Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

与中药SIP3和多奈哌齐联合治疗可改善阿尔茨海默病小鼠模型的记忆和抑郁

卷 19, 期 3, 2022

发表于: 29 April, 2022

页: [246 - 263] 页: 18

弟呕挨: 10.2174/1567205019666220413082130

价格: $65

摘要

背景: 阿尔茨海默病(AD)是一种致命的进行性神经退行性疾病,与神经递质乙酰胆碱缺乏有关。目前,许多乙酰胆碱酯酶抑制剂,如多奈哌齐,广泛用于治疗AD。另一方面,长期使用多奈哌唑的疗效有限。SIP3是三种草药提取物的混合物,分别来自山矾、八角和远志,是一种源自传统韩国草药的新配方。 摘要: 我们使用APP/PS1转基因小鼠评估了SIP3和多奈哌齐联合治疗对AD症状的协同作用。 方法:在本研究中,使用果蝇AD模型和SH-SY5Y clles评估SIP3的毒性,并使用APPswe/PS1dE9(APP/PS1)转基因小鼠评估SIP3和多奈哌齐联合治疗对AD症状的认知行为和抑郁样行为的影响。通过RNA测序和miRNA分析大脑皮层或海马转录组,以研究SIP3对AD的积极作用的分子和细胞机制。 结果:在被动回避试验(PAT)和Morris水迷宫(MWM)试验中,与仅使用多奈哌齐的组相比,SIP3和多奈哌齐可改善AD中期APP/PS1小鼠的学习能力和记忆。此外,SIP3和多奈哌齐的联合给药有效地减少了强迫游泳和尾部悬吊试验中的抑郁样行为。此外,对大脑皮层转录组和海马miRNA的RNA测序表明,与单独使用多奈哌齐治疗后获得的基因表达谱相比,低剂量SIP3联合治疗后的基因表达图谱与正常表型小鼠更为相似。基因本体论(GO)和京都基因和基因组百科全书(KEGG)途径表明,差异表达基因参与运动行为和神经活性配体-受体相互作用。这些结果表明,低剂量SIP3和多奈哌齐联合治疗可改善AD中期小鼠的学习、记忆和抑郁障碍。 结论: 低剂量SIP3和多奈哌齐联合治疗可改善AD中期小鼠的学习、记忆和抑郁障碍。

关键词: 阿尔茨海默病、桑塔卢姆相册、八角、远志、多奈哌齐、APPswe/PS1dE9

« Previous
[1]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[2]
Wirths, O.; Multhaup, G.; Bayer, T.A. A modified β-amyloid hypothesis: intraneuronal accumulation of the β-amyloid peptide-the first step of a fatal cascade. J. Neurochem., 2004, 91(3), 513-520.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02737.x] [PMID: 15485483]
[3]
Selkoe, D.J. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol., 1998, 8(11), 447-453.
[http://dx.doi.org/10.1016/S0962-8924(98)01363-4] [PMID: 9854312]
[4]
Picciotto, M.R.; Higley, M.J.; Mineur, Y.S. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron, 2012, 76(1), 116-129.
[http://dx.doi.org/10.1016/j.neuron.2012.08.036] [PMID: 23040810]
[5]
Lleó, A. Current therapeutic options for Alzheimer’s disease. Curr. Genomics, 2007, 8(8), 550-558.
[http://dx.doi.org/10.2174/138920207783769549] [PMID: 19415128]
[6]
Grutzendler, J.; Morris, J.C. Cholinesterase inhibitors for Alzheimer’s disease. Drugs, 2001, 61(1), 41-52.
[http://dx.doi.org/10.2165/00003495-200161010-00005] [PMID: 11217870]
[7]
Mehta, M.; Adem, A.; Sabbagh, M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int. J. Alzheimers Dis., 2012, 2012, 728983.
[http://dx.doi.org/10.1155/2012/728983] [PMID: 22216416]
[8]
Mattson, M.P. Pathways towards and away from Alzheimer’s disease. Nature, 2004, 430(7000), 631-639.
[http://dx.doi.org/10.1038/nature02621] [PMID: 15295589]
[9]
Cummings, J.L.; McRae, T.; Zhang, R. Effects of donepezil on neuropsychiatric symptoms in patients with dementia and severe behavioral disorders. Am. J. Geriatr. Psychiatry, 2006, 14(7), 605-612.
[http://dx.doi.org/10.1097/01.JGP.0000221293.91312.d3] [PMID: 16816014]
[10]
Mangialasche, F.; Solomon, A.; Winblad, B.; Mecocci, P.; Kivipelto, M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol., 2010, 9(7), 702-716.
[http://dx.doi.org/10.1016/S1474-4422(10)70119-8] [PMID: 20610346]
[11]
Molino, I.; Colucci, L.; Fasanaro, A.M.; Traini, E.; Amenta, F. Efficacy of memantine, donepezil, or their association in moderate-severe Alzheimer’s disease: a review of clinical trials. Sci. World J., 2013, 2013, 925702.
[http://dx.doi.org/10.1155/2013/925702] [PMID: 24288512]
[12]
Zhu, C.W.; Livote, E.E.; Scarmeas, N.; Albert, M.; Brandt, J.; Blacker, D.; Sano, M.; Stern, Y. Long-term associations between cholinesterase inhibitors and memantine use and health outcomes among patients with Alzheimer’s disease. Alzheimers Dement., 2013, 9(6), 733-740.
[http://dx.doi.org/10.1016/j.jalz.2012.09.015] [PMID: 23332671]
[13]
Guan, Y.Y.; Luan, X.; Lu, Q.; Liu, Y.R.; Sun, P.; Zhao, M.; Chen, H.Z.; Fang, C. Natural products with antiangiogenic and antivasculogenic mimicry activity. Mini Rev. Med. Chem., 2016, 16(16), 1290-1302.
[http://dx.doi.org/10.2174/1389557516666160211115507] [PMID: 26864555]
[14]
Liu, P.; Kong, M.; Yuan, S.; Liu, J.; Wang, P. History and experience: a survey of traditional chinese medicine treatment for Alzheimer’s disease. Evid. Based Complement. Alternat. Med., 2014, 2014, 642128.
[http://dx.doi.org/10.1155/2014/642128] [PMID: 24624220]
[15]
Liu, Q.F.; Lee, J.H.; Kim, Y.M.; Lee, S.; Hong, Y.K.; Hwang, S.; Oh, Y.; Lee, K.; Yun, H.S.; Lee, I.S.; Jeon, S.; Chin, Y.W.; Koo, B.S.; Cho, K.S. In vivo screening of traditional medicinal plants for neuroprotective activity against aβ42 cytotoxicity by using drosophila models of Alzheimer’s disease. Biol. Pharm. Bull., 2015, 38(12), 1891-1901.
[http://dx.doi.org/10.1248/bpb.b15-00459] [PMID: 26458335]
[16]
Wang, G.W.; Hu, W.T.; Huang, B.K.; Qin, L.P. Illicium verum: a review on its botany, traditional use, chemistry and pharmacology. J. Ethnopharmacol., 2011, 136(1), 10-20.
[http://dx.doi.org/10.1016/j.jep.2011.04.051] [PMID: 21549817]
[17]
Bhadra, S.; Mukherjee, P.K.; Kumar, N.S.; Bandyopadhyay, A. Anticholinesterase activity of standardized extract of Illicium verum Hook. f. fruits. Fitoterapia, 2011, 82(3), 342-346.
[http://dx.doi.org/10.1016/j.fitote.2010.11.003] [PMID: 21075180]
[18]
Buccafusco, J.J. Multifunctional receptor-directed drugs for disorders of the central nervous system. Neurotherapeutics, 2009, 6(1), 4-13.
[http://dx.doi.org/10.1016/j.nurt.2008.10.031] [PMID: 19110195]
[19]
Li, Z.; Liu, Y.; Wang, L.; Liu, X.; Chang, Q.; Guo, Z.; Liao, Y.; Pan, R.; Fan, T.P. Memory-enhancing effects of the crude extract of polygala tenuifolia on aged mice. Evid. Based Complement. Alternat. Med., 2014, 2014, 392324.
[http://dx.doi.org/10.1155/2014/392324] [PMID: 24744810]
[20]
Phelps, C.B.; Brand, A.H. Ectopic gene expression in Drosophila using GAL4 system. Methods, 1998, 14(4), 367-379.
[http://dx.doi.org/10.1006/meth.1998.0592] [PMID: 9608508]
[21]
Romberg, C.; Mattson, M.P.; Mughal, M.R.; Bussey, T.J.; Saksida, L.M. Impaired attention in the 3xTgAD mouse model of Alzheimer’s disease: rescue by donepezil (Aricept). J. Neurosci., 2011, 31(9), 3500-3507.
[http://dx.doi.org/10.1523/JNEUROSCI.5242-10.2011] [PMID: 21368062]
[22]
Fernández-Ruiz, J.; Romero, J.; Ramos, J.A. Endocannabinoids and neurodegenerative disorders: Parkinson’s disease, Huntington’s chorea, Alzheimer’s disease, and others. Handb. Exp. Pharmacol., 2015, 231, 233-259.
[http://dx.doi.org/10.1007/978-3-319-20825-1_8] [PMID: 26408163]
[23]
Jeon, S.; Bose, S.; Hur, J.; Jun, K.; Kim, Y.K.; Cho, K.S.; Koo, B.S. A modified formulation of Chinese traditional medicine improves memory impairment and reduces Aβ level in the Tg-APPswe/PS1dE9 mouse model of Alzheimer’s disease. J. Ethnopharmacol., 2011, 137(1), 783-789.
[http://dx.doi.org/10.1016/j.jep.2011.06.046] [PMID: 21762767]
[24]
Puzzo, D.; Lee, L.; Palmeri, A.; Calabrese, G.; Arancio, O. Behavioral assays with mouse models of Alzheimer’s disease: practical considerations and guidelines. Biochem. Pharmacol., 2014, 88(4), 450-467.
[http://dx.doi.org/10.1016/j.bcp.2014.01.011] [PMID: 24462904]
[25]
Prvulovic, D.; Schneider, B. Pharmacokinetic and pharmacodynamic evaluation of donepezil for the treatment of Alzheimer’s disease. Expert Opin. Drug Metab. Toxicol., 2014, 10(7), 1039-1050.
[http://dx.doi.org/10.1517/17425255.2014.915028] [PMID: 24785550]
[26]
Kowalska, A. Pruchnik-Wolińska, D.; Florczak, J.; Modestowicz, R.; Szczech, J.; Kozubski, W.; Rossa, G.; Wender, M. Genetic study of familial cases of Alzheimer’s disease. Acta Biochim. Pol., 2004, 51(1), 245-252.
[http://dx.doi.org/10.18388/abp.2004_3617] [PMID: 15094846]
[27]
Docampo, M.; Olubu, A.; Wang, X.; Pasinetti, G.; Dixon, R.A. Glucuronidated flavonoids in neurological protection: structural analysis and approaches for chemical and biological synthesis. J. Agric. Food Chem., 2017, 65(35), 7607-7623.
[http://dx.doi.org/10.1021/acs.jafc.7b02633] [PMID: 28789524]
[28]
Van Acker, Z.P.; Bretou, M.; Annaert, W. Endo-lysosomal dysregulations and late-onset Alzheimer’s disease: impact of genetic risk factors. Mol. Neurodegener., 2019, 14(1), 20.
[http://dx.doi.org/10.1186/s13024-019-0323-7] [PMID: 31159836]
[29]
Li, L.Y.; Yang, C.C.; Li, S.W.; Liu, Y.M.; Li, H.D.; Hu, S.; Zhou, H.; Wang, J.L.; Shen, H.; Meng, X.M.; Li, J.; Xu, T. TMEM88 modulates the secretion of inflammatory factors by regulating YAP signaling pathway in alcoholic liver disease. Inflamm. Res., 2020, 69(8), 789-800.
[http://dx.doi.org/10.1007/s00011-020-01360-y] [PMID: 32451556]
[30]
Lee, B.; Sur, B.; Shin, S.; Baik, J.E.; Shim, I.; Lee, H.; Hahm, D-H. Polygala tenuifolia prevents anxiety-like behaviors in mice exposed to repeated restraint stress. Anim. Cells Syst., 2015, 19(1), 1-7.
[http://dx.doi.org/10.1080/19768354.2014.982176]
[31]
Sur, B.; Lee, B.; Yoon, Y.S.; Lim, P.; Hong, R.; Yeom, M.; Lee, H.S.; Park, H.; Shim, I.; Lee, H.; Jang, Y.P.; Hahm, D.H. Extract of polygala tenuifolia alleviates stress-exacerbated atopy-like skin dermatitis through the modulation of protein kinase a and p38 mitogen-activated protein kinase signaling pathway. Int. J. Mol. Sci., 2017, 18(1), 190.
[http://dx.doi.org/10.3390/ijms18010190] [PMID: 28106783]
[32]
Xin, T.; Zhang, F.; Jiang, Q.; Chen, C.; Huang, D.; Li, Y.; Shen, W.; Jin, Y. Extraction, purification and antitumor activity of a water-soluble polysaccharide from the roots of Polygala tenuifolia. Carbohydr. Polym., 2012, 90(2), 1127-1131.
[http://dx.doi.org/10.1016/j.carbpol.2012.06.058] [PMID: 22840049]
[33]
Kwon, K.J.; Kim, M.K.; Lee, E.J.; Kim, J.N.; Choi, B.R.; Kim, S.Y.; Cho, K.S.; Han, J.S.; Kim, H.Y.; Shin, C.Y.; Han, S.H. Effects of donepezil, an acetylcholinesterase inhibitor, on neurogenesis in a rat model of vascular dementia. J. Neurol. Sci., 2014, 347(1-2), 66-77.
[http://dx.doi.org/10.1016/j.jns.2014.09.021] [PMID: 25266713]
[34]
Ogura, H.; Kosasa, T.; Kuriya, Y.; Yamanishi, Y. Donepezil, a centrally acting acetylcholinesterase inhibitor, alleviates learning deficits in hypocholinergic models in rats. Methods Find. Exp. Clin. Pharmacol., 2000, 22(2), 89-95.
[http://dx.doi.org/10.1358/mf.2000.22.2.796070] [PMID: 10849891]
[35]
Song, S.; Liu, Q.F.; Hong, M.; Kim, G.; Koo, B.S. In vitro screening of traditional medicinal herbs combined with donepezil for neuroprotective effects in SH-SY5Y cells. J Oriental Neuropsychiatry, 2019, 30(3), 199-207.
[36]
Zhu, Q.; Tang, C.P.; Ke, C.Q.; Wang, W.; Zhang, H.Y.; Ye, Y. Sesquiterpenoids and phenylpropanoids from pericarps of Illicium oligandrum. J. Nat. Prod., 2009, 72(2), 238-242.
[http://dx.doi.org/10.1021/np8004979] [PMID: 19159273]
[37]
Park, C.H.; Choi, S.H.; Koo, J.W.; Seo, J.H.; Kim, H.S.; Jeong, S.J.; Suh, Y.H. Novel cognitive improving and neuroprotective activities of Polygala tenuifolia Willdenow extract, BT-11. J. Neurosci. Res., 2002, 70(3), 484-492.
[http://dx.doi.org/10.1002/jnr.10429] [PMID: 12391609]
[38]
Lee, S.; Bang, S.M.; Lee, J.W.; Cho, K.S. Evaluation of traditional medicines for neurodegenerative diseases using Drosophila models. Evid. Based Complement. Alternat. Med., 2014, 2014, 967462.
[http://dx.doi.org/10.1155/2014/967462] [PMID: 24790636]
[39]
Devanand, D.P.; Pelton, G.H.; D’Antonio, K.; Ciarleglio, A.; Scodes, J.; Andrews, H.; Lunsford, J.; Beyer, J.L.; Petrella, J.R.; Sneed, J.; Ciovacco, M.; Doraiswamy, P.M. Donepezil treatment in patients with depression and cognitive impairment on stable antidepressant treatment: A randomized controlled trial. Am. J. Geriatr. Psychiatry, 2018, 26(10), 1050-1060.
[http://dx.doi.org/10.1016/j.jagp.2018.05.008] [PMID: 30037778]
[40]
Shen, L.; Liu, L.; Ji, H.F. Alzheimer’s disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state. J. Alzheimers Dis., 2017, 56(1), 385-390.
[http://dx.doi.org/10.3233/JAD-160884] [PMID: 27911317]
[41]
Shaw, K.E.; Bondi, C.O.; Light, S.H.; Massimino, L.A.; McAloon, R.L.; Monaco, C.M.; Kline, A.E. Donepezil is ineffective in promoting motor and cognitive benefits after controlled cortical impact injury in male rats. J. Neurotrauma, 2013, 30(7), 557-564.
[http://dx.doi.org/10.1089/neu.2012.2782] [PMID: 23227953]
[42]
Knowles, J. Donepezil in Alzheimer’s disease: an evidence-based review of its impact on clinical and economic outcomes. Core Evid., 2006, 1(3), 195-219.
[PMID: 22500154]
[43]
Sors, A.; Krazem, A.; Kehr, J.; Yoshitake, T.; Dominguez, G.; Henkous, N.; Letondor, C.; Mocaer, E.; Béracochéa, D.J. The synergistic enhancing-memory effect of donepezil and s 38093 (a Histamine H3 Antagonist) is mediated by increased neural activity in the septo-hippocampal circuitry in middle-aged mice. Front. Pharmacol., 2016, 7, 492.
[http://dx.doi.org/10.3389/fphar.2016.00492] [PMID: 28066242]
[44]
Abdel-Salam, O.M.; Youness, E.R.; Morsy, F.A.; Mahfouz, M.M.; Kenawy, S.A. Study of the effect of antidepressant drugs and donepezil on aluminum-induced memory impairment and biochemical alterations in rats. Comp. Clin. Pathol., 2015, 24(4), 847-860.
[http://dx.doi.org/10.1007/s00580-014-1994-7]
[45]
Wolf, O.T. HPA axis and memory. Best Pract. Res. Clin. Endocrinol. Metab., 2003, 17(2), 287-299.
[http://dx.doi.org/10.1016/S1521-690X(02)00101-X] [PMID: 12787553]
[46]
Kitraki, E.; Kremmyda, O.; Youlatos, D.; Alexis, M.; Kittas, C. Spatial performance and corticosteroid receptor status in the 21-day restraint stress paradigm. Ann. N. Y. Acad. Sci., 2004, 1018(1), 323-327.
[http://dx.doi.org/10.1196/annals.1296.039] [PMID: 15240385]
[47]
Sampath, D.; Sathyanesan, M.; Newton, S.S. Cognitive dysfunction in major depression and Alzheimer’s disease is associated with hippocampal-prefrontal cortex dysconnectivity. Neuropsychiatr. Dis. Treat., 2017, 13, 1509-1519.
[http://dx.doi.org/10.2147/NDT.S136122] [PMID: 28652752]
[48]
Cheng, X.R.; Cui, X.L.; Zheng, Y.; Zhang, G.R.; Li, P.; Huang, H.; Zhao, Y.Y.; Bo, X.C.; Wang, S.Q.; Zhou, W.X.; Zhang, Y.X. A co-module regulated by therapeutic drugs in a molecular subnetwork of Alzheimer’s disease identified on the basis of traditional chinese medicine and SAMP8 mice. Curr. Alzheimer Res., 2015, 12(9), 870-885.
[http://dx.doi.org/10.2174/1567205012666150710111858] [PMID: 26159197]
[49]
Kim, K.H.; Moon, M.; Yu, S.B.; Mook-Jung, I.; Kim, J.I. RNA-Seq analysis of frontal cortex and cerebellum from 5XFAD mice at early stage of disease pathology. J. Alzheimers Dis., 2012, 29(4), 793-808.
[http://dx.doi.org/10.3233/JAD-2012-111793] [PMID: 22507954]
[50]
Park, J.; Kim, H.; Kim, J.; Cheon, M. A practical application of generative adversarial networks for RNA-seq analysis to predict the molecular progress of Alzheimer’s disease. PLOS Comput. Biol., 2020, 16(7), e1008099.
[http://dx.doi.org/10.1371/journal.pcbi.1008099] [PMID: 32706788]
[51]
Bekris, L.M.; Lutz, F.; Montine, T.J.; Yu, C.E.; Tsuang, D.; Peskind, E.R.; Leverenz, J.B. MicroRNA in Alzheimer’s disease: an exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers, 2013, 18(5), 455-466.
[http://dx.doi.org/10.3109/1354750X.2013.814073] [PMID: 23822153]
[52]
Maes, O.C.; Chertkow, H.M.; Wang, E.; Schipper, H.M. MicroRNA: Implications for Alzheimer disease and other human CNS disorders. Curr. Genomics, 2009, 10(3), 154-168.
[http://dx.doi.org/10.2174/138920209788185252] [PMID: 19881909]
[53]
Wang, P.; Liu, X.M.; Ding, L.; Zhang, X.J.; Ma, Z.L. mTOR signaling-related MicroRNAs and cancer involvement. J. Cancer, 2018, 9(4), 667-673.
[http://dx.doi.org/10.7150/jca.22119] [PMID: 29556324]
[54]
Cui, J.; Gong, C.; Cao, B.; Li, L. MicroRNA-27a participates in the pathological process of depression in rats by regulating VEGFA. Exp. Ther. Med., 2018, 15(5), 4349-4355.
[http://dx.doi.org/10.3892/etm.2018.5942] [PMID: 29731825]
[55]
Wirths, O.; Breyhan, H.; Marcello, A.; Cotel, M.C.; Brück, W.; Bayer, T.A. Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer’s disease. Neurobiol. Aging, 2010, 31(5), 747-757.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.06.011] [PMID: 18657882]
[56]
Dahiyat, M.; Cumming, A.; Harrington, C.; Wischik, C.; Xuereb, J.; Corrigan, F.; Breen, G.; Shaw, D.; St Clair, D. Association between Alzheimer’s disease and the NOS3 gene. Ann. Neurol., 1999, 46(4), 664-667.
[http://dx.doi.org/10.1002/1531-8249(199910)46:4<664::AIDANA18>3.0.CO;2-J] [PMID: 10514107]
[57]
Canchi, S.; Raao, B.; Masliah, D.; Rosenthal, S.B.; Sasik, R.; Fisch, K.M.; De Jager, P.L.; Bennett, D.A.; Rissman, R.A. Integrating gene and protein expression reveals perturbed functional networks in Alzheimer’s disease. Cell Rep., 2019, 28(4), 1103-1116.e4.
[http://dx.doi.org/10.1016/j.celrep.2019.06.073] [PMID: 31340147]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy