Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Nutraceutical Approach to the Management of Cystic Fibrosis

Author(s): Manali Chindarkar and Srujana Medithi*

Volume 18, Issue 9, 2022

Published on: 31 May, 2022

Page: [814 - 826] Pages: 13

DOI: 10.2174/1573401318666220415085219

Price: $65

Abstract

Background: Cystic fibrosis (CF) is an autosomal recessive monogenic disease marked by a mutation in the cystic fibrosis transmembrane conductance regulator gene. Cystic fibrosis transmembrane conductance regulator gene mutations affect respiratory, digestive and reproductive functions and impede bicarbonate, bile acid, and sweat secretion. Moreover, the current trend indicates that CF is no longer only a paediatric disease, but has progressively become a disease that also affects adults. This calls for addressing the condition with an appropriate nutraceutical approach.

Objective: The study aims to find and collate nutritional targets in the management of cystic fibrosis.

Methods: Studies highlighting the benefits of nutrients or nutraceuticals in the management of cystic fibrosis were included from previously published research articles (1971 to 2020). Data including nutrients, nutraceuticals, study design, study model, sample size, age, dose and duration of the dose of the supplement were extracted from the studies included and explored to understand their role.

Results: About 26 studies were included in the present review. It was found that nutrient interventions comprising nutraceuticals, including dietary fibre, proteins and amino acids (taurine, arginine, glutathione), fats (medium-chain triglycerides, polyunsaturated fatty acids (omega-3 fatty acids), phytochemicals (apigenin, genistein, quercetin, curcumin, allicin, beta-carotene, Pulmonaria officinalis L, Epigallocatechin-3-gallate), micronutrients, including vitamin A, vitamin D, vitamin K, magnesium and zinc in addition to antioxidants exhibit improvement in the symptomatic condition of cystic fibrosis patients.

Conclusion: The advent of nutraceuticals in the food industry and studies indicating their promising benefits have paved a path for targeted therapies in cystic fibrosis.

Keywords: Cystic fibrosis, cystic fibrosis transmembrane conductance regulator, CFTR mutation, nutraceutical, nutrition, nutritional management.

Graphical Abstract

[1]
Cystic Fibrosis Foundation. Cystic fibrosis foundation, overview 2015. Available from: www.cff.org/AboutCF/
[2]
Bepari KK, Malakar AK, Paul P, Halder B, Chakraborty S. Allele frequency for cystic fibrosis in Indians vis-a/-vis global populations. Bioinformation 2015; 11(7): 348-52.
[http://dx.doi.org/10.6026/97320630011348] [PMID: 26339151]
[3]
Derichs N. Targeting a genetic defect: Cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis. Eur Respir Rev 2013; 22(127): 58-65.
[http://dx.doi.org/10.1183/09059180.00008412] [PMID: 23457166]
[4]
Sirinupong N, Yang Z. Bioactive food components as dietary intervention for cystic fibrosis. Curr Drug Targets 2015; 16(9): 988-92.
[http://dx.doi.org/10.2174/1389450115666141122211111] [PMID: 25418859]
[5]
McKone EF, Goss CH, Aitken ML. CFTR genotype as a predictor of prognosis in cystic fibrosis. Chest 2006; 130(5): 1441-7.
[http://dx.doi.org/10.1378/chest.130.5.1441] [PMID: 17099022]
[6]
Harries JT, Muller DP, McCollum JP, Lipson A, Roma E, Norman AP. Intestinal bile salts in cystic fibrosis: Studies in the patient and experimental animal. Arch Dis Child 1979; 54(1): 19-24.
[http://dx.doi.org/10.1136/adc.54.1.19] [PMID: 420518]
[7]
Gaskin KJ, Durie PR, Corey M, Wei P, Forstner GG. Evidence for a primary defect of pancreatic HCO3-secretion in cystic fibrosis. Pediatr Res 1982; 16(7): 554-7.
[http://dx.doi.org/10.1203/00006450-198207000-00012] [PMID: 7110775]
[8]
Weizman Z, Durie PR, Kopelman HR, Vesely SM, Forstner GG. Bile acid secretion in cystic fibrosis: Evidence for a defect unrelated to fat malabsorption. Gut 1986; 27(9): 1043-8.
[http://dx.doi.org/10.1136/gut.27.9.1043] [PMID: 3758817]
[9]
Durie PR, Forstner GG. Pathophysiology of the exocrine pancreas in cystic fibrosis. J R Soc Med 1989; 82(16): 2-10.
[PMID: 2657051]
[10]
Wilschanski M, Novak I. The cystic fibrosis of exocrine pancreas. Cold Spring Harb Perspect Med 2013; 3(5)a009746
[http://dx.doi.org/10.1101/cshperspect.a009746] [PMID: 23637307]
[11]
Rowe SM, Miller S, Sorscher EJ. Cystic fibrosis. N Engl J Med 2005; 352(19): 1992-2001.
[http://dx.doi.org/10.1056/NEJMra043184] [PMID: 15888700]
[12]
Quinton PM. Cystic fibrosis: Lessons from the sweat gland. Physiology (Bethesda) 2007; 22(3): 212-25.
[http://dx.doi.org/10.1152/physiol.00041.2006] [PMID: 17557942]
[13]
Mishra A, Greaves R, Massie J. The relevance of sweat testing for the diagnosis of cystic fibrosis in the genomic era. Clin Biochem Rev 2005; 26(4): 135-53.
[PMID: 16648884]
[14]
Rowe SM, Accurso F, Clancy JP. Detection of cystic fibrosis transmembrane conductance regulator activity in early-phase clinical trials. Proc Am Thorac Soc 2007; 4(4): 387-98.
[http://dx.doi.org/10.1513/pats.200703-043BR] [PMID: 17652506]
[15]
Aoyama BC, Mogayzel PJ. Ivacaftor for the treatment of cystic fibrosis in children under six years of age. Expert Rev Respir Med 2020; 14(6): 547-57.
[16]
Gavin J, Ellis J, Dewar AL, Rolles CJ, Connett GJ. Dietary fibre and the occurrence of gut symptoms in cystic fibrosis. Arch Dis Child 1997; 76: 35-7.
[17]
Lands LC, Iskandar M, Beaudoin N, Meehan B, Dauletbaev N, Berthiuame Y. Dietary supplementation with pressurized whey in patients with cystic fibrosis. J Med Food 2010; 13(1): 77-82.
[http://dx.doi.org/10.1089/jmf.2008.0326] [PMID: 20136439]
[18]
Grey V, Mohammed SR, Smountas AA, Bahlool R, Lands LC. Improved glutathione status in young adult patients with cystic fibrosis supplemented with whey protein. J Cyst Fibros 2003; 2(4): 195-8.
[http://dx.doi.org/10.1016/S1569-1993(03)00097-3] [PMID: 15463873]
[19]
Engelen MPKJ, Com G, Deutz NEP. Protein is an important but undervalued macronutrient in the nutritional care of patients with cystic fibrosis. Curr Opin Clin Nutr Metab Care 2014; 17(6): 515-20.
[http://dx.doi.org/10.1097/MCO.0000000000000100] [PMID: 25295631]
[20]
Bidri M, Choay P. Taurine: A particular aminoacid with multiple functions. Ann Pharm Fr 2003; 61(6): 385-91.
[PMID: 14639190]
[21]
Darling PB, Lepage G, Leroy C, Masson P, Roy CC. Effect of taurine supplements on fat absorption in cystic fibrosis. Pediatr Res 1985; 19(6): 578-82.
[http://dx.doi.org/10.1203/00006450-198506000-00015] [PMID: 4011338]
[22]
Thompson GN, Robb TA, Davidson GP. Taurine supplementation, fat absorption, and growth in cystic fibrosis. J Pediatr 1987; 111(4): 501-6.
[http://dx.doi.org/10.1016/S0022-3476(87)80108-7] [PMID: 3309233]
[23]
Solomons CC, Cotton EK, Dubois R, Pinney M. The use of buffered L-arginine in the treatment of cystic fibrosis. Pediatrics 1971; 47(2): 384-90.
[http://dx.doi.org/10.1542/peds.47.2.384] [PMID: 5100777]
[24]
Kattwinkel J, Agus SG, Taussig LM, Di Sant’Agnese PA, Laster L. The use of L-arginine and sodium bicarbonate in the treatment of malabsorption due to cystic fibrosis. Pediatrics 1972; 50(1): 133-7.
[http://dx.doi.org/10.1542/peds.50.1.133] [PMID: 5038088]
[25]
Day BJ. Glutathione: A radical treatment for cystic fibrosis lung disease? Chest 2005; 127(1): 12-4.
[http://dx.doi.org/10.1378/chest.127.1.12] [PMID: 15653956]
[26]
Day BJ, van Heeckeren AM, Min E, Velsor LW. Role for cystic fibrosis transmembrane conductance regulator protein in a glutathione response to bronchopulmonary pseudomonas infection. Infect Immun 2004; 72(4): 2045-51.
[http://dx.doi.org/10.1128/IAI.72.4.2045-2051.2004] [PMID: 15039325]
[27]
Green MR, Buchanan E, Weaver LT. Nutritional management of the infant with cystic fibrosis. Arch Dis Child 1995; 72(5): 452-6.
[http://dx.doi.org/10.1136/adc.72.5.452] [PMID: 7618919]
[28]
Widhalm K, Götz M. Long-term use of medium chain triglycerides in cystic fibrosis (author’s transl). Wien Klin Wochenschr 1976; 88(17): 557-61.
[PMID: 997539]
[29]
Panchaud A, Sauty A, Kernen Y, et al. Biological effects of a dietary omega-3 polyunsaturated fatty acids supplementation in cystic fibrosis patients: A randomized, crossover placebo-controlled trial. Clin Nutr 2006; 25(3): 418-27.
[http://dx.doi.org/10.1016/j.clnu.2005.10.011] [PMID: 16325968]
[30]
Portal C, Gouyer V, Léonard R, Husson M-O, Gottrand F, Desseyn J-L. Long-term dietary (n-3) polyunsaturated fatty acids show benefits to the lungs of Cftr F508del mice. PLoS One 2018; 13(6)e0197808
[http://dx.doi.org/10.1371/journal.pone.0197808] [PMID: 29856782]
[31]
Teopompi E, Risé P, Pisi R, et al. Arachidonic acid and docosahexaenoic acid metabolites in the airways of adults with cystic fibrosis: Effect of docosahexaenoic acid supplementation. Front Pharmacol 2019; 10: 938.
[http://dx.doi.org/10.3389/fphar.2019.00938] [PMID: 31507425]
[32]
Lim M, McKenzie K, Floyd AD, Kwon E, Zeitlin PL. Modulation of deltaF508 cystic fibrosis transmembrane regulator trafficking and function with 4-phenylbutyrate and flavonoids. Am J Respir Cell Mol Biol 2004; 31(3): 351-7.
[http://dx.doi.org/10.1165/rcmb.2002-0086OC] [PMID: 15191910]
[33]
Illek B, Lizarzaburu ME, Lee V, Nantz MH, Kurth MJ, Fischer H. Structural determinants for activation and block of CFTR-mediated chloride currents by apigenin. Am J Physiol Cell Physiol 2000; 279(6): C1838-46.
[http://dx.doi.org/10.1152/ajpcell.2000.279.6.C1838] [PMID: 11078699]
[34]
Illek B, Fischer H. Flavonoids stimulate Cl conductance of human airway epithelium in vitro and in vivo. Am J Physiol 1998; 275(5): L902-10.
[PMID: 9815107]
[35]
Al-Nakkash L, Hu S, Li M, Hwang TC. A common mechanism for cystic fibrosis transmembrane conductance regulator protein activation by genistein and benzimidazolone analogs. J Pharmacol Exp Ther 2001; 296(2): 464-72.
[PMID: 11160632]
[36]
Andersson C, Servetnyk Z, Roomans GM. Activation of CFTR by genistein in human airway epithelial cell lines. Biochem Biophys Res Commun 2003; 308(3): 518-22.
[http://dx.doi.org/10.1016/S0006-291X(03)01436-0] [PMID: 12914781]
[37]
Randak C, Auerswald EA, Assfalg-Machleidt I, Reenstra WW, Machleidt W. Inhibition of ATPase, GTPase and adenylate kinase activities of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator by genistein. Biochem J 1999; 340(Pt 1): 227-35.
[http://dx.doi.org/10.1042/bj3400227] [PMID: 10229679]
[38]
Wang F, Zeltwanger S, Yang IC, Nairn AC, Hwang TC. Actions of genistein on cystic fibrosis transmembrane conductance regulator channel gating. Evidence for two binding sites with opposite effects. J Gen Physiol 1998; 111(3): 477-90.
[http://dx.doi.org/10.1085/jgp.111.3.477] [PMID: 9482713]
[39]
Andersson C, Roomans GM. Activation of deltaF508 CFTR in a cystic fibrosis respiratory epithelial cell line by 4-phenylbutyrate, genistein and CPX. Eur Respir J 2000; 15(5): 937-41.
[http://dx.doi.org/10.1034/j.1399-3003.2000.15e21.x] [PMID: 10853862]
[40]
Kinker B. Quercetin: A promising treatment for the common cold. J Anc Dis Preventive Rem 2014; 2(2): 111.
[http://dx.doi.org/10.4172/2329-8731.1000111]
[41]
Zhang S, Smith N, Schuster D, et al. Quercetin increases cystic fibrosis transmembrane conductance regulator-mediated chloride transport and ciliary beat frequency: Therapeutic implications for chronic rhinosinusitis. Am J Rhinol Allergy 2011; 25(5): 307-12.
[http://dx.doi.org/10.2500/ajra.2011.25.3643] [PMID: 22186243]
[42]
Accurso F. Curcumin and cystic fibrosis. J Pediatr Gastroenterol Nutr 2004; 39(3): 235.
[http://dx.doi.org/10.1097/00005176-200409000-00001] [PMID: 15319620]
[43]
Zeitlin P. Can curcumin cure cystic fibrosis? N Engl J Med 2004; 351(6): 606-8.
[http://dx.doi.org/10.1056/NEJMcibr041584] [PMID: 15295056]
[44]
Zhang X, Chen Q, Wang Y, Peng W, Cai H. Effects of curcumin on ion channels and transporters. Front Physiol 2014; 5: 94.
[http://dx.doi.org/10.3389/fphys.2014.00094] [PMID: 24653706]
[45]
Berger AL, Randak CO, Ostedgaard LS, Karp PH, Vermeer DW, Welsh MJ. Curcumin stimulates cystic fibrosis transmembrane conductance regulator Cl- channel activity. J Biol Chem 2005; 280(7): 5221-6.
[http://dx.doi.org/10.1074/jbc.M412972200] [PMID: 15582996]
[46]
Egan ME, Pearson M, Weiner SA, et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 2004; 304(5670): 600-2.
[http://dx.doi.org/10.1126/science.1093941] [PMID: 15105504]
[47]
Borlinghaus J, Albrecht F, Gruhlke MC, Nwachukwu ID, Slusarenko AJ. Allicin: Chemistry and biological properties. Molecules 2014; 19(8): 12591-618.
[http://dx.doi.org/10.3390/molecules190812591] [PMID: 25153873]
[48]
Murray TS, Egan M, Kazmierczak BI. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr Opin Pediatr 2007; 19(1): 83-8.
[http://dx.doi.org/10.1097/MOP.0b013e3280123a5d] [PMID: 17224667]
[49]
Bjarnsholt T, Jensen PØ, Fiandaca MJ, et al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 2009; 44(6): 547-58.
[http://dx.doi.org/10.1002/ppul.21011] [PMID: 19418571]
[50]
Bjarnsholt T, Jensen PØ, Rasmussen TB, et al. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 2005; 151(Pt 12): 3873-80.
[http://dx.doi.org/10.1099/mic.0.27955-0] [PMID: 16339933]
[51]
Sagel SD, Sontag MK, Anthony MM, Emmett P, Papas KA. Effect of an antioxidant-rich multivitamin supplement in cystic fibrosis. J Cyst Fibros 2011; 10(1): 31-6.
[http://dx.doi.org/10.1016/j.jcf.2010.09.005] [PMID: 20961818]
[52]
Renner S, Rath R, Rust P, et al. Effects of beta-carotene supplementation for six months on clinical and laboratory parameters in patients with cystic fibrosis. Thorax 2001; 56(1): 48-52.
[http://dx.doi.org/10.1136/thorax.56.1.48] [PMID: 11120904]
[53]
Krzyżanowska-Kowalczyk J, Pecio Ł Mołdoch J, Ludwiczuk A, Kowalczyk M. Novel phenolic constituents of Pulmonaria officinalis L. LC-MS/MS comparison of spring and autumn metabolite profiles. Molecules 2018; 23(9): 2277.
[http://dx.doi.org/10.3390/molecules23092277] [PMID: 30200600]
[54]
Sadowska B, Wójcik U, Krzyżanowska-Kowalczyk J. The Pros and Cons of Cystic Fibrosis (CF) patient use of herbal supplements containing Pulmonaria officinalis L. extract: The evidence from an in vitro study on Staphylococcus aureus CF clinical isolates. Molecules 2019; 24(6): 1151.
[http://dx.doi.org/10.3390/molecules24061151] [PMID: 30909529]
[55]
Caution K, Pan A, Krause K, et al. Methylomic correlates of autophagy activity in cystic fibrosis. J Cyst Fibros 2019; 18(4): 491-500.
[56]
Graham-Maar RC, Schall JI, Zemel BS, Stallings VA. Vitamin A intake and elevated serum retinol levels in children and young adults with cystic fibrosis. J Cyst Fibros 2008; 7(2): 137-41.
[PMID: 17766194]
[57]
Carr SB, McBratney J. The role of vitamins in cystic fibrosis. J R Soc Med 2000; 93(38)(Suppl. 38): 14-9.
[PMID: 10911814]
[58]
Aird FK, Greene SA, Ogston SA, Macdonald TM, Mukhopadhyay S. Vitamin A and lung function in CF. J Cyst Fibros 2006; 5(2): 129-31.
[http://dx.doi.org/10.1016/j.jcf.2005.11.007] [PMID: 16650745]
[59]
Yim S, Dhawan P, Ragunath C, Christakos S, Diamond G. Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D(3). J Cyst Fibros 2007; 6(6): 403-10.
[http://dx.doi.org/10.1016/j.jcf.2007.03.003] [PMID: 17467345]
[60]
Abu-Fraiha Y, Elyashar-Earon H, Shoseyov D, et al. Increasing Vitamin D serum levels is associated with reduced pulmonary exacerbations in patients with cystic fibrosis. J Pediatr Gastroenterol Nutr 2019; 68(1): 110-5.
[http://dx.doi.org/10.1097/MPG.0000000000002126] [PMID: 30095576]
[61]
Herscovitch K, Dauletbaev N, Lands LC. Vitamin D as an anti-microbial and anti-inflammatory therapy for cystic fibrosis. Paediatr Respir Rev 2014; 15(2): 154-62.
[PMID: 24332502]
[62]
McNally P, Coughlan C, Bergsson G, et al. Vitamin D receptor agonists inhibit pro-inflammatory cytokine production from the respiratory epithelium in cystic fibrosis. J Cyst Fibros 2011; 10(6): 428-34.
[http://dx.doi.org/10.1016/j.jcf.2011.06.013] [PMID: 21784717]
[63]
Jagannath VA, Thaker V, Chang AB, Price AI. Vitamin K supplementation for cystic fibrosis. Cochrane Database Syst Rev 2020; 6(6)CD008482
[PMID: 32497260]
[64]
van Hoorn JHL, Hendriks JJ, Vermeer C, Forget PP. Vitamin K supplementation in cystic fibrosis. Arch Dis Child 2003; 88(11): 974-5.
[http://dx.doi.org/10.1136/adc.88.11.974] [PMID: 14612359]
[65]
Nicolaidou P, Stavrinadis I, Loukou I, et al. The effect of vitamin K supplementation on biochemical markers of bone formation in children and adolescents with cystic fibrosis. Eur J Pediatr 2006; 165(8): 540-5.
[http://dx.doi.org/10.1007/s00431-006-0132-1] [PMID: 16622660]
[66]
Gontijo-Amaral C, Guimarães EV, Camargos P. Oral magnesium supplementation in children with cystic fibrosis improves clinical and functional variables: A double-blind, randomized, placebo-controlled crossover trial. Am J Clin Nutr 2012; 96(1): 50-6.
[http://dx.doi.org/10.3945/ajcn.112.034207] [PMID: 22648717]
[67]
Abdulhamid I, Beck FWJ, Millard S, Chen X, Prasad A. Effect of zinc supplementation on respiratory tract infections in children with cystic fibrosis. Pediatr Pulmonol 2008; 43(3): 281-7.
[http://dx.doi.org/10.1002/ppul.20771] [PMID: 18214943]
[68]
Wood LG, Fitzgerald DA, Lee AK, Garg ML. Improved antioxidant and fatty acid status of patients with cystic fibrosis after antioxidant supplementation is linked to improved lung function. Am J Clin Nutr 2003; 77(1): 150-9.
[http://dx.doi.org/10.1093/ajcn/77.1.150] [PMID: 12499335]
[69]
Leonard AR, Yen EH. Nutrition in Cystic Fibrosis: A Guide for Clinicians. In: 1st ed Cham: Springer International Publishing. Imprint:Humana 2015; p. 1
[http://dx.doi.org/10.1016/B978-0-12-800051-9.00004-3]
[70]
Olveira G, Olveira C, Acosta E, et al. Fatty acid supplements improve respiratory, inflammatory and nutritional parameters in adults with cystic fibrosis. Arch Bronconeumol 2010; 46(2): 70-7.
[http://dx.doi.org/10.1016/j.arbres.2009.11.001] [PMID: 20045240]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy