F.; Shidfar, F.; Keshavarz, S.A. PTEN over-expression by resveratrol in acute lymphoblastic leukemia cells along with suppression of AKT/PKB and ERK1/2 in genotoxic stress. J. Nat. Med., 2015, 69(4), 507-512.
[http://dx.doi.org/10.1007/s11418-015-0915-7] [PMID: 25929783]
[123]
Huang, F.; Wu, X.N.; Chen, J.; Wang, W.X.; Lu, Z.F. Resveratrol reverses multidrug resistance in human breast cancer doxorubicin-resistant cells. Exp. Ther. Med., 2014, 7(6), 1611-1616.
[http://dx.doi.org/10.3892/etm.2014.1662] [PMID: 24926353]
[124]
Schroeter, A.; Marko, D. Resveratrol modulates the topoisomerase inhibitory potential of doxorubicin in human colon carcinoma cells. Molecules, 2014, 19(12), 20054-20072.
[http://dx.doi.org/10.3390/molecules191220054] [PMID: 25470274]
[125]
Zhang, S.; Liu, X.; Bawa-Khalfe, T.; Lu, L-S.; Lyu, Y.L.; Liu, L.F.; Yeh, E.T. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med., 2012, 18(11), 1639-1642.
[http://dx.doi.org/10.1038/nm.2919] [PMID: 23104132]
[126]
Vejpongsa, P.; Yeh, E.T. Prevention of anthracycline-induced cardiotoxicity: Challenges and opportunities. J. Am. Coll. Cardiol., 2014, 64(9), 938-945.
[http://dx.doi.org/10.1016/j.jacc.2014.06.1167] [PMID: 25169180]
[127]
Iaquinta, P.J.; Lees, J.A. Life and death decisions by the E2F transcription factors. Curr. Opin. Cell Biol., 2007, 19(6), 649-657.
[http://dx.doi.org/10.1016/j.ceb.2007.10.006] [PMID: 18032011]
[128]
Jiang, H.; Martin, V.; Gomez-Manzano, C.; Johnson, D.G.; Alonso, M.; White, E.; Xu, J.; McDonnell, T.J.; Shinojima, N.; Fueyo, J. The RB-E2F1 pathway regulates autophagy. Cancer Res., 2010, 70(20), 7882-7893.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1604] [PMID: 20807803]
[129]
Klionsky, D.J.; Emr, S.D. Autophagy as a regulated pathway of cellular degradation. Science, 2000, 290(5497), 1717-1721.
[http://dx.doi.org/10.1126/science.290.5497.1717] [PMID: 11099404]
[130]
Kuma, A.; Hatano, M.; Matsui, M.; Yamamoto, A.; Nakaya, H.; Yoshimori, T.; Ohsumi, Y.; Tokuhisa, T.; Mizushima, N. The role of autophagy during the early neonatal starvation period. Nature, 2004, 432(7020), 1032-1036.
[http://dx.doi.org/10.1038/nature03029] [PMID: 15525940]
[131]
Matsui, Y.; Takagi, H.; Qu, X.; Abdellatif, M.; Sakoda, H.; Asano, T.; Levine, B.; Sadoshima, J. Distinct roles of autophagy in the heart during ischemia and reperfusion: Roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res., 2007, 100(6), 914-922.
[http://dx.doi.org/10.1161/01.RES.0000261924.76669.36] [PMID: 17332429]
[132]
Gu, J.; Fan, Y.Q.; Zhang, H.L.; Pan, J.A.; Yu, J.Y.; Zhang, J.F.; Wang, C.Q. Resveratrol suppresses doxorubicin-induced cardiotoxicity by disrupting E2F1 mediated autophagy inhibition and apoptosis promotion. Biochem. Pharmacol., 2018, 150, 202-213.
[http://dx.doi.org/10.1016/j.bcp.2018.02.025] [PMID: 29475062]
[133]
Gu, J.; Hu, W.; Song, Z.P.; Chen, Y.G.; Zhang, D.D.; Wang, C.Q. Resveratrol-induced autophagy promotes survival and attenuates doxorubicin-induced cardiotoxicity. Int. Immunopharmacol., 2016, 32, 1-7.
[http://dx.doi.org/10.1016/j.intimp.2016.01.002] [PMID: 26774212]
[134]
Dutta, D.; Xu, J.; Dirain, M.L.; Leeuwenburgh, C. Calorie restriction combined with resveratrol induces autophagy and protects 26-month-old rat hearts from doxorubicin-induced toxicity. Free Radic. Biol. Med., 2014, 74, 252-262.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.06.011] [PMID: 24975655]
[135]
Geng, X.Q.; Ma, A.; He, J.Z.; Wang, L.; Jia, Y.L.; Shao, G.Y.; Li, M.; Zhou, H.; Lin, S.Q.; Ran, J.H.; Yang, B.X. Ganoderic acid hinders renal fibrosis via suppressing the TGF-β/Smad and MAPK signaling pathways. Acta Pharmacol. Sin., 2020, 41(5), 670-677.
[http://dx.doi.org/10.1038/s41401-019-0324-7] [PMID: 31804606]
[136]
Yao, Y.; Hu, C.; Song, Q.; Li, Y.; Da, X.; Yu, Y.; Li, H.; Clark, I.M.; Chen, Q.; Wang, Q.K. ADAMTS16 activates latent TGF-β accentuating fibrosis and dysfunction of the pressure-overloaded heart. Cardiovasc. Res., 2020, 116(5), 956-969.
[http://dx.doi.org/10.1093/cvr/cvz187] [PMID: 31297506]
[137]
Arafa, M.H.; Mohammad, N.S.; Atteia, H.H.; Abd-Elaziz, H.R. Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats. J. Physiol. Biochem., 2014, 70(3), 701-711.
[http://dx.doi.org/10.1007/s13105-014-0339-y] [PMID: 24939721]
[138]
Alhadlaq, A.; Mao, J.J. Mesenchymal stem cells: Isolation and therapeutics. Stem Cells Dev., 2004, 13(4), 436-448.
[http://dx.doi.org/10.1089/scd.2004.13.436] [PMID: 15345137]
[139]
Cowan, C.M.; Shi, Y-Y.; Aalami, O.O.; Chou, Y-F.; Mari, C.; Thomas, R.; Quarto, N.; Contag, C.H.; Wu, B.; Longaker, M.T. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol., 2004, 22(5), 560-567.
[http://dx.doi.org/10.1038/nbt958] [PMID: 15077117]
[140]
Pınarlı F.A.; Turan, N.N.; Pınarlı F.G.; Okur, A.; Sönmez, D.; Ulus, T.; Oğuz, A.; Karadeniz, C.; Delibaşı T. Resveratrol and adipose-derived mesenchymal stem cells are effective in the prevention and treatment of doxorubicin cardiotoxicity in rats. Pediatr. Hematol. Oncol., 2013, 30(3), 226-238.
[http://dx.doi.org/10.3109/08880018.2012.762962] [PMID: 23363243]
[141]
Dolinsky, V.W.; Rogan, K.J.; Sung, M.M.; Zordoky, B.N.; Haykowsky, M.J.; Young, M.E.; Jones, L.W.; Dyck, J.R. Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice. Am. J. Physiol. Endocrinol. Metab., 2013, 305(2), E243-E253.
[http://dx.doi.org/10.1152/ajpendo.00044.2013] [PMID: 23695218]
[142]
Wang, L.; Chen, Q.; Qi, H.; Wang, C.; Wang, C.; Zhang, J.; Dong, L. Doxorubicin-induced systemic inflammation is driven by upregulation of toll-like receptor tlr4 and endotoxin leakage. Cancer Res., 2016, 76(22), 6631-6642.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3034] [PMID: 27680684]
[143]
Ain, Q.U.; Batool, M.; Choi, S. TLR4-Targeting therapeutics: Structural basis and computer-aided drug discovery approaches. Molecules, 2020, 25(3), 25.
[http://dx.doi.org/10.3390/molecules25030627] [PMID: 32023919]
[144]
Chua, W.; Clarke, S.J.; Charles, K.A. Systemic inflammation and prediction of chemotherapy outcomes in patients receiving docetaxel for advanced cancer. Support. Care Cancer, 2012, 20(8), 1869-1874.
[http://dx.doi.org/10.1007/s00520-011-1289-3] [PMID: 21986674]
[145]
Saleh, H.A.; Ramdan, E.; Elmazar, M.M.; Azzazy, H.M.E.; Abdelnaser, A. Comparing the protective effects of resveratrol, curcumin and sulforaphane against LPS/IFN-γ-mediated inflammation in doxorubicin-treated macrophages. Sci. Rep., 2021, 11(1), 545.
[http://dx.doi.org/10.1038/s41598-020-80804-1] [PMID: 33436962]
[146]
Sin, T.K.; Tam, B.T.; Yu, A.P.; Yip, S.P.; Yung, B.Y.; Chan, L.W.; Wong, C.S.; Rudd, J.A.; Siu, P.M. Acute treatment of resveratrol alleviates doxorubicin-induced myotoxicity in aged skeletal muscle through sirt1-dependent mechanisms. J. Gerontol. A Biol. Sci. Med. Sci., 2016, 71(6), 730-739.
[http://dx.doi.org/10.1093/gerona/glv175] [PMID: 26450947]
[147]
Türedi, S. Yuluğ E.; Alver, A.; Kutlu, Ö.; Kahraman, C. Effects of resveratrol on doxorubicin induced testicular damage in rats. Exp. Toxicol. Pathol., 2015, 67(3), 229-235.
[http://dx.doi.org/10.1016/j.etp.2014.12.002] [PMID: 25553596]
[148]
Yu, B.B.; Han, X.Z.; Lou, H.X. Oligomers of resveratrol and ferulic acid prepared by peroxidase-catalyzed oxidation and their protective effects on cardiac injury. J. Agric. Food Chem., 2007, 55(19), 7753-7757.
[http://dx.doi.org/10.1021/jf0711486] [PMID: 17696480]
[149]
Rimal, H.; Yu, S.C.; Lee, J.H.; Tokutaro, Y.; Oh, T.J. Hydroxylation of resveratrol with doxa in vitro: An enzyme with the potential for the bioconversion of a bioactive stilbene. J. Microbiol. Biotechnol., 2018, 28(4), 561-565.
[http://dx.doi.org/10.4014/jmb.1711.11047] [PMID: 29385664]
[150]
Ito, Y.; Mitani, T.; Harada, N.; Isayama, A.; Tanimori, S.; Takenaka, S.; Nakano, Y.; Inui, H.; Yamaji, R. Identification of carbonyl reductase 1 as a resveratrol-binding protein by affinity chromatography using 4′-amino-3,5-dihydroxy-trans-stilbene. J. Nutr. Sci. Vitaminol. (Tokyo), 2013, 59(4), 358-364.
[http://dx.doi.org/10.3177/jnsv.59.358] [PMID: 24064738]
[151]
Dudka, J.; Jodynis-Liebert, J.; Korobowicz, E.; Burdan, F.; Korobowicz, A.; Szumilo, J.; Tokarska, E.; Klepacz, R.; Murias, M. Activity of NADPH-cytochrome P-450 reductase of the human heart, liver and lungs in the presence of (-)-epigallocatechin gallate, quercetin and resveratrol: An in vitro study. Basic Clin. Pharmacol. Toxicol., 2005, 97(2), 74-79.
[http://dx.doi.org/10.1111/j.1742-7843.2005.pto_98.x] [PMID: 15998352]
[152]
cardiotoxicity by alleviating oxidative damage. Free Radic. Res., 2009, 43(3), 195-205.
[http://dx.doi.org/10.1080/10715760802673008] [PMID: 19169920]
[153]
Gu, J.; Song, Z.P.; Gui, D.M.; Hu, W.; Chen, Y.G.; Zhang, D.D. Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in lymphoma nude mice by heme oxygenase-1 induction. Cardiovasc. Toxicol., 2012, 12(4), 341-349.
[http://dx.doi.org/10.1007/s12012-012-9178-7] [PMID: 22763982]
[154]
Abe, J.; Yamada, Y.; Takeda, A.; Harashima, H. Cardiac progenitor cells activated by mitochondrial delivery of resveratrol enhance the survival of a doxorubicin-induced cardiomyopathy mouse model via the mitochondrial activation of a damaged myocardium. J. Control. Release, 2018, 269, 177-188.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.024] [PMID: 29146241]
[155]
Han, J.; Wang, H.; Zhang, T.; Chen, Z.; Zhao, T.; Lin, L.; Xia, G.; Wang, C. Resveratrol attenuates doxorubicin-induced meiotic failure through inhibiting oxidative stress and apoptosis in mouse oocytes. Aging (Albany NY), 2020, 12(9), 7717-7728.
[http://dx.doi.org/10.18632/aging.103061] [PMID: 32352929]
[156]
Dudka, J.; Gieroba, R.; Korga, A.; Burdan, F.; Matysiak, W.; Jodlowska-Jedrych, B.; Mandziuk, S.; Korobowicz, E.; Murias, M. Different effects of resveratrol on dose-related Doxorubicin-induced heart and liver toxicity. Evid. Based Complement. Alternat. Med., 2012, 2012, 606183.
[http://dx.doi.org/10.1155/2012/606183] [PMID: 23258992]
[157]
Oktem, G.; Uysal, A.; Oral, O.; Sezer, E.D.; Olukman, M.; Erol, A.; Akgur, S.A.; Bilir, A. Resveratrol attenuates doxorubicin-induced cellular damage by modulating nitric oxide and apoptosis. Exp. Toxicol. Pathol., 2012, 64(5), 471-479.
[http://dx.doi.org/10.1016/j.etp.2010.11.001] [PMID: 21144718]
[158]
Danz, E.D.; Skramsted, J.; Henry, N.; Bennett, J.A.; Keller, R.S. Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radic. Biol. Med., 2009, 46(12), 1589-1597.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.03.011] [PMID: 19303434]
[159]
Wang, H.L.; Gao, J.P.; Han, Y.L.; Xu, X.; Wu, R.; Gao, Y.; Cui, X.H. Comparative studies of polydatin and resveratrol on mutual transformation and antioxidative effect in vivo. Phytomedicine, 2015, 22(5), 553-559.
[http://dx.doi.org/10.1016/j.phymed.2015.03.014] [PMID: 25981921]
[160]
aged hearts through the SIRT1-USP7 axis. J. Physiol., 2015, 593(8), 1887-1899.
[http://dx.doi.org/10.1113/jphysiol.2014.270101] [PMID: 25665036]
[161]
Lou, Y.; Wang, Z.; Xu, Y.; Zhou, P.; Cao, J.; Li, Y.; Chen, Y.; Sun, J.; Fu, L. Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway. Int. J. Mol. Med., 2015, 36(3), 873-880.
[http://dx.doi.org/10.3892/ijmm.2015.2291] [PMID: 26202177]
[162]
Al-Harthi, S.E.; Alarabi, O.M.; Ramadan, W.S.; Alaama, M.N.; Al-Kreathy, H.M.; Damanhouri, Z.A.; Khan, L.M.; Osman, A.M. Amelioration of doxorubicin induced cardiotoxicity by resveratrol. Mol. Med. Rep., 2014, 10(3), 1455-1460.
[http://dx.doi.org/10.3892/mmr.2014.2384] [PMID: 25059399]
[163]
Tian, W.; Yang, L.; Liu, Y.; He, J.; Yang, L.; Zhang, Q.; Liu, F.; Li, J.; Liu, J.; Sumi, S.; Shen, Y.; Qi, Z. Resveratrol attenuates doxorubicin-induced cardiotoxicity in rats by up-regulation of vascular endothelial growth factor B. J. Nutr. Biochem., 2020, 79, 108132.
[http://dx.doi.org/10.1016/j.jnutbio.2019.01.018] [PMID: 30857673]
[164]
Matsumura, N.; Zordoky, B.N.; Robertson, I.M.; Hamza, S.M.; Parajuli, N.; Soltys, C.M.; Beker, D.L.; Grant, M.K.; Razzoli, M.; Bartolomucci, A.; Dyck, J.R.B. Co-administration of resveratrol with doxorubicin in young mice attenuates detrimental late-occurring cardiovascular changes. Cardiovasc. Res., 2018, 114(10), 1350-1359.
[http://dx.doi.org/10.1093/cvr/cvy064] [PMID: 29566148]
[165]
Liu, M.H.; Lin, X.L.; Guo, D.M.; Zhang, Y.; Yuan, C.; Tan, T.P.; Chen, Y.D.; Wu, S.J.; Ye, Z.F.; He, J. Resveratrol protects cardiomyocytes from doxorubicin-induced apoptosis through the AMPK/P53 pathway. Mol. Med. Rep., 2016, 13(2), 1281-1286.
[http://dx.doi.org/10.3892/mmr.2015.4665] [PMID: 26675978]
[166]
Xu, X.; Chen, K.; Kobayashi, S.; Timm, D.; Liang, Q. Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. J. Pharmacol. Exp. Ther., 2012, 341(1), 183-195.
[http://dx.doi.org/10.1124/jpet.111.189589] [PMID: 22209892]
[167]
Cao, Z.; Li, Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: Protection against oxidative and electrophilic injury. Eur. J. Pharmacol., 2004, 489(1-2), 39-48.
[http://dx.doi.org/10.1016/j.ejphar.2004.02.031] [PMID: 15063153]
[168]
Liu, M.H.; Shan, J.; Li, J.; Zhang, Y.; Lin, X.L. Resveratrol inhibits doxorubicin-induced cardiotoxicity via sirtuin 1 activation in H9c2 cardiomyocytes. Exp. Ther. Med., 2016, 12(2), 1113-1118.
[http://dx.doi.org/10.3892/etm.2016.3437] [PMID: 27446329]
[169]
Zhang, C.; Feng, Y.; Qu, S.; Wei, X.; Zhu, H.; Luo, Q.; Liu, M.; Chen, G.; Xiao, X. Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc. Res., 2011, 90(3), 538-545.
[http://dx.doi.org/10.1093/cvr/cvr022] [PMID: 21278141]
[170]
Bingöl, G.; Gülkaç, M.D. Dillioğlugil, M.Ö.; Polat, F.; Kanli, A.Ö. Effect of resveratrol on chromosomal aberrations induced by doxorubicin in rat bone marrow cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2014, 766, 1-4.
[http://dx.doi.org/10.1016/j.mrgentox.2014.03.008] [PMID: 24713549]
[171]
Sharkawy, A.; Casimiro, F.M.; Barreiro, M.F.; Rodrigues, A.E. Enhancing trans-resveratrol topical delivery and photostability through entrapment in chitosan/gum Arabic Pickering emulsions. Int. J. Biol. Macromol., 2020, 147, 150-159.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.057] [PMID: 31923496]
[172]
Li, M.; Zhang, L.; Li, R.; Yan, M. New resveratrol micelle formulation for ocular delivery: Characterization and in vitro/in vivo evaluation. Drug Dev. Ind. Pharm., 2020, 46(12), 1960-1970.
[http://dx.doi.org/10.1080/03639045.2020.1828909] [PMID: 32985941]
[173]
Jaisamut, P.; Wanna, S.; Limsuwan, S.; Chusri, S.; Wiwattanawongsa, K.; Wiwattanapatapee, R. Enhanced oral bioavailability and improved biological activities of a quercetin/resveratrol combination using a liquid self-microemulsifying drug delivery system. Planta Med., 2021, 87(4), 336-346.
[PMID: 33176379]
[174]
Yazdanparast, S.; Benvidi, A.; Azimzadeh, M.; Tezerjani, M.D.; Ghaani, M.R. Experimental and theoretical study for miR-155 detection through resveratrol interaction with nucleic acids using magnetic core-shell nanoparticles. Mikrochim. Acta, 2020, 187(8), 479.
[http://dx.doi.org/10.1007/s00604-020-04447-9] [PMID: 32740774]
[175]
Hai, L.; He, D.; He, X.; Wang, K.; Yang, X.; Liu, J.; Cheng, H.; Huang, X.; Shangguan, J. Facile fabrication of a resveratrol loaded phospholipid@reduced graphene oxide nanoassembly for targeted and near-infrared laser-triggered chemo/photothermal synergistic therapy of cancer in vivo. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(29), 5783-5792.
[http://dx.doi.org/10.1039/C7TB01600J] [PMID: 32264212]
[176]
Chen, Y.; Zhang, W.; Gu, J.; Ren, Q.; Fan, Z.; Zhong, W.; Fang, X.; Sha, X. Enhanced antitumor efficacy by methotrexate conjugated Pluronic mixed micelles against KBv multidrug resistant cancer. Int. J. Pharm., 2013, 452(1-2), 421-433.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.015] [PMID: 23688623]
[177]
Zhou, S.; Deng, X.; Yang, H. Biodegradable poly(ε-caprolactone)-poly(ethylene glycol) block copolymers: Characterization and their use as drug carriers for a controlled delivery system. Biomaterials, 2003, 24(20), 3563-3570.
[http://dx.doi.org/10.1016/S0142-9612(03)00207-2] [PMID: 12809785]
[178]
Wang, S.; Chen, R.; Morott, J.; Repka, M.A.; Wang, Y.; Chen, M. mPEG-b-PCL/TPGS mixed micelles for delivery of resveratrol in overcoming resistant breast cancer. Expert Opin. Drug Deliv., 2015, 12(3), 361-373.
[http://dx.doi.org/10.1517/17425247.2014.951634] [PMID: 25392124]
[179]
Zhao, Y.; Huan, M.L.; Liu, M.; Cheng, Y.; Sun, Y.; Cui, H.; Liu, D.Z.; Mei, Q.B.; Zhou, S.Y. Doxorubicin and resveratrol co-delivery nanoparticle to overcome doxorubicin resistance. Sci. Rep., 2016, 6, 35267.
[http://dx.doi.org/10.1038/srep35267] [PMID: 27731405]
[180]
Bartolomé, R.A.; Martín-Regalado, Á.; Jaén, M.; Zannikou, M.; Zhang, P.; de Los Ríos, V.; Balyasnikova, I.V.; Casal, J.I. Protein tyrosine phosphatase-1B inhibition disrupts il13rα2-promoted invasion and metastasis in cancer cells. Cancers (Basel), 2020, 12(2), 12.
[http://dx.doi.org/10.3390/cancers12020500] [PMID: 32098194]
[181]
Jiang, L.; Cheng, Q.; Zhang, B.; Zhang, M. IL-13 induces the expression of 11βHSD2 in IL-13Rα2 dependent manner and promotes the malignancy of colorectal cancer. Am. J. Transl. Res., 2016, 8(2), 1064-1072.
[PMID: 27158392]
[182]
Gu, M. IL13Rα2 siRNA inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion in papillary thyroid carcinoma cells. OncoTargets Ther., 2018, 11, 1345-1352.
[http://dx.doi.org/10.2147/OTT.S153703] [PMID: 29563812]
[183]
Xiong, L.; Lin, X.M.; Nie, J.H.; Ye, H.S.; Liu, J. Resveratrol and its nanoparticle suppress doxorubicin/docetaxel-resistant anaplastic thyroid cancer cells in vitro and in vivo. Nanotheranostics, 2021, 5(2), 143-154.
[http://dx.doi.org/10.7150/ntno.53844] [PMID: 33457193]
[184]
He, L.; Qing, F.; Li, M.; Lan, D. Paclitaxel/IR1061-Co-Loaded protein nanoparticle for tumor-targeted and pH/NIR-II-triggered synergistic photothermal-chemotherapy. Int. J. Nanomedicine, 2020, 15, 2337-2349.
[http://dx.doi.org/10.2147/IJN.S240707] [PMID: 32308385]
[185]
Zhang, R.L.; Pratiwi, F.W.; Chen, B.C.; Chen, P.; Wu, S.H.; Mou, C.Y. Simultaneous single-particle tracking and dynamic ph sensing reveal lysosome-targetable mesoporous silica nanoparticle pathways. ACS Appl. Mater. Interfaces, 2020, 12(38), 42472-42484.
[http://dx.doi.org/10.1021/acsami.0c07917] [PMID: 32657564]
[186]
Mekonnen, T.W.; Andrgie, A.T.; Darge, H.F.; Birhan, Y.S.; Hanurry, E.Y.; Chou, H.Y.; Lai, J.Y.; Tsai, H.C.; Yang, J.M.; Chang, Y.H. Bioinspired composite, pH-responsive sodium deoxycholate hydrogel and generation 4.5 poly(amidoamine) dendrimer improves cancer treatment efficacy via doxorubicin and resveratrol co-delivery. Pharmaceutics, 2020, 12(11), 12.
[http://dx.doi.org/10.3390/pharmaceutics12111069] [PMID: 33182410]
[187]
Washington, K.E.; Kularatne, R.N.; Biewer, M.C.; Stefan, M.C. Combination loading of doxorubicin and resveratrol in polymeric micelles for increased loading efficiency and efficacy. ACS Biomater. Sci. Eng., 2018, 4(3), 997-1004.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00972] [PMID: 33418782]
[188]
Mohanty, R.K.; Thennarasu, S.; Mandal, A.B. Resveratrol stabilized gold nanoparticles enable surface loading of doxorubicin and anticancer activity. Colloids Surf. B Biointerfaces, 2014, 114, 138-143.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.057] [PMID: 24176891]
[189]
Tomoaia, G.; Horovitz, O.; Mocanu, A.; Nita, A.; Avram, A.; Racz, C.P.; Soritau, O.; Cenariu, M.; Tomoaia-Cotisel, M. Effects of doxorubicin mediated by gold nanoparticles and resveratrol in two human cervical tumor cell lines. Colloids Surf. B Biointerfaces, 2015, 135, 726-734.
[http://dx.doi.org/10.1016/j.colsurfb.2015.08.036] [PMID: 26340362]
[190]
Cote, B.; Carlson, L.J.; Rao, D.A.; Alani, A.W.G. Combinatorial resveratrol and quercetin polymeric micelles mitigate doxorubicin induced cardiotoxicity in vitro and in vivo. J. Control. Release, 2015, 213, 128-133.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.040] [PMID: 26160305]
[191]
Carlson, L.J.; Cote, B.; Alani, A.W.; Rao, D.A. Polymeric micellar co-delivery of resveratrol and curcumin to mitigate in vitro doxorubicin-induced cardiotoxicity. J. Pharm. Sci., 2014, 103(8), 2315-2322.
[http://dx.doi.org/10.1002/jps.24042] [PMID: 24914015]
[192]
Khan, A.R.; Yang, X.; Fu, M.; Zhai, G. Recent progress of drug nanoformulations targeting to brain. J. Control. Release, 2018, 291, 37-64.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.004] [PMID: 30308256]
[193]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47(2-3), 165-196.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[194]
Zhang, L.; Zhu, K.; Zeng, H.; Zhang, J.; Pu, Y.; Wang, Z.; Zhang, T.; Wang, B. Resveratrol solid lipid nanoparticles to trigger credible inhibition of doxorubicin cardiotoxicity. Int. J. Nanomedicine, 2019, 14, 6061-6071.
[http://dx.doi.org/10.2147/IJN.S211130] [PMID: 31534336]
[195]
Kiaie, S.H.; Mojarad-Jabali, S.; Khaleseh, F.; Allahyari, S.; Taheri, E.; Zakeri-Milani, P.; Valizadeh, H. Axial pharmaceutical properties of liposome in cancer therapy: Recent advances and perspectives. Int. J. Pharm., 2020, 581, 119269.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119269] [PMID: 32234427]
[196]
Shin, J.H.; Shin, D.H.; Kim, J.S. Let-7 miRNA and CDK4 siRNA co-encapsulated in Herceptin-conjugated liposome for breast cancer stem cells. Asian J Pharm Sci, 2020, 15(4), 472-481.
[http://dx.doi.org/10.1016/j.ajps.2019.03.001] [PMID: 32952670]
[197]
Liang, Z.; Du, L.; Zhang, E.; Zhao, Y.; Wang, W.; Ma, P.; Dai, M.; Zhao, Q.; Xu, H.; Zhang, S.; Zhen, Y. Targeted-delivery of siRNA via a polypeptide-modified liposome for the treatment of gp96 over-expressed breast cancer. Mater. Sci. Eng. C, 2021, 121, 111847.
[http://dx.doi.org/10.1016/j.msec.2020.111847] [PMID: 33579510]
[198]
Chang, M.; Wu, M.; Li, H. Antitumor effects of curcumin and glycyrrhetinic acid-modified curcumin-loaded cationic liposome by intratumoral administration. Evid. Based Complement. Alternat. Med., 2020, 2020, 4504936.
[http://dx.doi.org/10.1155/2020/4504936] [PMID: 32565859]
[199]
Huang, M.; Liang, C.; Tan, C.; Huang, S.; Ying, R.; Wang, Y.; Wang, Z.; Zhang, Y. Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Food Funct., 2019, 10(10), 6447-6458.
[http://dx.doi.org/10.1039/C9FO01338E] [PMID: 31524893]
[200]
Zheng, T.; Feng, H.; Liu, L.; Peng, J.; Xiao, H.; Yu, T.; Zhou, Z.; Li, Y.; Zhang, Y.; Bai, X.; Zhao, S.; Shi, Y.; Chen, Y. Enhanced antiproliferative effect of resveratrol in head and neck squamous cell carcinoma using GE11 peptide conjugated liposome. Int. J. Mol. Med., 2019, 43(4), 1635-1642.
[http://dx.doi.org/10.3892/ijmm.2019.4096] [PMID: 30816515]
[201]
Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin. Cancer Biol., 2021, 69, 5-23.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.014] [PMID: 31421264]
[202]
Lagoa, R.; Silva, J.; Rodrigues, J.R.; Bishayee, A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol. Adv., 2020, 38, 107382.
[http://dx.doi.org/10.1016/j.biotechadv.2019.04.004] [PMID: 30978386]
[203]
Alanazi, A.M.; Fadda, L.; Alhusaini, A.; Ahmad, R.; Hasan, I.H.; Mahmoud, A.M. Liposomal resveratrol and/or carvedilol attenuate doxorubicin-induced cardiotoxicity by modulating inflammation, oxidative stress and S100A1 in Rats. Antioxidants, 2020, 9(2), 9.
[http://dx.doi.org/10.3390/antiox9020159] [PMID: 32079097]
[204]
Alanazi, A.; Fadda, L.; Alhusaini, A.; Ahmad, R. Antioxidant, antiapoptotic, and antifibrotic effects of the combination of liposomal resveratrol and carvedilol against doxorubicin-induced cardiomyopathy in rats. J. Biochem. Mol. Toxicol., 2020, 34(7), e22492.
[http://dx.doi.org/10.1002/jbt.22492] [PMID: 32173980]
[205]
Sadiq, Z.; Varghese, E.; Büsselberg, D. Cisplatin’s dual-effect on the circadian clock triggers proliferation and apoptosis. Neurobiol. Sleep Circadian Rhythms, 2020, 9, 100054.
[http://dx.doi.org/10.1016/j.nbscr.2020.100054] [PMID: 33364523]
[206]
Duan, M.; Ulibarri, J.; Liu, K.J.; Mao, P. Role of nucleotide excision repair in cisplatin resistance. Int. J. Mol. Sci., 2020, 21(23), 9248.
[http://dx.doi.org/10.3390/ijms21239248] [PMID: 33291532]
[207]
Yan, X-Y.; Qu, X-Z.; Xu, L.; Yu, S-H.; Tian, R.; Zhong, X-R.; Sun, L-K.; Su, J. Insight into the role of p62 in the cisplatin resistant mechanisms of ovarian cancer. Cancer Cell Int., 2020, 20, 128.
[http://dx.doi.org/10.1186/s12935-020-01196-w] [PMID: 32322174]
[208]
Shirmanova, M.V.; Druzhkova, I.N.; Lukina, M.M.; Dudenkova, V.V.; Ignatova, N.I.; Snopova, L.B.; Shcheslavskiy, V.I.; Belousov, V.V.; Zagaynova, E.V. Chemotherapy with cisplatin: Insights into intracellular pH and metabolic landscape of cancer cells in vitro and in vivo. Sci. Rep., 2017, 7(1), 8911.
[http://dx.doi.org/10.1038/s41598-017-09426-4] [PMID: 28827680]
[209]
Kaliberov, S.A.; Buchsbaum, D.J. Chapter seven--Cancer treatment with gene therapy and radiation therapy. Adv. Cancer Res., 2012, 115, 221-263.
[http://dx.doi.org/10.1016/B978-0-12-398342-8.00007-0] [PMID: 23021246]
[210]
Kohno, K.; Wang, K.Y.; Takahashi, M.; Kurita, T.; Yoshida, Y.; Hirakawa, M.; Harada, Y.; Kuma, A.; Izumi, H.; Matsumoto, S. Mitochondrial transcription factor a and mitochondrial genome as molecular targets for cisplatin-based cancer chemotherapy. Int. J. Mol. Sci., 2015, 16(8), 19836-19850.
[http://dx.doi.org/10.3390/ijms160819836] [PMID: 26307971]
[211]
Dai, Q.; Zhang, T.; Pan, J.; Li, C. LncRNA UCA1 promotes cisplatin resistance in gastric cancer via recruiting EZH2 and activating PI3K/AKT pathway. J. Cancer, 2020, 11(13), 3882-3892.
[http://dx.doi.org/10.7150/jca.43446] [PMID: 32328192]
[212]
Ma, H.; Cao, W.; Ding, M. MicroRNA-31 weakens cisplatin resistance of medulloblastoma cells via NF-κB and PI3K/AKT pathways. Biofactors, 2020, 46(5), 831-838.
[http://dx.doi.org/10.1002/biof.1616] [PMID: 32027070]
[213]
Bissey, P.A.; Teng, M.; Law, J.H.; Shi, W.; Bruce, J.P.; Petit, V.; Tsao, S.W.; Yip, K.W.; Liu, F.F. MiR-34c downregulation leads to SOX4 overexpression and cisplatin resistance in nasopharyngeal carcinoma. BMC Cancer, 2020, 20(1), 597.
[http://dx.doi.org/10.1186/s12885-020-07081-z] [PMID: 32586280]
[214]
Tharmalingam, M.D.; Matilionyte, G.; Wallace, W.H.B.; Stukenborg, J.B.; Jahnukainen, K.; Oliver, E.; Goriely, A.; Lane, S.; Guo, J.; Cairns, B.; Jorgensen, A.; Allen, C.M.; Lopes, F.; Anderson, R.A.; Spears, N.; Mitchell, R.T. Cisplatin and carboplatin result in similar gonadotoxicity in immature human testis with implications for fertility preservation in childhood cancer. BMC Med., 2020, 18(1), 374.
[http://dx.doi.org/10.1186/s12916-020-01844-y] [PMID: 33272271]
[215]
Qi, Y.; Ying, Y.; Zou, J.; Fang, Q.; Yuan, X.; Cao, Y.; Cai, Y.; Fu, S. Kaempferol attenuated cisplatin-induced cardiac injury via inhibiting STING/NF-κB-mediated inflammation. Am. J. Transl. Res., 2020, 12(12), 8007-8018.
[PMID: 33437376]
[216]
Li, M.; Li, C.M.; Ye, Z.C.; Huang, J.; Li, Y.; Lai, W.; Peng, H.; Lou, T.Q. Sirt3 modulates fatty acid oxidation and attenuates cisplatin-induced AKI in mice. J. Cell. Mol. Med., 2020, 24(9), 5109-5121.
[http://dx.doi.org/10.1111/jcmm.15148] [PMID: 32281286]
[217]
Lu, Q.; Wang, M.; Gui, Y.; Hou, Q.; Gu, M.; Liang, Y.; Xiao, B.; Zhao, A.Z.; Dai, C. Rheb1 protects against cisplatin-induced tubular cell death and acute kidney injury via maintaining mitochondrial homeostasis. Cell Death Dis., 2020, 11(5), 364.
[http://dx.doi.org/10.1038/s41419-020-2539-4] [PMID: 32404875]
[218]
Jiang, X.; Huang, Y. Curcumin Derivative C086 combined with cisplatin inhibits proliferation of osteosarcoma cells. Med. Sci. Monit., 2020, 26, e924507.
[http://dx.doi.org/10.12659/MSM.924507] [PMID: 32734935]
[219]
Kou, Y.; Tong, B.; Wu, W.; Liao, X.; Zhao, M. Berberine improves chemo-sensitivity to cisplatin by enhancing cell apoptosis and repressing PI3K/AKT/mTOR signaling pathway in gastric cancer. Front. Pharmacol., 2020, 11, 616251.
[http://dx.doi.org/10.3389/fphar.2020.616251] [PMID: 33362566]
[220]
Guo, X.; Fang, Z.; Zhang, M.; Yang, D.; Wang, S.; Liu, K. A co-delivery system of curcumin and p53 for enhancing the sensitivity of drug-resistant ovarian cancer cells to cisplatin. Molecules, 2020, 25(11), 25.
[http://dx.doi.org/10.3390/molecules25112621] [PMID: 32512936]
[221]
Sandhiutami, N.M.D.; Arozal, W.; Louisa, M.; Rahmat, D.; Wuyung, P.E. Curcumin nanoparticle enhances the anticancer effect of cisplatin by inhibiting PI3K/AKT and JAK/STAT3 pathway in rat ovarian carcinoma induced by DMBA. Front. Pharmacol., 2021, 11, 603235.
[http://dx.doi.org/10.3389/fphar.2020.603235] [PMID: 33536913]
[222]
Qi, J.; Xue, Q.; Kuang, L.; Xie, L.; Luo, R.; Nie, X. Berberine alleviates cisplatin-induced acute kidney injury by regulating mitophagy via PINK 1/Parkin pathway. Transl. Androl. Urol., 2020, 9(4), 1712-1724.
[http://dx.doi.org/10.21037/tau-20-1129] [PMID: 32944532]
[223]
Allameh, H.; Fatemi, I.; Malayeri, A.R.; Nesari, A.; Mehrzadi, S.; Goudarzi, M. Pretreatment with berberine protects against cisplatin-induced renal injury in male Wistar rats. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(10), 1825-1833.
[http://dx.doi.org/10.1007/s00210-020-01877-3] [PMID: 32410067]
[224]
Lin, Y.C.; Chen, L.W.; Chen, Y.C.; Chan, S.T.; Liao, J.W.; Yeh, S.L. Quercetin attenuates cisplatin-induced fat loss. Eur. J. Nutr., 2021, 60(4), 1781-1793.
[225]
Chang, C.H.; Lee, C.Y.; Lu, C.C.; Tsai, F.J.; Hsu, Y.M.; Tsao, J.W.; Juan, Y.N.; Chiu, H.Y.; Yang, J.S.; Wang, C.C. Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. Int. J. Oncol., 2017, 50(3), 873-882.
[http://dx.doi.org/10.3892/ijo.2017.3866] [PMID: 28197628]
[226]
Osman, A.M.; Telity, S.A.; Telity, S.A.; Damanhouri, Z.A.; Al-Harthy, S.E.; Al-Kreathy, H.M.; Ramadan, W.S.; Elshal, M.F.; Khan, L.M.; Kamel, F. Chemosensitizing and nephroprotective effect of resveratrol in cisplatin -treated animals. Cancer Cell Int., 2015, 15, 6.
[http://dx.doi.org/10.1186/s12935-014-0152-2] [PMID: 25709558]
[227]
Baradaran Rahimi, V.; Ghadiri, M.; Ramezani, M.; Askari, V.R. Antiinflammatory and anti-cancer activities of pomegranate and its constituent, ellagic acid: Evidence from cellular, animal, and clinical studies. Phytother. Res., 2020, 34(4), 685-720.
[http://dx.doi.org/10.1002/ptr.6565] [PMID: 31908068]
[228]
Yousuf, M.; Shamsi, A.; Khan, P.; Shahbaaz, M.; AlAjmi, M.F.; Hussain, A.; Hassan, G.M.; Islam, A.; Rizwanul Haque, Q.M.; Hassan, M.I. Ellagic acid controls cell proliferation and induces apoptosis in breast cancer cells via inhibition of cyclin-dependent kinase 6. Int. J. Mol. Sci., 2020, 21(10), 21.
[http://dx.doi.org/10.3390/ijms21103526] [PMID: 32429317]
[229]
Duan, J.; Li, Y.; Gao, H.; Yang, D.; He, X.; Fang, Y.; Zhou, G. Phenolic compound ellagic acid inhibits mitochondrial respiration and tumor growth in lung cancer. Food Funct., 2020, 11(7), 6332-6339.
[http://dx.doi.org/10.1039/D0FO01177K] [PMID: 32608435]
[230]
Wang, F.; Chen, J.; Xiang, D.; Lian, X.; Wu, C.; Quan, J. Ellagic acid inhibits cell proliferation, migration, and invasion in melanoma via EGFR pathway. Am. J. Transl. Res., 2020, 12(5), 2295-2304.
[PMID: 32509220]
[231]
Engelke, L.H.; Hamacher, A.; Proksch, P.; Kassack, M.U. Ellagic acid and resveratrol prevent the development of cisplatin resistance in the epithelial ovarian cancer cell line A2780. J. Cancer, 2016, 7(4), 353-363.
[http://dx.doi.org/10.7150/jca.13754] [PMID: 26918049]
[232]
Wu, R.; Yang, X.; Zhou, Q.; Yu, W.; Li, M.; Wo, J.; Shan, W.; Zhao, H.; Chen, Y.; Zhan, Z. Aurovertin B exerts potent antitumor activity against triple-negative breast cancer in vivo and in vitrovia regulating ATP synthase activity and DUSP1 expression. Pharmazie, 2020, 75(6), 261-265.
[PMID: 32539922]
[233]
Chen, Z.; Chen, Q.; Cheng, Z.; Gu, J.; Feng, W.; Lei, T.; Huang, J.; Pu, J.; Chen, X.; Wang, Z. Long non-coding RNA CASC9 promotes gefitinib resistance in NSCLC by epigenetic repression of DUSP1. Cell Death Dis., 2020, 11(10), 858.
[http://dx.doi.org/10.1038/s41419-020-03047-y] [PMID: 33056982]
[234]
Martínez-Martínez, D.; Soto, A.; Gil-Araujo, B.; Gallego, B.; Chiloeches, A.; Lasa, M. Resveratrol promotes apoptosis through the induction of dual specificity phosphatase 1 and sensitizes prostate cancer cells to cisplatin. Food Chem. Toxicol., 2019, 124, 273-279.
[http://dx.doi.org/10.1016/j.fct.2018.12.014] [PMID: 30552915]
[235]
Battaglia, A.M.; Chirillo, R.; Aversa, I.; Sacco, A.; Costanzo, F.; Biamonte, F. Ferroptosis and cancer: Mitochondria meet the “iron maiden” cell death. Cells, 2020, 9(6), 9.
[http://dx.doi.org/10.3390/cells9061505] [PMID: 32575749]
[236]
Grasso, D.; Zampieri, L.X.; Capelôa, T.; Van de Velde, J.A.; Sonveaux, P. Mitochondria in cancer. Cell Stress, 2020, 4(6), 114-146.
[http://dx.doi.org/10.15698/cst2020.06.221] [PMID: 32548570]
[237]
Patel, J.; Baptiste, B.A.; Kim, E.; Hussain, M.; Croteau, D.L.; Bohr, V.A. DNA damage and mitochondria in cancer and aging. Carcinogenesis, 2020, 41(12), 1625-1634.
[http://dx.doi.org/10.1093/carcin/bgaa114] [PMID: 33146705]
[238]
Song, C.; Chen, J.; Li, X.; Yang, R.; Cao, X.; Zhou, L.; Zhou, Y.; Ying, H.; Zhang, Q.; Sun, Y. Limonin ameliorates dextran sulfate sodium-induced chronic colitis in mice by inhibiting PERK-ATF4-CHOP pathway of ER stress and NF-κB signaling. Int. Immunopharmacol., 2021, 90, 107161.
[http://dx.doi.org/10.1016/j.intimp.2020.107161] [PMID: 33168409]
[239]
Bartko, J.C.; Li, Y.; Sun, G.; Halterman, M.W. Phosphorylation within the bipartite NLS alters the localization and toxicity of the ER stress response factor DDIT3/CHOP. Cell. Signal., 2020, 74, 109713.
[http://dx.doi.org/10.1016/j.cellsig.2020.109713] [PMID: 32673756]
[240]
Ren, M.; Zhou, X.; Gu, M.; Jiao, W.; Yu, M.; Wang, Y.; Liu, S.; Yang, J.; Ji, F. Resveratrol synergizes with cisplatin in antineoplastic effects against AGS gastric cancer cells by inducing endoplasmic reticulum stress mediated apoptosis and G2/M phase arrest. Oncol. Rep., 2020, 44(4), 1605-1615.
[http://dx.doi.org/10.3892/or.2020.7708] [PMID: 32945472]
[241]
Nessa, M.U.; Beale, P.; Chan, C.; Yu, J.Q.; Huq, F. Combinations of resveratrol, cisplatin and oxaliplatin applied to human ovarian cancer cells. Anticancer Res., 2012, 32(1), 53-59.
[PMID: 22213288]
[242]
Varghese, E.; Samuel, S.M.; Líšková, A.; Samec, M.; Kubatka, P.; Büsselberg, D. Targeting glucose metabolism to overcome resistance to anticancer chemotherapy in breast cancer. Cancers (Basel), 2020, 12(8), 2252.
[http://dx.doi.org/10.3390/cancers12082252] [PMID: 32806533]
[243]
Newsholme, E.A.; Crabtree, B.; Ardawi, M.S. The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci. Rep., 1985, 5(5), 393-400.
[http://dx.doi.org/10.1007/BF01116556] [PMID: 3896338]
[244]
Wellen, K.E.; Lu, C.; Mancuso, A.; Lemons, J.M.; Ryczko, M.; Dennis, J.W.; Rabinowitz, J.D.; Coller, H.A.; Thompson, C.B. The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev., 2010, 24(24), 2784-2799.
[http://dx.doi.org/10.1101/gad.1985910] [PMID: 21106670]
[245]
Kueck, A.; Opipari, A.W., Jr; Griffith, K.A.; Tan, L.; Choi, M.; Huang, J.; Wahl, H.; Liu, J.R. Resveratrol inhibits glucose metabolism in human ovarian cancer cells. Gynecol. Oncol., 2007, 107(3), 450-457.
[http://dx.doi.org/10.1016/j.ygyno.2007.07.065] [PMID: 17825886]
[246]
Park, J.B. Inhibition of glucose and dehydroascorbic acid uptakes by resveratrol in human transformed myelocytic cells. J. Nat. Prod., 2001, 64(3), 381-384.
[http://dx.doi.org/10.1021/np000411t] [PMID: 11277764]
[247]
Hwang, S.O.; Lee, G.M. Nutrient deprivation induces autophagy as well as apoptosis in Chinese hamster ovary cell culture. Biotechnol. Bioeng., 2008, 99(3), 678-685.
[http://dx.doi.org/10.1002/bit.21589] [PMID: 17680685]
[248]
Liu, Z.; Peng, Q.; Li, Y.; Gao, Y. Resveratrol enhances cisplatin-induced apoptosis in human hepatoma cells via glutamine metabolism inhibition. BMB Rep., 2018, 51(9), 474-479.
[http://dx.doi.org/10.5483/BMBRep.2018.51.9.114] [PMID: 30103844]
[249]
Patra, S.; Pradhan, B.; Nayak, R.; Behera, C.; Rout, L.; Jena, M.; Efferth, T.; Bhutia, S.K. Chemotherapeutic efficacy of curcumin and resveratrol against cancer: Chemoprevention, chemoprotection, drug synergism and clinical pharmacokinetics. Semin. Cancer Biol., 2021, 73, 310-320.
[PMID: 33152486]
[250]
Kuo, I.M.; Lee, J.J.; Wang, Y.S.; Chiang, H.C.; Huang, C.C.; Hsieh, P.J.; Han, W.; Ke, C.H.; Liao, A.T.C.; Lin, C.S. Potential enhancement of host immunity and anti-tumor efficacy of nanoscale curcumin and resveratrol in colorectal cancers by modulated electro- hyperthermia. BMC Cancer, 2020, 20(1), 603.
[http://dx.doi.org/10.1186/s12885-020-07072-0] [PMID: 32600429]
[251]
Bostan, M. Petrică-Matei, G.G.; Radu, N.; Hainarosie, R.; Stefanescu, C.D.; Diaconu, C.C.; Roman, V. The effect of resveratrol or curcumin on head and neck cancer cells sensitivity to the cytotoxic effects of cisplatin. Nutrients, 2020, 12(9), 12.
[http://dx.doi.org/10.3390/nu12092596] [PMID: 32859062]
[252]
Ma, L.; Li, W.; Wang, R.; Nan, Y.; Wang, Q.; Liu, W.; Jin, F. Resveratrol enhanced anticancer effects of cisplatin on non-small cell lung cancer cell lines by inducing mitochondrial dysfunction and cell apoptosis. Int. J. Oncol., 2015, 47(4), 1460-1468.
[http://dx.doi.org/10.3892/ijo.2015.3124] [PMID: 26314326]
[253]
Zeng, D.; Liang, Y.K.; Xiao, Y.S.; Wei, X.L.; Lin, H.Y.; Wu, Y.; Bai, J.W.; Chen, M.; Zhang, G.J. Inhibition of Notch1 reverses EMT and chemoresistance to cisplatin via direct downregulation of MCAM in triple-negative breast cancer cells. Int. J. Cancer, 2020, 147(2), 490-504.
[http://dx.doi.org/10.1002/ijc.32911] [PMID: 32020593]
[254]
Chen, Y.; Zhao, X.H.; Zhang, D.D.; Zhao, Y. MiR-513a-3p inhibits EMT mediated by HOXB7 and promotes sensitivity to cisplatin in ovarian cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(20), 10391-10402.
[PMID: 33155195]
[255]
Baribeau, S.; Chaudhry, P.; Parent, S.; Asselin, É. Resveratrol inhibits cisplatin-induced epithelial-to-mesenchymal transition in ovarian cancer cell lines. PLoS One, 2014, 9(1), e86987.
[http://dx.doi.org/10.1371/journal.pone.0086987] [PMID: 24466305]
[256]
Terazono, K.; Yamamoto, H.; Takasawa, S.; Shiga, K.; Yonemura, Y.; Tochino, Y.; Okamoto, H. A novel gene activated in regenerating islets. J. Biol. Chem., 1988, 263(5), 2111-2114.
[http://dx.doi.org/10.1016/S0021-9258(18)69176-8] [PMID: 2963000]
[257]
Watanabe, T.; Yonemura, Y.; Yonekura, H.; Suzuki, Y.; Miyashita, H.; Sugiyama, K.; Moriizumi, S.; Unno, M.; Tanaka, O.; Kondo, H. Pancreatic beta-cell replication and amelioration of surgical diabetes by Reg protein. Proc. Natl. Acad. Sci. USA, 1994, 91(9), 3589-3592.
[http://dx.doi.org/10.1073/pnas.91.9.3589] [PMID: 8170952]
[258]
Asahara, M.; Mushiake, S.; Shimada, S.; Fukui, H.; Kinoshita, Y.; Kawanami, C.; Watanabe, T.; Tanaka, S.; Ichikawa, A.; Uchiyama, Y.; Narushima, Y.; Takasawa, S.; Okamoto, H.; Tohyama, M.; Chiba, T. Reg gene expression is increased in rat gastric enterochromaffin-like cells following water immersion stress. Gastroenterology, 1996, 111(1), 45-55.
[http://dx.doi.org/10.1053/gast.1996.v111.pm8698224] [PMID: 8698224]
[259]
Macadam, R.C.; Sarela, A.I.; Farmery, S.M.; Robinson, P.A.; Markham, A.F.; Guillou, P.J. Death from early colorectal cancer is predicted by the presence of transcripts of the REG gene family. Br. J. Cancer, 2000, 83(2), 188-195.
[http://dx.doi.org/10.1054/bjoc.2000.1227] [PMID: 10901369]
[260]
Harada, K.; Zen, Y.; Kanemori, Y.; Chen, T.C.; Chen, M.F.; Yeh, T.S.; Jan, Y.Y.; Masuda, S.; Nimura, Y.; Takasawa, S.; Okamoto, H.; Nakanuma, Y. Human REG I gene is up-regulated in intrahepatic cholangiocarcinoma and its precursor lesions. Hepatology, 2001, 33(5), 1036-1042.
[http://dx.doi.org/10.1053/jhep.2001.24168] [PMID: 11343228]
[261]
Violette, S.; Festor, E.; Pandrea-Vasile, I.; Mitchell, V.; Adida, C.; Dussaulx, E.; Lacorte, J.M.; Chambaz, J.; Lacasa, M.; Lesuffleur, T. Reg IV, a new member of the regenerating gene family, is overexpressed in colorectal carcinomas. Int. J. Cancer, 2003, 103(2), 185-193.
[http://dx.doi.org/10.1002/ijc.10788] [PMID: 12455032]
[262]
Yonemura, Y.; Sakurai, S.; Yamamoto, H.; Endou, Y.; Kawamura, T.; Bandou, E.; Elnemr, A.; Sugiyama, K.; Sasaki, T.; Akiyama, T.; Takasawa, S.; Okamoto, H. REG gene expression is associated with the infiltrating growth of gastric carcinoma. Cancer, 2003, 98(7), 1394-1400.
[http://dx.doi.org/10.1002/cncr.11658] [PMID: 14508825]
[263]
Dhar, D.K.; Udagawa, J.; Ishihara, S.; Otani, H.; Kinoshita, Y.; Takasawa, S.; Okamoto, H.; Kubota, H.; Fujii, T.; Tachibana, M.; Nagasue, N. Expression of regenerating gene I in gastric adenocarcinomas: Correlation with tumor differentiation status and patient survival. Cancer, 2004, 100(6), 1130-1136.
[http://dx.doi.org/10.1002/cncr.20097] [PMID: 15022278]
[264]
Bishnupuri, K.S.; Luo, Q.; Murmu, N.; Houchen, C.W.; Anant, S.; Dieckgraefe, B.K. Reg IV activates the epidermal growth factor receptor/Akt/AP-1 signaling pathway in colon adenocarcinomas. Gastroenterology, 2006, 130(1), 137-149.
[http://dx.doi.org/10.1053/j.gastro.2005.10.001] [PMID: 16401477]
[265]
Hayashi, K.; Motoyama, S.; Koyota, S.; Koizumi, Y.; Wang, J.; Takasawa, S.; Itaya-Hironaka, A.; Sakuramoto-Tsuchida, S.; Maruyama, K.; Saito, H.; Minamiya, Y.; Ogawa, J.; Sugiyama, T. REG I enhances chemo- and radiosensitivity in squamous cell esophageal cancer cells. Cancer Sci., 2008, 99(12), 2491-2495.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00980.x] [PMID: 19032369]
[266]
Hayashi, T.; Matsubara, A.; Ohara, S.; Mita, K.; Hasegawa, Y.; Usui, T.; Arihiro, K.; Norimura, S.; Sentani, K.; Oue, N.; Yasui, W. Immunohistochemical analysis of Reg IV in urogenital organs: Frequent expression of Reg IV in prostate cancer and potential utility as serum tumor marker. Oncol. Rep., 2009, 21(1), 95-100.
[PMID: 19082448]
[267]
Zhou, L.; Zhang, R.; Wang, L.; Shen, S.; Okamoto, H.; Sugawara, A.; Xia, L.; Wang, X.; Noguchi, N.; Yoshikawa, T.; Uruno, A.; Yao, W.; Yuan, Y. Upregulation of REG Ialpha accelerates tumor progression in pancreatic cancer with diabetes. Int. J. Cancer, 2010, 127(8), 1795-1803.
[http://dx.doi.org/10.1002/ijc.25188] [PMID: 20099282]
[268]
Kimura, M.; Naito, H.; Tojo, T.; Itaya-Hironaka, A.; Dohi, Y.; Yoshimura, M.; Nakagawara, K.; Takasawa, S.; Taniguchi, S. REG Iα gene expression is linked with the poor prognosis of lung adenocarcinoma and squamous cell carcinoma patients via discrete mechanisms. Oncol. Rep., 2013, 30(6), 2625-2631.
[http://dx.doi.org/10.3892/or.2013.2739] [PMID: 24065141]
[269]
Mikami, S.; Ota, I.; Masui, T.; Uchiyama, T.; Okamoto, H.; Kimura, T.; Takasawa, S.; Kitahara, T. Resveratrol induced REG III expression enhances chemo and radiosensitivity in head and neck cancer in xenograft mice. Oncol. Rep., 2019, 42(1), 436-442.
[http://dx.doi.org/10.3892/or.2019.7137] [PMID: 31059079]
[270]
Tan, L.; Wang, W.; He, G.; Kuick, R.D.; Gossner, G.; Kueck, A.S.; Wahl, H.; Opipari, A.W.; Liu, J.R. Resveratrol inhibits ovarian tumor growth in an in vivo mouse model. Cancer, 2016, 122(5), 722-729.
[http://dx.doi.org/10.1002/cncr.29793] [PMID: 26619367]
[271]
Li, W.; Shi, Y.; Wang, R.; Pan, L.; Ma, L.; Jin, F. Resveratrol promotes the sensitivity of small-cell lung cancer H446 cells to cisplatin by regulating intrinsic apoptosis. Int. J. Oncol., 2018, 53(5), 2123-2130.
[http://dx.doi.org/10.3892/ijo.2018.4533] [PMID: 30132509]
[272]
Cheng, Y.J.; Chang, M.Y.; Chang, W.W.; Wang, W.K.; Liu, C.F.; Lin, S.T.; Lee, C.H. Resveratrol enhances chemosensitivity in mouse melanoma model through connexin 43 upregulation. Environ. Toxicol., 2015, 30(8), 877-886.
[http://dx.doi.org/10.1002/tox.21952] [PMID: 24449132]
[273]
El-Kott, A.F.; Shati, A.A.; Ali Al-Kahtani, M.; Alharbi, S.A. The apoptotic effect of resveratrol in ovarian cancer cells is associated with downregulation of galectin-3 and stimulating miR-424-3p transcription. J. Food Biochem., 2019, 43(12), e13072.
[http://dx.doi.org/10.1111/jfbc.13072] [PMID: 31603261]
[274]
Hernandez-Valencia, J.; Garcia-Villa, E.; Arenas-Hernandez, A.; Garcia-Mena, J.; Diaz-Chavez, J.; Gariglio, P. Induction of p53 phosphorylation at serine 20 by resveratrol is required to activate p53 target genes, restoring apoptosis in MCF-7 cells resistant to cisplatin. Nutrients, 2018, 10(9), 10.
[http://dx.doi.org/10.3390/nu10091148] [PMID: 30142917]
[275]
Özdemi, R. F.; Sever, A.; Keçeci, Y.Ö.; Incesu, Z. Resveratrol increases the sensitivity of breast cancer MDA-MB-231 cell line to cisplatin by regulating intrinsic apoptosis. Iran. J. Basic Med. Sci., 2021, 24(1), 66-72.
[PMID: 33643572]
[276]
Osman, A.M.; Al-Malki, H.S.; Al-Harthi, S.E.; El-Hanafy, A.A.; Elashmaoui, H.M.; Elshal, M.F. Modulatory role of resveratrol on cytotoxic activity of cisplatin, sensitization and modification of cisplatin resistance in colorectal cancer cells. Mol. Med. Rep., 2015, 12(1), 1368-1374.
[http://dx.doi.org/10.3892/mmr.2015.3513] [PMID: 25815689]
[277]
Lee, Y.J.; Lee, G.J.; Yi, S.S.; Heo, S.H.; Park, C.R.; Nam, H.S.; Cho, M.K.; Lee, S.H. Cisplatin and resveratrol induce apoptosis and autophagy following oxidative stress in malignant mesothelioma cells. Food Chem. Toxicol., 2016, 97, 96-107.
[http://dx.doi.org/10.1016/j.fct.2016.08.033] [PMID: 27591926]
[278]
Leon-Galicia, I.; Diaz-Chavez, J.; Albino-Sanchez, M.E.; Garcia-Villa, E.; Bermudez-Cruz, R.; Garcia-Mena, J.; Herrera, L.A.; García-Carrancá, A.; Gariglio, P. Resveratrol decreases Rad51 expression and sensitizes cisplatin resistant MCF 7 breast cancer cells. Oncol. Rep., 2018, 39(6), 3025-3033.
[http://dx.doi.org/10.3892/or.2018.6336] [PMID: 29620223]
[279]
Reddy, K.P.; Madhu, P.; Reddy, P.S. Protective effects of resveratrol against cisplatin-induced testicular and epididymal toxicity in rats. Food Chem. Toxicol., 2016, 91, 65-72.
[http://dx.doi.org/10.1016/j.fct.2016.02.017] [PMID: 26925769]
[280]
A.A., Aly H.; G Eid, B. Cisplatin induced testicular damage through mitochondria mediated apoptosis, inflammation and oxidative stress in rats: Impact of resveratrol. Endocr. J., 2020, 67(9), 969-980.
[http://dx.doi.org/10.1507/endocrj.EJ20-0149] [PMID: 32507773]
[281]
Chinwe, G.S.; Azuka, O.I.; Adaeze, N.C. Resveratrol supplementation rescues pool of growing follicles and ovarian stroma from Cisplatin-induced toxicity on the ovary in Sprague-Dawley rats: An experimental study. Int. J. Reprod. Biomed. (Yazd), 2018, 16(1), 19-30.
[http://dx.doi.org/10.29252/ijrm.16.1.19] [PMID: 29675484]
[282]
Said, R.S.; Mantawy, E.M.; El-Demerdash, E. Mechanistic perspective of protective effects of resveratrol against cisplatin-induced ovarian injury in rats: Emphasis on anti-inflammatory and anti-apoptotic effects. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(10), 1225-1238.
[http://dx.doi.org/10.1007/s00210-019-01662-x] [PMID: 31129703]
[283]
Di, Y.; Xu, T.; Tian, Y.; Ma, T.; Qu, D.; Wang, Y.; Lin, Y.; Bao, D.; Yu, L.; Liu, S.; Wang, A. Ursolic acid protects against cisplatin induced ototoxicity by inhibiting oxidative stress and TRPV1 mediated Ca2+ signaling. Int. J. Mol. Med., 2020, 46(2), 806-816.
[http://dx.doi.org/10.3892/ijmm.2020.4633] [PMID: 32626955]
[284]
Estfanous, R.S.; Elseady, W.S.; Kabel, A.M.; Abd Ellatif, R.A. Amelioration of cisplatin-induced ototoxicity in rats by L-arginine: The role of nitric oxide, transforming growth factor beta 1 and Nrf2/HO-1 pathway. Asian Pac. J. Cancer Prev., 2020, 21(7), 2155-2162.
[http://dx.doi.org/10.31557/APJCP.2020.21.7.2155] [PMID: 32711445]
[285]
Zhang, W.; Man, R.; Yu, X.; Yang, H.; Yang, Q.; Li, J. Hydroxytyrosol enhances cisplatin-induced ototoxicity: Possible relation to the alteration in the activity of JNK and AIF pathways. Eur. J. Pharmacol., 2020, 887, 173338.
[http://dx.doi.org/10.1016/j.ejphar.2020.173338] [PMID: 32781170]
[286]
Mei, H.; Zhao, L.; Li, W.; Zheng, Z.; Tang, D.; Lu, X.; He, Y. Inhibition of ferroptosis protects House Ear Institute-Organ of Corti 1 cells and cochlear hair cells from cisplatin-induced ototoxicity. J. Cell. Mol. Med., 2020, 24(20), 12065-12081.
[http://dx.doi.org/10.1111/jcmm.15839] [PMID: 32929878]
[287]
Wang, W.; Shanmugam, M.K.; Xiang, P.; Yam, T.Y.A.; Kumar, V.; Chew, W.S.; Chang, J.K.; Ali, M.Z.B.; Reolo, M.J.Y.; Peh, Y.X.; Karim, S.N.B.A.; Tan, A.Y.Y.; Sanda, T.; Sethi, G.; Herr, D.R. Sphingosine 1-phosphate receptor 2 induces otoprotective responses to cisplatin treatment. Cancers (Basel), 2020, 12(1), 211.
[http://dx.doi.org/10.3390/cancers12010211] [PMID: 31952197]
[288]
Lee, C.H.; Kim, K.W.; Lee, S.M.; Kim, S.Y. Dose-dependent effects of resveratrol on cisplatin-induced hearing loss. Int. J. Mol. Sci., 2020, 22(1), 22.
[http://dx.doi.org/10.3390/ijms22010113] [PMID: 33374326]
[289]
Simsek, G. Taş B.M.; Muluk, N.B.; Azman, M.; Kılıç, R. Comparison of the protective efficacy between intratympanic dexamethasone and resveratrol treatments against cisplatin-induced ototoxicity: An experimental study. Eur. Arch. Otorhinolaryngol., 2019, 276(12), 3287-3293.
[http://dx.doi.org/10.1007/s00405-019-05635-x] [PMID: 31531774]
[290]
Lee, S.H.; Kim, H.S.; An, Y.S.; Chang, J.; Choi, J.; Im, G.J. Protective effect of resveratrol against cisplatin-induced ototoxicity in HEI-OC1 auditory cells. Int. J. Pediatr. Otorhinolaryngol., 2015, 79(1), 58-62.
[http://dx.doi.org/10.1016/j.ijporl.2014.11.008] [PMID: 25434479]
[291]
Wang, H.; Xia, W.; Long, G.; Pei, Z.; Li, Y.; Wu, M.; Wang, Q.; Zhang, Y.; Jia, Z.; Chen, H. Isoquercitrin ameliorates cisplatin-induced nephrotoxicity via the inhibition of apoptosis, inflammation, and oxidative stress. Front. Pharmacol., 2020, 11, 599416.
[http://dx.doi.org/10.3389/fphar.2020.599416] [PMID: 33424608]
[292]
Bazmandegan, G.; Fatemi, I.; Kaeidi, A.; Khademalhosseini, M.; Fathinejad, A.; Amirteimoury, M. Calcium dobesilate prevents cisplatin-induced nephrotoxicity by modulating oxidative and histopathological changes in mice. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(3), 515-521.
[http://dx.doi.org/10.1007/s00210-020-01990-3] [PMID: 33057778]
[293]
in mice through inhibiting oxidative stress and inflammation. Life Sci., 2021, 266, 118869.
[http://dx.doi.org/10.1016/j.lfs.2020.118869] [PMID: 33309722]
[294]
Kim, M.J.; Moon, D.; Jung, S.; Lee, J.; Kim, J. Cisplatin nephrotoxicity is induced via poly(ADP-ribose) polymerase activation in adult zebrafish and mice. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2020, 318(5), R843-R854.
[http://dx.doi.org/10.1152/ajpregu.00130.2019] [PMID: 32186196]
[295]
Ibrahim, A.; Al-Hizab, F.A.; Abushouk, A.I.; Abdel-Daim, M.M. Nephroprotective effects of benzyl isothiocyanate and resveratrol against cisplatin-induced oxidative stress and inflammation. Front. Pharmacol., 2018, 9, 1268.
[http://dx.doi.org/10.3389/fphar.2018.01268] [PMID: 30524274]
[296]
Do Amaral, C.L.; Francescato, H.D.; Coimbra, T.M.; Costa, R.S.; Darin, J.D.; Antunes, L.M. Bianchi, Mde.L. Resveratrol attenuates cisplatin-induced nephrotoxicity in rats. Arch. Toxicol., 2008, 82(6), 363-370.
[http://dx.doi.org/10.1007/s00204-007-0262-x] [PMID: 18026934]
[297]
Kim, D.H.; Jung, Y.J.; Lee, J.E.; Lee, A.S.; Kang, K.P.; Lee, S.; Park, S.K.; Han, M.K.; Lee, S.Y.; Ramkumar, K.M.; Sung, M.J.; Kim, W. SIRT1 activation by resveratrol ameliorates cisplatin-induced renal injury through deacetylation of p53. Am. J. Physiol. Renal Physiol., 2011, 301(2), F427-F435.
[http://dx.doi.org/10.1152/ajprenal.00258.2010] [PMID: 21593185]
[298]
Wang, J.; He, D.; Zhang, Q.; Han, Y.; Jin, S.; Qi, F. Resveratrol protects against Cisplatin-induced cardiotoxicity by alleviating oxidative damage. Cancer Biother. Radiopharm., 2009, 24(6), 675-680.
[http://dx.doi.org/10.1089/cbr.2009.0679] [PMID: 20025547]
[299]
Paunović M.G.; Matić M.M.; Stanković V.D.; Milošević M.D.; Jevtić V.V.; Trifunović S.R.; Ognjanović B.I. Evaluation of toxic effects of novel platinum (IV) complexes in female rat liver: Potential protective role of resveratrol. Cell Biochem. Biophys., 2021, 79(1), 141-152.
[http://dx.doi.org/10.1007/s12013-020-00953-y] [PMID: 33094405]
[300]
Meneses-Gutiérrez, C.L.; Hernández-Damián, J.; Pedraza-Chaverri, J.; Guerrero-Legarreta, I.; Téllez, D.I.; Jaramillo-Flores, M.E. Antioxidant capacity and cytotoxic effects of catechins and resveratrol oligomers produced by enzymatic oxidation against t24 human urinary bladder cancer cells. Antioxidants, 2019, 8(7), 8.
[http://dx.doi.org/10.3390/antiox8070214] [PMID: 31295839]
[301]
Cigremis, Y.; Akgoz, M.; Ozen, H.; Karaman, M.; Kart, A.; Gecer, M.; Atalan, G. Resveratrol ameliorates cisplatin-induced oxidative injury in New Zealand rabbits. Can. J. Physiol. Pharmacol., 2015, 93(8), 727-735.
[http://dx.doi.org/10.1139/cjpp-2014-0420] [PMID: 26243022]
[302]
Simşek, G.; Tokgoz, S.A.; Vuralkan, E.; Caliskan, M.; Besalti, O.; Akin, I. Protective effects of resveratrol on cisplatin-dependent inner-ear damage in rats. Eur. Arch. Otorhinolaryngol., 2013, 270(6), 1789-1793.
[http://dx.doi.org/10.1007/s00405-012-2183-4] [PMID: 23001434]
[303]
Yumusakhuylu, A.C.; Yazici, M.; Sari, M.; Binnetoglu, A.; Kosemihal, E.; Akdas, F.; Sirvanci, S.; Yuksel, M.; Uneri, C.; Tutkun, A. Protective role of resveratrol against cisplatin induced ototoxicity in guinea pigs. Int. J. Pediatr. Otorhinolaryngol., 2012, 76(3), 404-408.
[http://dx.doi.org/10.1016/j.ijporl.2011.12.021] [PMID: 22261612]
[304]
Bhadri, N.; Sanji, T.; Madakasira Guggilla, H.; Razdan, R. Amelioration of behavioural, biochemical, and neurophysiological deficits by combination of monosodium glutamate with resveratrol/alpha-lipoic acid/coenzyme Q10 in rat model of cisplatin-induced peripheral neuropathy. ScientificWorldJournal, 2013, 2013, 565813.
[http://dx.doi.org/10.1155/2013/565813] [PMID: 24489506]
[305]
Olas, B.; Wachowicz, B.; Majsterek, I.; Blasiak, J. Resveratrol may reduce oxidative stress induced by platinum compounds in human plasma, blood platelets and lymphocytes. Anticancer Drugs, 2005, 16(6), 659-665.
[http://dx.doi.org/10.1097/00001813-200507000-00011] [PMID: 15930895]
[306]
Shati, A.A. Resveratrol improves sperm parameter and testicular apoptosis in cisplatin-treated rats: Effects on ERK1/2, JNK, and Akt pathways. Syst Biol Reprod Med, 2019, 65(3), 236-249.
[http://dx.doi.org/10.1080/19396368.2018.1541114] [PMID: 30507263]
[307]
Singh, I.; Goyal, Y.; Ranawat, P. Potential chemoprotective role of resveratrol against cisplatin induced testicular damage in mice. Chem. Biol. Interact., 2017, 273, 200-211.
[http://dx.doi.org/10.1016/j.cbi.2017.05.024] [PMID: 28606469]
[308]
Ibrahim, M.A.; Albahlol, I.A.; Wani, F.A.; Abd-Eltawab Tammam, A.; Kelleni, M.T.; Sayeed, M.U.; Abd El-Fadeal, N.M.; Mohamed, A.A. Resveratrol protects against cisplatin-induced ovarian and uterine toxicity in female rats by attenuating oxidative stress, inflammation and apoptosis. Chem. Biol. Interact., 2021, 338, 109402.
[http://dx.doi.org/10.1016/j.cbi.2021.109402] [PMID: 33587916]
[309]
Atli, M.; Engin-Ustun, Y.; Tokmak, A.; Caydere, M.; Hucumenoglu, S.; Topcuoglu, C. Dose dependent effect of resveratrol in preventing cisplatin-induced ovarian damage in rats: An experimental study. Reprod. Biol., 2017, 17(3), 274-280.
[http://dx.doi.org/10.1016/j.repbio.2017.07.001] [PMID: 28716446]
[310]
Valentovic, M.A.; Ball, J.G.; Brown, J.M.; Terneus, M.V.; McQuade, E.; Van Meter, S.; Hedrick, H.M.; Roy, A.A.; Williams, T. Resveratrol attenuates cisplatin renal cortical cytotoxicity by modifying oxidative stress. Toxicol. In Vitro, 2014, 28(2), 248-257.
[http://dx.doi.org/10.1016/j.tiv.2013.11.001] [PMID: 24239945]
[311]
Hao, Q.; Xiao, X.; Zhen, J.; Feng, J.; Song, C.; Jiang, B.; Hu, Z. Resveratrol attenuates acute kidney injury by inhibiting death receptor mediated apoptotic pathways in a cisplatin induced rat model. Mol. Med. Rep., 2016, 14(4), 3683-3689.
[http://dx.doi.org/10.3892/mmr.2016.5714] [PMID: 27600998]
[312]
Darwish, M.A.; Abo-Youssef, A.M.; Khalaf, M.M.; Abo-Saif, A.A.; Saleh, I.G.; Abdelghany, T.M. Resveratrol influences platinum pharmacokinetics: A novel mechanism in protection against cisplatin-induced nephrotoxicity. Toxicol. Lett., 2018, 290, 73-82.
[http://dx.doi.org/10.1016/j.toxlet.2018.03.023] [PMID: 29574132]
[313]
Zhang, R.; Yin, L.; Zhang, B.; Shi, H.; Sun, Y.; Ji, C.; Chen, J.; Wu, P.; Zhang, L.; Xu, W.; Qian, H. Resveratrol improves human umbilical cord-derived mesenchymal stem cells repair for cisplatin-induced acute kidney injury. Cell Death Dis., 2018, 9(10), 965.
[http://dx.doi.org/10.1038/s41419-018-0959-1] [PMID: 30237401]
[314]
Erdem, T.; Bayindir, T.; Filiz, A.; Iraz, M.; Selimoglu, E. The effect of resveratrol on the prevention of cisplatin ototoxicity. Eur. Arch. Otorhinolaryngol., 2012, 269(10), 2185-2188.
[http://dx.doi.org/10.1007/s00405-011-1883-5] [PMID: 22186767]
[315]
Wen, Q.; Zhang, Y.; Luo, J.; Xiong, K.; Lu, Y.; Wu, Z.; Wang, B.Q.; Wu, J.; Chen, Y.; Fu, S. Therapeutic efficacy of thermosensitive Pluronic hydrogel for codelivery of resveratrol microspheres and cisplatin in the treatment of liver cancer ascites. Int. J. Pharm., 2020, 582, 119334.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119334] [PMID: 32305362]
[316]
Zhao, Y.; Cai, C.; Liu, M.; Zhao, Y.; Wu, Y.; Fan, Z.; Ding, Z.; Zhang, H.; Wang, Z.; Han, J. Drug-binding albumins forming stabilized nanoparticles for co-delivery of paclitaxel and resveratrol: In vitro/in vivo evaluation and binding properties investigation. Int. J. Biol. Macromol., 2020, 153, 873-882.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.060] [PMID: 32169451]
[317]
Wang, X.; Parvathaneni, V.; Shukla, S.K.; Kanabar, D.D.; Muth, A.; Gupta, V. Cyclodextrin complexation for enhanced stability and non-invasive pulmonary delivery of resveratrol-applications in non-small cell lung cancer treatment. AAPS PharmSciTech, 2020, 21(5), 183.
[http://dx.doi.org/10.1208/s12249-020-01724-x] [PMID: 32632576]
[318]
Cheng, H.; Dong, H. Wusigale; Liang, L. A comparison of β-casein complexes and micelles as vehicles for trans-/cis-resveratrol. Food Chem., 2020, 330, 127209.
[http://dx.doi.org/10.1016/j.foodchem.2020.127209] [PMID: 32535314]
[319]
Caddeo, C.; Gabriele, M.; Nácher, A.; Fernàndez-Busquets, X.; Valenti, D.; Maria Fadda, A.; Pucci, L.; Manconi, M. Resveratrol and artemisinin eudragit-coated liposomes: A strategy to tackle intestinal tumors. Int. J. Pharm., 2021, 592, 120083.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120083] [PMID: 33197563]
[320]
Shukla, S.P.; Roy, M.; Mukherjee, P.; Das, L.; Neogy, S.; Srivastava, D.; Adhikari, S. Size selective green synthesis of silver and gold nanoparticles: Enhanced antibacterial efficacy of resveratrol capped silver sol. J. Nanosci. Nanotechnol., 2016, 16(3), 2453-2463.
[http://dx.doi.org/10.1166/jnn.2016.10772] [PMID: 27455655]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy