Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Co-Treatment with the Herbal Medicine SIP3 and Donepezil Improves Memory and Depression in the Mouse Model of Alzheimer’s Disease

Author(s): Quan Feng Liu, Hoon Choi, Taekwon Son, Young-Mi Kim, Suganya Kanmani, Young-Won Chin, Seung-Nam Kim, Kwang Ki Kim, Kyu-Won Kim and Byung-Soo Koo*

Volume 19, Issue 3, 2022

Published on: 29 April, 2022

Page: [246 - 263] Pages: 18

DOI: 10.2174/1567205019666220413082130

Price: $65

Abstract

Background: Alzheimer’s disease (AD) is a lethal, progressive neurodegenerative disorder that has been linked to a deficiency of the neurotransmitter acetylcholine. Currently, many acetylcholinesterase inhibitors, such as donepezil, are widely used for the treatment of AD. On the other hand, the efficacy of long-term donepezil use is limited. SIP3, a mixture of three herbal extracts from Santalum album, Illicium verum, and Polygala tenuifolia, is a new formula derived from traditional Korean herbal medicine.

Objective: We assessed the synergistic effect of SIP3 and donepezil co-treatment on symptoms of AD using APP/PS1 transgenic mice.

Methods: In this study, a Drosophila AD model and SH-SY5Y clles were used to assess the toxicity of SIP3, and APPswe/PS1dE9 (APP/PS1) transgenic mice were used to evaluate the cognitive-behavioral and depression-like behavior effect of SIP3 and donepezil co-treatment on symptoms of AD. The cerebral cortex or hippocampus transcriptomes were analyzed by RNA sequencing and miRNA to investigate the molecular and cellular mechanisms underlying the positive effects of SIP3 on AD.

Results: In the passive avoidance test (PAT) and Morris water maze (MWM) test, the combination of SIP3 and donepezil improved the learning capabilities and memory of APP/PS1 mice in the mid-stage of AD compared to the group treated with donepezil only. In addition, co-administration of SIP3 and donepezil effectively reduced the depression-like behavior in the forced swimming and tail suspension tests. Furthermore, RNA sequencing of the cerebral cortex transcriptome and miRNA of the hippocampus showed that the gene expression profiles after a low dose SIP3 co-treatment were more similar to those of the normal phenotype mice than those obtained after the donepezil treatment alone. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, showed that differentially expressed genes were involved in the locomotor behavior and neuroactive ligand-receptor interactions. These results suggest that a co-treatment of low dose SIP3 and donepezil improves impaired learning, memory, and depression in the mid-stage of AD in mice.

Conclusion: Co-treatment of low dose SIP3 and donepezil improves impaired learning, memory, and depression in the mid-stage of AD in mice.

Keywords: Alzheimer’s disease, Santalum album, Illicium verum, Polygala tenuifolia, Donepezil, APPswe/PS1dE9.

« Previous
[1]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[2]
Wirths, O.; Multhaup, G.; Bayer, T.A. A modified β-amyloid hypothesis: intraneuronal accumulation of the β-amyloid peptide-the first step of a fatal cascade. J. Neurochem., 2004, 91(3), 513-520.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02737.x] [PMID: 15485483]
[3]
Selkoe, D.J. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol., 1998, 8(11), 447-453.
[http://dx.doi.org/10.1016/S0962-8924(98)01363-4] [PMID: 9854312]
[4]
Picciotto, M.R.; Higley, M.J.; Mineur, Y.S. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron, 2012, 76(1), 116-129.
[http://dx.doi.org/10.1016/j.neuron.2012.08.036] [PMID: 23040810]
[5]
Lleó, A. Current therapeutic options for Alzheimer’s disease. Curr. Genomics, 2007, 8(8), 550-558.
[http://dx.doi.org/10.2174/138920207783769549] [PMID: 19415128]
[6]
Grutzendler, J.; Morris, J.C. Cholinesterase inhibitors for Alzheimer’s disease. Drugs, 2001, 61(1), 41-52.
[http://dx.doi.org/10.2165/00003495-200161010-00005] [PMID: 11217870]
[7]
Mehta, M.; Adem, A.; Sabbagh, M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int. J. Alzheimers Dis., 2012, 2012, 728983.
[http://dx.doi.org/10.1155/2012/728983] [PMID: 22216416]
[8]
Mattson, M.P. Pathways towards and away from Alzheimer’s disease. Nature, 2004, 430(7000), 631-639.
[http://dx.doi.org/10.1038/nature02621] [PMID: 15295589]
[9]
Cummings, J.L.; McRae, T.; Zhang, R. Effects of donepezil on neuropsychiatric symptoms in patients with dementia and severe behavioral disorders. Am. J. Geriatr. Psychiatry, 2006, 14(7), 605-612.
[http://dx.doi.org/10.1097/01.JGP.0000221293.91312.d3] [PMID: 16816014]
[10]
Mangialasche, F.; Solomon, A.; Winblad, B.; Mecocci, P.; Kivipelto, M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol., 2010, 9(7), 702-716.
[http://dx.doi.org/10.1016/S1474-4422(10)70119-8] [PMID: 20610346]
[11]
Molino, I.; Colucci, L.; Fasanaro, A.M.; Traini, E.; Amenta, F. Efficacy of memantine, donepezil, or their association in moderate-severe Alzheimer’s disease: a review of clinical trials. Sci. World J., 2013, 2013, 925702.
[http://dx.doi.org/10.1155/2013/925702] [PMID: 24288512]
[12]
Zhu, C.W.; Livote, E.E.; Scarmeas, N.; Albert, M.; Brandt, J.; Blacker, D.; Sano, M.; Stern, Y. Long-term associations between cholinesterase inhibitors and memantine use and health outcomes among patients with Alzheimer’s disease. Alzheimers Dement., 2013, 9(6), 733-740.
[http://dx.doi.org/10.1016/j.jalz.2012.09.015] [PMID: 23332671]
[13]
Guan, Y.Y.; Luan, X.; Lu, Q.; Liu, Y.R.; Sun, P.; Zhao, M.; Chen, H.Z.; Fang, C. Natural products with antiangiogenic and antivasculogenic mimicry activity. Mini Rev. Med. Chem., 2016, 16(16), 1290-1302.
[http://dx.doi.org/10.2174/1389557516666160211115507] [PMID: 26864555]
[14]
Liu, P.; Kong, M.; Yuan, S.; Liu, J.; Wang, P. History and experience: a survey of traditional chinese medicine treatment for Alzheimer’s disease. Evid. Based Complement. Alternat. Med., 2014, 2014, 642128.
[http://dx.doi.org/10.1155/2014/642128] [PMID: 24624220]
[15]
Liu, Q.F.; Lee, J.H.; Kim, Y.M.; Lee, S.; Hong, Y.K.; Hwang, S.; Oh, Y.; Lee, K.; Yun, H.S.; Lee, I.S.; Jeon, S.; Chin, Y.W.; Koo, B.S.; Cho, K.S. In vivo screening of traditional medicinal plants for neuroprotective activity against aβ42 cytotoxicity by using drosophila models of Alzheimer’s disease. Biol. Pharm. Bull., 2015, 38(12), 1891-1901.
[http://dx.doi.org/10.1248/bpb.b15-00459] [PMID: 26458335]
[16]
Wang, G.W.; Hu, W.T.; Huang, B.K.; Qin, L.P. Illicium verum: a review on its botany, traditional use, chemistry and pharmacology. J. Ethnopharmacol., 2011, 136(1), 10-20.
[http://dx.doi.org/10.1016/j.jep.2011.04.051] [PMID: 21549817]
[17]
Bhadra, S.; Mukherjee, P.K.; Kumar, N.S.; Bandyopadhyay, A. Anticholinesterase activity of standardized extract of Illicium verum Hook. f. fruits. Fitoterapia, 2011, 82(3), 342-346.
[http://dx.doi.org/10.1016/j.fitote.2010.11.003] [PMID: 21075180]
[18]
Buccafusco, J.J. Multifunctional receptor-directed drugs for disorders of the central nervous system. Neurotherapeutics, 2009, 6(1), 4-13.
[http://dx.doi.org/10.1016/j.nurt.2008.10.031] [PMID: 19110195]
[19]
Li, Z.; Liu, Y.; Wang, L.; Liu, X.; Chang, Q.; Guo, Z.; Liao, Y.; Pan, R.; Fan, T.P. Memory-enhancing effects of the crude extract of polygala tenuifolia on aged mice. Evid. Based Complement. Alternat. Med., 2014, 2014, 392324.
[http://dx.doi.org/10.1155/2014/392324] [PMID: 24744810]
[20]
Phelps, C.B.; Brand, A.H. Ectopic gene expression in Drosophila using GAL4 system. Methods, 1998, 14(4), 367-379.
[http://dx.doi.org/10.1006/meth.1998.0592] [PMID: 9608508]
[21]
Romberg, C.; Mattson, M.P.; Mughal, M.R.; Bussey, T.J.; Saksida, L.M. Impaired attention in the 3xTgAD mouse model of Alzheimer’s disease: rescue by donepezil (Aricept). J. Neurosci., 2011, 31(9), 3500-3507.
[http://dx.doi.org/10.1523/JNEUROSCI.5242-10.2011] [PMID: 21368062]
[22]
Fernández-Ruiz, J.; Romero, J.; Ramos, J.A. Endocannabinoids and neurodegenerative disorders: Parkinson’s disease, Huntington’s chorea, Alzheimer’s disease, and others. Handb. Exp. Pharmacol., 2015, 231, 233-259.
[http://dx.doi.org/10.1007/978-3-319-20825-1_8] [PMID: 26408163]
[23]
Jeon, S.; Bose, S.; Hur, J.; Jun, K.; Kim, Y.K.; Cho, K.S.; Koo, B.S. A modified formulation of Chinese traditional medicine improves memory impairment and reduces Aβ level in the Tg-APPswe/PS1dE9 mouse model of Alzheimer’s disease. J. Ethnopharmacol., 2011, 137(1), 783-789.
[http://dx.doi.org/10.1016/j.jep.2011.06.046] [PMID: 21762767]
[24]
Puzzo, D.; Lee, L.; Palmeri, A.; Calabrese, G.; Arancio, O. Behavioral assays with mouse models of Alzheimer’s disease: practical considerations and guidelines. Biochem. Pharmacol., 2014, 88(4), 450-467.
[http://dx.doi.org/10.1016/j.bcp.2014.01.011] [PMID: 24462904]
[25]
Prvulovic, D.; Schneider, B. Pharmacokinetic and pharmacodynamic evaluation of donepezil for the treatment of Alzheimer’s disease. Expert Opin. Drug Metab. Toxicol., 2014, 10(7), 1039-1050.
[http://dx.doi.org/10.1517/17425255.2014.915028] [PMID: 24785550]
[26]
Kowalska, A. Pruchnik-Wolińska, D.; Florczak, J.; Modestowicz, R.; Szczech, J.; Kozubski, W.; Rossa, G.; Wender, M. Genetic study of familial cases of Alzheimer’s disease. Acta Biochim. Pol., 2004, 51(1), 245-252.
[http://dx.doi.org/10.18388/abp.2004_3617] [PMID: 15094846]
[27]
Docampo, M.; Olubu, A.; Wang, X.; Pasinetti, G.; Dixon, R.A. Glucuronidated flavonoids in neurological protection: structural analysis and approaches for chemical and biological synthesis. J. Agric. Food Chem., 2017, 65(35), 7607-7623.
[http://dx.doi.org/10.1021/acs.jafc.7b02633] [PMID: 28789524]
[28]
Van Acker, Z.P.; Bretou, M.; Annaert, W. Endo-lysosomal dysregulations and late-onset Alzheimer’s disease: impact of genetic risk factors. Mol. Neurodegener., 2019, 14(1), 20.
[http://dx.doi.org/10.1186/s13024-019-0323-7] [PMID: 31159836]
[29]
Li, L.Y.; Yang, C.C.; Li, S.W.; Liu, Y.M.; Li, H.D.; Hu, S.; Zhou, H.; Wang, J.L.; Shen, H.; Meng, X.M.; Li, J.; Xu, T. TMEM88 modulates the secretion of inflammatory factors by regulating YAP signaling pathway in alcoholic liver disease. Inflamm. Res., 2020, 69(8), 789-800.
[http://dx.doi.org/10.1007/s00011-020-01360-y] [PMID: 32451556]
[30]
Lee, B.; Sur, B.; Shin, S.; Baik, J.E.; Shim, I.; Lee, H.; Hahm, D-H. Polygala tenuifolia prevents anxiety-like behaviors in mice exposed to repeated restraint stress. Anim. Cells Syst., 2015, 19(1), 1-7.
[http://dx.doi.org/10.1080/19768354.2014.982176]
[31]
Sur, B.; Lee, B.; Yoon, Y.S.; Lim, P.; Hong, R.; Yeom, M.; Lee, H.S.; Park, H.; Shim, I.; Lee, H.; Jang, Y.P.; Hahm, D.H. Extract of polygala tenuifolia alleviates stress-exacerbated atopy-like skin dermatitis through the modulation of protein kinase a and p38 mitogen-activated protein kinase signaling pathway. Int. J. Mol. Sci., 2017, 18(1), 190.
[http://dx.doi.org/10.3390/ijms18010190] [PMID: 28106783]
[32]
Xin, T.; Zhang, F.; Jiang, Q.; Chen, C.; Huang, D.; Li, Y.; Shen, W.; Jin, Y. Extraction, purification and antitumor activity of a water-soluble polysaccharide from the roots of Polygala tenuifolia. Carbohydr. Polym., 2012, 90(2), 1127-1131.
[http://dx.doi.org/10.1016/j.carbpol.2012.06.058] [PMID: 22840049]
[33]
Kwon, K.J.; Kim, M.K.; Lee, E.J.; Kim, J.N.; Choi, B.R.; Kim, S.Y.; Cho, K.S.; Han, J.S.; Kim, H.Y.; Shin, C.Y.; Han, S.H. Effects of donepezil, an acetylcholinesterase inhibitor, on neurogenesis in a rat model of vascular dementia. J. Neurol. Sci., 2014, 347(1-2), 66-77.
[http://dx.doi.org/10.1016/j.jns.2014.09.021] [PMID: 25266713]
[34]
Ogura, H.; Kosasa, T.; Kuriya, Y.; Yamanishi, Y. Donepezil, a centrally acting acetylcholinesterase inhibitor, alleviates learning deficits in hypocholinergic models in rats. Methods Find. Exp. Clin. Pharmacol., 2000, 22(2), 89-95.
[http://dx.doi.org/10.1358/mf.2000.22.2.796070] [PMID: 10849891]
[35]
Song, S.; Liu, Q.F.; Hong, M.; Kim, G.; Koo, B.S. In vitro screening of traditional medicinal herbs combined with donepezil for neuroprotective effects in SH-SY5Y cells. J Oriental Neuropsychiatry, 2019, 30(3), 199-207.
[36]
Zhu, Q.; Tang, C.P.; Ke, C.Q.; Wang, W.; Zhang, H.Y.; Ye, Y. Sesquiterpenoids and phenylpropanoids from pericarps of Illicium oligandrum. J. Nat. Prod., 2009, 72(2), 238-242.
[http://dx.doi.org/10.1021/np8004979] [PMID: 19159273]
[37]
Park, C.H.; Choi, S.H.; Koo, J.W.; Seo, J.H.; Kim, H.S.; Jeong, S.J.; Suh, Y.H. Novel cognitive improving and neuroprotective activities of Polygala tenuifolia Willdenow extract, BT-11. J. Neurosci. Res., 2002, 70(3), 484-492.
[http://dx.doi.org/10.1002/jnr.10429] [PMID: 12391609]
[38]
Lee, S.; Bang, S.M.; Lee, J.W.; Cho, K.S. Evaluation of traditional medicines for neurodegenerative diseases using Drosophila models. Evid. Based Complement. Alternat. Med., 2014, 2014, 967462.
[http://dx.doi.org/10.1155/2014/967462] [PMID: 24790636]
[39]
Devanand, D.P.; Pelton, G.H.; D’Antonio, K.; Ciarleglio, A.; Scodes, J.; Andrews, H.; Lunsford, J.; Beyer, J.L.; Petrella, J.R.; Sneed, J.; Ciovacco, M.; Doraiswamy, P.M. Donepezil treatment in patients with depression and cognitive impairment on stable antidepressant treatment: A randomized controlled trial. Am. J. Geriatr. Psychiatry, 2018, 26(10), 1050-1060.
[http://dx.doi.org/10.1016/j.jagp.2018.05.008] [PMID: 30037778]
[40]
Shen, L.; Liu, L.; Ji, H.F. Alzheimer’s disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state. J. Alzheimers Dis., 2017, 56(1), 385-390.
[http://dx.doi.org/10.3233/JAD-160884] [PMID: 27911317]
[41]
Shaw, K.E.; Bondi, C.O.; Light, S.H.; Massimino, L.A.; McAloon, R.L.; Monaco, C.M.; Kline, A.E. Donepezil is ineffective in promoting motor and cognitive benefits after controlled cortical impact injury in male rats. J. Neurotrauma, 2013, 30(7), 557-564.
[http://dx.doi.org/10.1089/neu.2012.2782] [PMID: 23227953]
[42]
Knowles, J. Donepezil in Alzheimer’s disease: an evidence-based review of its impact on clinical and economic outcomes. Core Evid., 2006, 1(3), 195-219.
[PMID: 22500154]
[43]
Sors, A.; Krazem, A.; Kehr, J.; Yoshitake, T.; Dominguez, G.; Henkous, N.; Letondor, C.; Mocaer, E.; Béracochéa, D.J. The synergistic enhancing-memory effect of donepezil and s 38093 (a Histamine H3 Antagonist) is mediated by increased neural activity in the septo-hippocampal circuitry in middle-aged mice. Front. Pharmacol., 2016, 7, 492.
[http://dx.doi.org/10.3389/fphar.2016.00492] [PMID: 28066242]
[44]
Abdel-Salam, O.M.; Youness, E.R.; Morsy, F.A.; Mahfouz, M.M.; Kenawy, S.A. Study of the effect of antidepressant drugs and donepezil on aluminum-induced memory impairment and biochemical alterations in rats. Comp. Clin. Pathol., 2015, 24(4), 847-860.
[http://dx.doi.org/10.1007/s00580-014-1994-7]
[45]
Wolf, O.T. HPA axis and memory. Best Pract. Res. Clin. Endocrinol. Metab., 2003, 17(2), 287-299.
[http://dx.doi.org/10.1016/S1521-690X(02)00101-X] [PMID: 12787553]
[46]
Kitraki, E.; Kremmyda, O.; Youlatos, D.; Alexis, M.; Kittas, C. Spatial performance and corticosteroid receptor status in the 21-day restraint stress paradigm. Ann. N. Y. Acad. Sci., 2004, 1018(1), 323-327.
[http://dx.doi.org/10.1196/annals.1296.039] [PMID: 15240385]
[47]
Sampath, D.; Sathyanesan, M.; Newton, S.S. Cognitive dysfunction in major depression and Alzheimer’s disease is associated with hippocampal-prefrontal cortex dysconnectivity. Neuropsychiatr. Dis. Treat., 2017, 13, 1509-1519.
[http://dx.doi.org/10.2147/NDT.S136122] [PMID: 28652752]
[48]
Cheng, X.R.; Cui, X.L.; Zheng, Y.; Zhang, G.R.; Li, P.; Huang, H.; Zhao, Y.Y.; Bo, X.C.; Wang, S.Q.; Zhou, W.X.; Zhang, Y.X. A co-module regulated by therapeutic drugs in a molecular subnetwork of Alzheimer’s disease identified on the basis of traditional chinese medicine and SAMP8 mice. Curr. Alzheimer Res., 2015, 12(9), 870-885.
[http://dx.doi.org/10.2174/1567205012666150710111858] [PMID: 26159197]
[49]
Kim, K.H.; Moon, M.; Yu, S.B.; Mook-Jung, I.; Kim, J.I. RNA-Seq analysis of frontal cortex and cerebellum from 5XFAD mice at early stage of disease pathology. J. Alzheimers Dis., 2012, 29(4), 793-808.
[http://dx.doi.org/10.3233/JAD-2012-111793] [PMID: 22507954]
[50]
Park, J.; Kim, H.; Kim, J.; Cheon, M. A practical application of generative adversarial networks for RNA-seq analysis to predict the molecular progress of Alzheimer’s disease. PLOS Comput. Biol., 2020, 16(7), e1008099.
[http://dx.doi.org/10.1371/journal.pcbi.1008099] [PMID: 32706788]
[51]
Bekris, L.M.; Lutz, F.; Montine, T.J.; Yu, C.E.; Tsuang, D.; Peskind, E.R.; Leverenz, J.B. MicroRNA in Alzheimer’s disease: an exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers, 2013, 18(5), 455-466.
[http://dx.doi.org/10.3109/1354750X.2013.814073] [PMID: 23822153]
[52]
Maes, O.C.; Chertkow, H.M.; Wang, E.; Schipper, H.M. MicroRNA: Implications for Alzheimer disease and other human CNS disorders. Curr. Genomics, 2009, 10(3), 154-168.
[http://dx.doi.org/10.2174/138920209788185252] [PMID: 19881909]
[53]
Wang, P.; Liu, X.M.; Ding, L.; Zhang, X.J.; Ma, Z.L. mTOR signaling-related MicroRNAs and cancer involvement. J. Cancer, 2018, 9(4), 667-673.
[http://dx.doi.org/10.7150/jca.22119] [PMID: 29556324]
[54]
Cui, J.; Gong, C.; Cao, B.; Li, L. MicroRNA-27a participates in the pathological process of depression in rats by regulating VEGFA. Exp. Ther. Med., 2018, 15(5), 4349-4355.
[http://dx.doi.org/10.3892/etm.2018.5942] [PMID: 29731825]
[55]
Wirths, O.; Breyhan, H.; Marcello, A.; Cotel, M.C.; Brück, W.; Bayer, T.A. Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer’s disease. Neurobiol. Aging, 2010, 31(5), 747-757.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.06.011] [PMID: 18657882]
[56]
Dahiyat, M.; Cumming, A.; Harrington, C.; Wischik, C.; Xuereb, J.; Corrigan, F.; Breen, G.; Shaw, D.; St Clair, D. Association between Alzheimer’s disease and the NOS3 gene. Ann. Neurol., 1999, 46(4), 664-667.
[http://dx.doi.org/10.1002/1531-8249(199910)46:4<664::AIDANA18>3.0.CO;2-J] [PMID: 10514107]
[57]
Canchi, S.; Raao, B.; Masliah, D.; Rosenthal, S.B.; Sasik, R.; Fisch, K.M.; De Jager, P.L.; Bennett, D.A.; Rissman, R.A. Integrating gene and protein expression reveals perturbed functional networks in Alzheimer’s disease. Cell Rep., 2019, 28(4), 1103-1116.e4.
[http://dx.doi.org/10.1016/j.celrep.2019.06.073] [PMID: 31340147]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy