Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

The Role of Peroxidases in the Bioremediation of Organic Pollutants

Author(s): Dencil Basumatary*, Hardeo Singh Yadav and Meera Yadav

Volume 13, Issue 1, 2023

Published on: 23 August, 2022

Article ID: e100422203351 Pages: 18

DOI: 10.2174/2210315512666220410132847

Price: $65

Abstract

The emergence of organic pollutants such as phenolic acids, pesticides, dyes, petrochemicals, pharmaceuticals, and industrial wastes threatens our environment, including biodiversity, ecosystems of terrestrial and aquatic animals, and human health. It is well known that toxicants disrupt the biochemical balance of organisms and cause physiological effects in individuals. Emerging Organic Pollutants (OPs) have varied levels of lethality depending on their chemical nature and byproducts, properties and composition of the compound fractions, mode of exposure, levels of exposure, and time of exposure. Accordingly, risk mitigation measures should be taken with constant environmental changes. The peroxidases are groups of heme-proteins, which at present are considered the most efficient biocatalysts for the bioremediation of the environment. To overcome the numerous disadvantages of conventional biological remediation methods, peroxidases require a more thorough interpretation for broadly understanding their potential uses in organic transformations as an efficient biocatalyst. Peroxidases are susceptible to the breakdown of polyaromatic hydrocarbons, dyes, pharmaceutical compounds, agrochemicals, phenols, and other highly hazardous organic pollutants found in industrial effluents. In this review, we focus on recent advances in the applications and the efficiency of peroxidases as eco-friendly catalysts.

Graphical Abstract

[1]
Pandey, V.P.; Awasthi, M.; Singh, S.; Tiwari, S.; Dwivedi, U.N. A comprehensive review on function and application of plant peroxidases. Biochem. Anal. Biochem., 2017, 6(1), 308.
[http://dx.doi.org/10.4172/2161-1009.1000308]
[2]
Cagide, C.; Castro-Sowinski, S. Technological and biochemical features of lignin-degrading enzymes: A brief review. Environ. Sustain., 2020, 3, 371-389.
[3]
Zámocký, M.; Hofbauer, S.; Schaffner, I.; Gasselhuber, B.; Nicolussi, A.; Soudi, M.; Pirker, K.F.; Furtmüller, P.G.; Obinger, C. Independent evolution of four heme peroxidase superfamilies. Arch. Biochem. Biophys., 2015, 574, 108-119.
[http://dx.doi.org/10.1016/j.abb.2014.12.025] [PMID: 25575902]
[4]
Welinder, K.G. Covalent structure of the glycoprotein horseradish peroxidase (EC 1.11.1.7). FEBS Lett., 1976, 72(1), 19-23.
[http://dx.doi.org/10.1016/0014-5793(76)80804-6] [PMID: 1001465]
[5]
Tavares, A.P.M.; Rodriguez, O.; Macedo, E.A. Peroxidase biocatalysis in water-soluble ionic liquids: Activity, kinetic and thermal stability. Biocatal. Biotransform., 2012, 30(4), 417-425.
[http://dx.doi.org/10.3109/10242422.2012.715636]
[6]
Vara, S.; Karnena, M.K. Fungal enzymatic degradation of industrial effluents–A review. Curr. Res. Environ. Appl. Mycol. J. Fungal Biol., 2020, 10(1), 417-442.
[7]
Bilal, M.; Ashraf, S.S.; Barceló, D.; Iqbal, H.M.N. Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and antibiotics in the aquatic environment. Sci. Total Environ., 2019, 691, 1190-1211.
[http://dx.doi.org/10.1016/j.scitotenv.2019.07.224] [PMID: 31466201]
[8]
Hamid, M. Khalil-ur-Rehman, Potential applications of peroxidases. Food Chem., 2009, 115(4), 1177-1186.
[http://dx.doi.org/10.1016/j.foodchem.2009.02.035]
[9]
Bansal, N.; Kanwar, S.S. Peroxidase (s) in environment protection. Sci. World J., 2013, 2013, 714639.
[10]
Singh, R.S.; Singh, T.; Pandey, A. Microbial enzymes—an overview. Biomass, Biofuels. Biochem. Adv. Enzym. Technol., 2019, 1, 1-40.
[http://dx.doi.org/10.1016/B978-0-444-64114-4.00001-7]
[11]
Morsi, R.; Bilal, M.; Iqbal, H.M.N.; Ashraf, S.S. Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Sci. Total Environ., 2020, 714, 136572.
[http://dx.doi.org/10.1016/j.scitotenv.2020.136572] [PMID: 31986384]
[12]
Inam, E.; Offiong, N-A.; Kang, S.; Yang, P.; Essien, J. Assessment of the occurrence and risks of emerging organic pollutants (EOPs) in ikpa river basin freshwater ecosystem, niger delta-nigeria. Bull. Environ. Contam. Toxicol., 2015, 95(5), 624-631.
[http://dx.doi.org/10.1007/s00128-015-1639-9] [PMID: 26341253]
[13]
Alrumman, S.A.; Standing, D.B.; Paton, G.I. Effects of hydrocarbon contamination on soil microbial community and enzyme activity. J. King Saud Univ. Sci., 2015, 27(1), 31-41.
[http://dx.doi.org/10.1016/j.jksus.2014.10.001]
[14]
Heliovaara, K. Insects and Pollution; CRC Press: USA, 2018.
[http://dx.doi.org/10.1201/9781351073622]
[15]
Goutte, A.; Barbraud, C.; Meillère, A.; Carravieri, A.; Bustamante, P.; Labadie, P.; Budzinski, H.; Delord, K.; Cherel, Y.; Weimerskirch, H.; Chastel, O. Demographic consequences of heavy metals and persistent organic pollutants in a vulnerable long-lived bird, the wandering alba-tross. Proc. Biol. Sci., 2014, 281(1787), 20133313.
[http://dx.doi.org/10.1098/rspb.2013.3313] [PMID: 24920477]
[16]
Alharbi, O.M.L.; Basheer, A.A.; Khattab, R.A.; Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liq., 2018, 263, 442-453.
[http://dx.doi.org/10.1016/j.molliq.2018.05.029]
[17]
Aken, B.V.; Correa, P.A.; Schnoor, J.L. Phytoremediation of polychlorinated biphenyls: New trends and promises. Environ. Sci. Technol., 2010, 44(8), 2767-2776.
[http://dx.doi.org/10.1021/es902514d] [PMID: 20384372]
[18]
Cachada, A.; Pato, P.; Rocha-Santos, T.; da Silva, E.F.; Duarte, A.C. Levels, sources and potential human health risks of organic pollutants in urban soils. Sci. Total Environ., 2012, 430, 184-192.
[http://dx.doi.org/10.1016/j.scitotenv.2012.04.075] [PMID: 22652008]
[19]
Carpenter, D.O. Health effects of persistent organic pollutants: The challenge for the pacific basin and for the world. Rev. Environ. Health, 2011, 26(1), 61-69.
[20]
Novelli, M.; Beffy, P.; Masini, M.; Vantaggiato, C.; Martino, L.; Marselli, L.; Marchetti, P.; De Tata, V. Selective beta-cell toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin on isolated pancreatic islets. Chemosphere, 2021, 265, 129103.
[http://dx.doi.org/10.1016/j.chemosphere.2020.129103] [PMID: 33288281]
[21]
Magliano, D.J.; Loh, V.H.Y.; Harding, J.L.; Botton, J.; Shaw, J.E. Persistent organic pollutants and diabetes: A review of the epidemiological evidence. Diabetes Metab., 2014, 40(1), 1-14.
[http://dx.doi.org/10.1016/j.diabet.2013.09.006] [PMID: 24262435]
[22]
Koual, M.; Cano-Sancho, G.; Bats, A-S.; Tomkiewicz, C.; Kaddouch-Amar, Y.; Douay-Hauser, N.; Ngo, C.; Bonsang, H.; Deloménie, M.; Lecuru, F.; Le Bizec, B.; Marchand, P.; Botton, J.; Barouki, R.; Antignac, J.P.; Coumoul, X. Associations between persistent organic pollu-tants and risk of breast cancer metastasis. Environ. Int., 2019, 132, 105028.
[http://dx.doi.org/10.1016/j.envint.2019.105028] [PMID: 31382183]
[23]
Zhang, L.; Nichols, R.G.; Correll, J.; Murray, I.A.; Tanaka, N.; Smith, P.B.; Hubbard, T.D.; Sebastian, A.; Albert, I.; Hatzakis, E.; Gonzalez, F.J.; Perdew, G.H.; Patterson, A.D. Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hy-drocarbon receptor activation. Environ. Health Perspect., 2015, 123(7), 679-688.
[http://dx.doi.org/10.1289/ehp.1409055] [PMID: 25768209]
[24]
Mishra, K.; Sharma, R.C. Assessment of organochlorine pesticides in human milk and risk exposure to infants from North-East India. Sci. Total Environ., 2011, 409(23), 4939-4949.
[http://dx.doi.org/10.1016/j.scitotenv.2011.07.038] [PMID: 21917296]
[25]
Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med., 2018, 54(4), 287-293.
[http://dx.doi.org/10.1016/j.ajme.2017.09.001]
[26]
Lei, X.G.; Wang, X. Glutathione Peroxidase 1 and Diabetes.In: Selenium; Springer, 2011, pp. 261-270.
[http://dx.doi.org/10.1007/978-1-4614-1025-6_20]
[27]
Lacetera, N. Impact of climate change on animal health and welfare. Anim. Front., 2018, 9(1), 26-31.
[http://dx.doi.org/10.1093/af/vfy030] [PMID: 32002236]
[28]
Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Change, 2016, 134(3), 371-385.
[http://dx.doi.org/10.1007/s10584-013-0853-x]
[29]
McMichael, A.J.; Woodruff, R.E.; Hales, S. Climate change and human health: Present and future risks. Lancet, 2006, 859-869.
[http://dx.doi.org/10.1016/S0140-6736(06)68079-3]
[30]
Ma, J.; Hung, H.; Tian, C.; Kallenborn, R. Revolatilization of persistent organic pollutants in the arctic induced by climate change. Nat. Clim. Chang., 2011, 1(5), 255-260.
[http://dx.doi.org/10.1038/nclimate1167]
[31]
Tomar, R.S.; Singh, B.; Jajoo, A. Effects of organic pollutants on photosynthesis. Photosynth. Product. Environ. Stress, 2019, 1, 1-26.
[32]
Bharagava, R.N.; Saxena, G.; Mulla, S.I.; Patel, D.K. Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Arch. Environ. Contam. Toxicol., 2018, 75(2), 259-272.
[http://dx.doi.org/10.1007/s00244-017-0490-x] [PMID: 29243159]
[33]
Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci., 2004, 9(10), 490-498.
[http://dx.doi.org/10.1016/j.tplants.2004.08.009] [PMID: 15465684]
[34]
Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 2002, 7(9), 405-410.
[http://dx.doi.org/10.1016/S1360-1385(02)02312-9] [PMID: 12234732]
[35]
Asada, K. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, 50(1), 601-639.
[http://dx.doi.org/10.1146/annurev.arplant.50.1.601] [PMID: 15012221]
[36]
Pellegrineschi, A.; Kis, M.; Dix, I.; Kavanagh, T.A.; Dix, P.J. Expression of horseradish peroxidase in transgenic tobacco. Biochem. Soc. Trans., 1995, 23(2), 247-250.
[http://dx.doi.org/10.1042/bst0230247] [PMID: 7672269]
[37]
Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot., 2003, 91(2), 179-194.
[http://dx.doi.org/10.1093/aob/mcf118]
[38]
Sofo, A.; Scopa, A.; Nuzzaci, M.; Vitti, A. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int. J. Mol. Sci., 2015, 16(6), 13561-13578.
[http://dx.doi.org/10.3390/ijms160613561] [PMID: 26075872]
[39]
Yanık, F.; Çetinbaş-Genç, A.; Vardar, F. Abiotic stress–induced programmed cell death in plants. Academic Press: USA, 2020, pp. 1-24.
[40]
Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 2021, 10(2), 277.
[http://dx.doi.org/10.3390/antiox10020277] [PMID: 33670123]
[41]
Kohli, S.K.; Khanna, K.; Bhardwaj, R.; Abd Allah, E.F.; Ahmad, P.; Corpas, F.J. Assessment of subcellular ROS and NO metabolism in higher plants: Multifunctional signaling molecules. Antioxidants, 2019, 8(12), E641.
[http://dx.doi.org/10.3390/antiox8120641] [PMID: 31842380]
[42]
Katano, K.; Honda, K.; Suzuki, N. Integration between ROS regulatory systems and other signals in the regulation of various types of heat responses in plants. Int. J. Mol. Sci., 2018, 19(11), E3370.
[http://dx.doi.org/10.3390/ijms19113370] [PMID: 30373292]
[43]
Zuo, L.; Zhou, T.; Pannell, B.K.; Ziegler, A.C.; Best, T.M. Biological and physiological role of reactive oxygen species--the good, the bad and the ugly. Acta Physiol. (Oxf.), 2015, 214(3), 329.
[http://dx.doi.org/10.1111/apha.12515] [PMID: 25912260]
[44]
Sun, C.; Dudley, S.; Trumble, J.; Gan, J. Pharmaceutical and personal care products-induced stress symptoms and detoxification mecha-nisms in cucumber plants. Environ. Pollut., 2018, 234, 39-47.
[http://dx.doi.org/10.1016/j.envpol.2017.11.041] [PMID: 29156440]
[45]
Gangola, S.; Joshi, S.; Kumar, S.; Pandey, S.C. Comparative analysis of fungal and bacterial enzymes in biodegradation of xenobiotic com-pounds. Smart Bioremediation Technol. Microb. Enzym., 2019, 2019, 169-189.
[http://dx.doi.org/10.1016/B978-0-12-818307-6.00010-X]
[46]
Akpınar, F.; Evli, S.; Güven, G.; Bayraktaroğlu, M.; Kilimci, U.; Uygun, M.; Aktaş Uygun, D. Peroxidase immobilized cryogels for phenolic compounds removal. Appl. Biochem. Biotechnol., 2020, 190(1), 138-147.
[http://dx.doi.org/10.1007/s12010-019-03083-1] [PMID: 31309412]
[47]
Pantić N.; Prodanović R.; Đurđić K.I.; Polović N.; Spasojević M.; Prodanović O. Optimization of phenol removal with horseradish pe-roxidase encapsulated within tyramine-alginate micro-beads. Environ. Technol. Innov., 2021, 21, 101211.
[http://dx.doi.org/10.1016/j.eti.2020.101211]
[48]
Jiang, Y.; Tang, W.; Gao, J.; Zhou, L.; He, Y. Immobilization of horseradish peroxidase in phospholipid-templated titania and its applica-tions in phenolic compounds and dye removal. Enzyme Microb. Technol., 2014, 55, 1-6.
[http://dx.doi.org/10.1016/j.enzmictec.2013.11.005] [PMID: 24411438]
[49]
Husain, Q.; Ulber, R. Immobilized peroxidase as a valuable tool in the remediation of aromatic pollutants and xenobiotic compounds: A review. Crit. Rev. Environ. Sci. Technol., 2011, 41(8), 770-804.
[http://dx.doi.org/10.1080/10643380903299491]
[50]
Deva, A.N.; Arun, C.; Arthanareeswaran, G.; Sivashanmugam, P. Extraction of peroxidase from waste brassica oleracea used for the treat-ment of aqueous phenol in synthetic waste water. J. Environ. Chem. Eng., 2014, 2(2), 1148-1154.
[http://dx.doi.org/10.1016/j.jece.2014.04.014]
[51]
Vineh, M.B.; Saboury, A.A.; Poostchi, A.A.; Ghasemi, A. Biodegradation of phenol and dyes with horseradish peroxidase covalently immo-bilized on functionalized RGO-SiO2 nanocomposite. Int. J. Biol. Macromol., 2020, 164, 4403-4414.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.045] [PMID: 32931826]
[52]
Chagas, P.M.B.; Torres, J.A.; Silva, M.C.; Corrêa, A.D. Immobilized soybean hull peroxidase for the oxidation of phenolic compounds in coffee processing wastewater. Int. J. Biol. Macromol., 2015, 81, 568-575.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.061] [PMID: 26321426]
[53]
Chiong, T.; Lau, S.Y.; Khor, E.H.; Danquah, M.K. Peroxidase extraction from jicama skin peels for phenol removal. IOP Conf. Ser. Earth Environ. Sci., 2016, 36, 12048.
[http://dx.doi.org/10.1088/1755-1315/36/1/012048]
[54]
Lakshmi, S.; Shashidhara, G.M.; Madhu, G.M.; Muthappa, R.; Vivek, H.K.; Nagendra Prasad, M.N. Characterization of peroxidase enzyme and detoxification of phenols using peroxidase enzyme obtained from zea mays l waste. Appl. Water Sci., 2018, 8(7), 207.
[http://dx.doi.org/10.1007/s13201-018-0820-9]
[55]
Garg, S.; Kumar, P.; Singh, S.; Yadav, A.; Dumée, L.F.; Sharma, R.S.; Mishra, V. Prosopis juliflora peroxidases for phenol remediation from industrial wastewater — An innovative practice for environmental sustainability. Environ. Technol. Innov., 2020, 19, 100865.
[http://dx.doi.org/10.1016/j.eti.2020.100865]
[56]
Singh, S.; Mishra, R.; Sharma, R.S.; Mishra, V. Phenol remediation by peroxidase from an invasive mesquite: Turning an environmental wound into wisdom. J. Hazard. Mater., 2017, 334, 201-211.
[http://dx.doi.org/10.1016/j.jhazmat.2017.04.007] [PMID: 28412630]
[57]
Caramori, S.S.; Fernandes, K.F.; de Carvalho, Junior, L.B. Immobilized horseradish peroxidase on discs of polyvinyl alcohol-glutaraldehyde coated with polyaniline. Sci. World J., 2012, 2012, 129706.
[http://dx.doi.org/10.1100/2012/129706] [PMID: 22619582]
[58]
Dahili, L.A.; Kelemen-Horváth, I.; Feczkó, T. 2,4-Dichlorophenol removal by purified horseradish peroxidase enzyme and crude extract from horseradish immobilized to nano spray dried ethyl cellulose particles. Process Biochem., 2015, 50(11), 1835-1842.
[http://dx.doi.org/10.1016/j.procbio.2015.08.008]
[59]
Meizler, A.; Roddick, F.; Porter, N. A novel glass support for the immobilization and UV-activation of horseradish peroxidase for treatment of halogenated phenols. Chem. Eng. J., 2011, 172(2), 792-798.
[http://dx.doi.org/10.1016/j.cej.2011.06.065]
[60]
Singh, J.; Sinha, S.; Batra, N.; Joshi, A. Applications of soluble, encapsulated and cross-linked peroxidases from Sapindus mukorossi for the removal of phenolic compounds. Environ. Technol., 2012, 33(1-3), 349-358.
[http://dx.doi.org/10.1080/09593330.2011.572925] [PMID: 22519121]
[61]
Angelini, V.A.; Orejas, J.; Medina, M.I.; Agostini, E. Scale up of 2,4-dichlorophenol removal from aqueous solutions using Brassica napus hairy roots. J. Hazard. Mater., 2011, 185(1), 269-274.
[http://dx.doi.org/10.1016/j.jhazmat.2010.09.028] [PMID: 20951495]
[62]
Joel, E.B.; Mafulul, S.G.; Adamu, H.E.; Goje, L.J.; Tijjani, H.; Igunnu, A.; Malomo, S.O. Peroxidase from waste cabbage (Brassica oleracea Capitata L.) exhibits the potential to biodegrade phenol and synthetic dyes from wastewater. Sci. African, 2020, 10, e00608.
[63]
Gassara, F.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Bisphenol, A. Bisphenol A degradation in water by ligninolytic enzymes. Chemosphere, 2013, 92(10), 1356-1360.
[http://dx.doi.org/10.1016/j.chemosphere.2013.02.071] [PMID: 23668961]
[64]
Kurnik, K.; Treder, K. Skorupa-Kłaput, M.; Tretyn, A.; Tyburski, J. Removal of phenol from synthetic and industrial wastewater by potato pulp peroxidases. Water Air Soil Pollut., 2015, 226(8), 254.
[http://dx.doi.org/10.1007/s11270-015-2517-0] [PMID: 26190873]
[65]
Ashraf, H.; Husain, Q. Removal of α-naphthol and other phenolic compounds from polluted water by white radish (Raphanus sativus) pe-roxidase in the presence of an additive, polyethylene glycol. Biotechnol. Bioprocess., 2009, 14(4), 536-542.
[http://dx.doi.org/10.1007/s12257-009-0002-6]
[66]
Kim, M-K.; Zoh, K-D. Occurrence and removals of micropollutants in water environment. Environ. Eng. Res., 2016, 21(4), 319-332.
[http://dx.doi.org/10.4491/eer.2016.115]
[67]
Bartha, B.; Huber, C.; Harpaintner, R.; Schröder, P. Effects of acetaminophen in Brassica juncea L. Czern.: Investigation of uptake, translo-cation, detoxification, and the induced defense pathways. Environ. Sci. Pollut. Res. Int., 2010, 17(9), 1553-1562.
[http://dx.doi.org/10.1007/s11356-010-0342-y] [PMID: 20574781]
[68]
Mashhadi, N.; Taylor, K.E.; Jimenez, N.; Varghese, S.T.; Levi, Y.; Lonergan, C.; Lebeau, E.; Lamé, M.; Lard, E.; Biswas, N. Removal of selected pharmaceuticals and personal care products from wastewater using soybean peroxidase. Environ. Manage., 2019, 63(3), 408-415.
[http://dx.doi.org/10.1007/s00267-018-01132-9] [PMID: 30607547]
[69]
Al-Maqdi, K.A.; Hisaindee, S.; Rauf, M.A.; Ashraf, S.S. Detoxification and degradation of sulfamethoxazole by soybean peroxidase and UV + H2O2 remediation approaches. Chem. Eng. J., 2018, 352, 450-458.
[http://dx.doi.org/10.1016/j.cej.2018.07.036]
[70]
Li, L. Toxicity evaluation and by-products identification of triclosan ozonation and chlorination. Chemosphere, 2021, 263, 128223.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128223] [PMID: 33297179]
[71]
Li, J.; Peng, J.; Zhang, Y.; Ji, Y.; Shi, H.; Mao, L.; Gao, S. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinet-ics, products and detoxification. J. Hazard. Mater., 2016, 310, 152-160.
[http://dx.doi.org/10.1016/j.jhazmat.2016.02.037] [PMID: 26921508]
[72]
Méndez, E.; González-Fuentes, M.A.; Rebollar-Perez, G.; Méndez-Albores, A.; Torres, E. Emerging pollutant treatments in wastewater: Cas-es of antibiotics and hormones. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 2017, 52(3), 235-253.
[http://dx.doi.org/10.1080/10934529.2016.1253391] [PMID: 27901630]
[73]
Lueangjaroenkit, P.; Teerapatsakul, C.; Sakka, K.; Sakka, M.; Kimura, T.; Kunitake, E.; Chitradon, L. Two manganese peroxidases and a laccase of Trametes polyzona KU-RNW027 with novel properties for dye and pharmaceutical product degradation in redox mediator-free system. Mycobiology, 2019, 47(2), 217-229.
[http://dx.doi.org/10.1080/12298093.2019.1589900] [PMID: 31448142]
[74]
Čvančarová, M.; Moeder, M.; Filipová, A.; Cajthaml, T. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi-- Metabolites, enzymes and residual antibacterial activity. Chemosphere, 2015, 136, 311-320.
[http://dx.doi.org/10.1016/j.chemosphere.2014.12.012] [PMID: 25592459]
[75]
Rybczyńska-Tkaczyk, K.; Korniłłowicz-Kowalska, T.; Szychowski, K.A. Possibility to biotransform anthracyclines by peroxidases pro-duced by Bjerkandera adusta CCBAS 930 with reduction of geno- and cytotoxicity and pro-oxidative activity. Molecules, 2021, 26(2), 462.
[http://dx.doi.org/10.3390/molecules26020462] [PMID: 33477273]
[76]
Copete-Pertuz, L.S.; Plácido, J.; Serna-Galvis, E.A.; Torres-Palma, R.A.; Mora, A. Considerations on Biodegradation Process and Antimicro-bial Activity Removal. Elimination of isoxazolyl-penicillins antibiotics in waters by the ligninolytic native colombian strain leptosphaerulina sp. considerations on biodegradation process and antimicrobial activity removal. Sci. Total Environ., 2018, 630, 1195-1204.
[http://dx.doi.org/10.1016/j.scitotenv.2018.02.244] [PMID: 29554741]
[77]
Sridhar, M. Versatile peroxidases: Super peroxidases with potential biotechnological applications-a mini review. J. Dairy, Vet. Anim. Res., 2016, 4(2), 277-280.
[http://dx.doi.org/10.15406/jdvar.2016.04.00116]
[78]
Eibes, G.; Debernardi, G.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation, 2011, 22(3), 539-550.
[http://dx.doi.org/10.1007/s10532-010-9426-0] [PMID: 20972884]
[79]
Marco-Urrea, E.; Pérez-Trujillo, M.; Vicent, T.; Caminal, G. Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere, 2009, 74(6), 765-772.
[http://dx.doi.org/10.1016/j.chemosphere.2008.10.040] [PMID: 19062071]
[80]
Touahar, I.E.; Haroune, L.; Ba, S.; Bellenger, J-P.; Cabana, H. Characterization of combined cross-linked enzyme aggregates from laccase, versatile peroxidase and glucose oxidase, and their utilization for the elimination of pharmaceuticals. Sci. Total Environ., 2014, 481, 90-99.
[http://dx.doi.org/10.1016/j.scitotenv.2014.01.132] [PMID: 24589758]
[81]
Pylypchuk, I.V.; Daniel, G.; Kessler, V.G.; Seisenbaeva, G.A. Removal of diclofenac, paracetamol, and carbamazepine from model aqueous solutions by magnetic sol-gel encapsulated horseradish peroxidase and lignin peroxidase composites. Nanomaterials (Basel), 2020, 10(2), E282.
[http://dx.doi.org/10.3390/nano10020282] [PMID: 32046049]
[82]
Olicón-Hernández, D.R.; González-López, J.; Aranda, E. Overview on the biochemical potential of filamentous fungi to degrade pharmaceu-tical compounds. Front. Microbiol., 2017, 8, 1792.
[http://dx.doi.org/10.3389/fmicb.2017.01792] [PMID: 28979245]
[83]
Xu, R.; Si, Y.; Li, F.; Zhang, B. Enzymatic removal of paracetamol from aqueous phase: Horseradish peroxidase immobilized on nano-fibrous membranes. Environ. Sci. Pollut. Res. Int., 2015, 22(5), 3838-3846.
[http://dx.doi.org/10.1007/s11356-014-3658-1] [PMID: 25269844]
[84]
Montanez-Hurtado, E. Degradation of a nonsteroidal anti-inflammatory drug using horseradish peroxidase enzyme. Res. J. Appl. Sci., 2018, 13(7), 425-430.
[85]
Wen, X.; Jia, Y.; Li, J. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysospori-um--a white rot fungus. Chemosphere, 2009, 75(8), 1003-1007.
[http://dx.doi.org/10.1016/j.chemosphere.2009.01.052] [PMID: 19232429]
[86]
Zhang, Y.; Geissen, S-U. In vitro degradation of carbamazepine and diclofenac by crude lignin peroxidase. J. Hazard. Mater., 2010, 176(1-3), 1089-1092.
[http://dx.doi.org/10.1016/j.jhazmat.2009.10.133] [PMID: 19945218]
[87]
Golan-Rozen, N.; Chefetz, B.; Ben-Ari, J.; Geva, J.; Hadar, Y. Transformation of the recalcitrant pharmaceutical compound carbamazepine by Pleurotus ostreatus: Role of cytochrome P450 monooxygenase and manganese peroxidase. Environ. Sci. Technol., 2011, 45(16), 6800-6805.
[http://dx.doi.org/10.1021/es200298t] [PMID: 21744850]
[88]
García-Zamora, J.L.; León-Aguirre, K.; Quiroz-Morales, R.; Parra-Saldívar, R.; Gómez-Patiño, M.B.; Arrieta-Baez, D.; Rebollar-Pérez, G.; Torres, E. Chloroperoxidase-mediated halogenation of selected pharmaceutical micropollutants. Catalysts, 2018, 8(1), 32.
[http://dx.doi.org/10.3390/catal8010032]
[89]
Santos, I.J.S.; Grossman, M.; Sartoratto, A.; Ponezi, A.; Durrant, L. Degradation of the recalcitrant pharmaceuticals carbamazepine and 17a-ethinylestradiol by ligninolytic fungi. Chem. Eng. Trans., 2012, 27, 169-174.
[http://dx.doi.org/10.3303/CET1227029]
[90]
Jain, M.; Majumder, A.; Ghosal, P.S.; Gupta, A.K. A review on treatment of petroleum refinery and petrochemical plant wastewater: A spe-cial emphasis on constructed wetlands. J. Environ. Manage., 2020, 272, 111057.
[http://dx.doi.org/10.1016/j.jenvman.2020.111057] [PMID: 32854876]
[91]
Al-Hawash, A.B. Fungal degradation of polycyclic aromatic hydrocarbons. Int. J. Pure Appl. Biosci., 2018, 6(2), 8-24.
[http://dx.doi.org/10.18782/2320-7051.6302]
[92]
Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Rajendran, P.; Nishigaki, I. Exposure to polycyclic aromatic hydrocar-bons with special focus on cancer. Asian Pac. J. Trop. Biomed., 2015, 5(3), 182-189.
[http://dx.doi.org/10.1016/S2221-1691(15)30003-4]
[93]
Sharma, A. Hazardous effects of petrochemical industries: A review. Recent Adv. Petrochem. Sci., 2017, 3(2), 25-27.
[http://dx.doi.org/10.19080/RAPSCI.2017.03.555607]
[94]
Ahmed, F.; Anm, F.; Ahmed, F.; Anm, F. A review on environmental contamination of petroleum hydrocarbons and its biodegradation. Int. J. Environ. Sci. Nat. Resour., 2018, 11(3), 63-69.
[95]
Varjani, S.J.; Gnansounou, E.; Baskar, G.; Pant, D.; Zakaria, Z.A. Introduction to Waste Bioremediation; Springer: Singapore, 2018.
[http://dx.doi.org/10.1007/978-981-10-7413-4_1]
[96]
Acevedo, F.; Pizzul, L.; Castillo, M.D.; González, M.E.; Cea, M.; Gianfreda, L.; Diez, M.C. Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor. Chemosphere, 2010, 80(3), 271-278.
[http://dx.doi.org/10.1016/j.chemosphere.2010.04.022] [PMID: 20435332]
[97]
Ugochukwu, U.C.; Ochonogor, A.; Jidere, C.M.; Agu, C.; Nkoloagu, F.; Ewoh, J.; Okwu-Delunzu, V.U. Exposure risks to polycyclic aro-matic hydrocarbons by humans and livestock (cattle) due to hydrocarbon spill from petroleum products in Niger-delta wetland. Environ. Int., 2018, 115, 38-47.
[http://dx.doi.org/10.1016/j.envint.2018.03.010] [PMID: 29547867]
[98]
Rajasekhar, B.; Nambi, I.M.; Govindarajan, S.K. Human health risk assessment of ground water contaminated with petroleum PAHs using Monte Carlo simulations: A case study of an Indian metropolitan city. J. Environ. Manage., 2018, 205, 183-191.
[http://dx.doi.org/10.1016/j.jenvman.2017.09.078] [PMID: 28985597]
[99]
Ferrante, M.; Zanghì, G.; Cristaldi, A.; Copat, C.; Grasso, A.; Fiore, M.; Signorelli, S.S.; Zuccarello, P.; Oliveri Conti, G. PAHs in seafood from the Mediterranean Sea: An exposure risk assessment. Food Chem. Toxicol., 2018, 115, 385-390.
[http://dx.doi.org/10.1016/j.fct.2018.03.024] [PMID: 29580821]
[100]
Fuentes, S.; Méndez, V.; Aguila, P.; Seeger, M. Bioremediation of petroleum hydrocarbons: Catabolic genes, microbial communities, and applications. Appl. Microbiol. Biotechnol., 2014, 98(11), 4781-4794.
[http://dx.doi.org/10.1007/s00253-014-5684-9] [PMID: 24691868]
[101]
Torres-Farradá, G.; Manzano-León, A.M.; Rineau, F.; Ramos Leal, M.; Thijs, S.; Jambon, I.; Put, J.; Czech, J.; Guerra Rivera, G.; Carleer, R.; Vangronsveld, J. Biodegradation of polycyclic aromatic hydrocarbons by native Ganoderma sp. strains: Identification of metabolites and proposed degradation pathways. Appl. Microbiol. Biotechnol., 2019, 103(17), 7203-7215.
[http://dx.doi.org/10.1007/s00253-019-09968-9] [PMID: 31256229]
[102]
Govarthanan, M.; Fuzisawa, S.; Hosogai, T.; Chang, Y-C. Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium Sp. CHY-2 and characterization of its manganese peroxidase activity. RSC Advances, 2017, 7(34), 20716-20723.
[http://dx.doi.org/10.1039/C6RA28687A]
[103]
Zhang, H.; Zhang, S.; He, F.; Qin, X.; Zhang, X.; Yang, Y. Characterization of a manganese peroxidase from white-rot fungus Trametes sp.48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. J. Hazard. Mater., 2016, 320, 265-277.
[http://dx.doi.org/10.1016/j.jhazmat.2016.07.065] [PMID: 27551986]
[104]
Becarelli, S.; Chicca, I.; Siracusa, G.; La China, S.; Gentini, A.; Lorenzi, R.; Munz, G.; Petroni, G.; Levin, D.B.; Di Gregorio, S. Hydrocar-bonoclastic ascomycetes to enhance co-composting of total petroleum hydrocarbon (TPH) contaminated dredged sediments and lignocellu-losic matrices. N. Biotechnol., 2019, 50, 27-36.
[http://dx.doi.org/10.1016/j.nbt.2019.01.006] [PMID: 30654133]
[105]
Zhang, X.; Wang, X.; Li, C.; Zhang, L.; Ning, G.; Shi, W.; Zhang, X.; Yang, Z. Ligninolytic enzyme involved in removal of high molecular weight polycyclic aromatic hydrocarbons by Fusarium strain ZH-H2. Environ. Sci. Pollut. Res. Int., 2020, 27(34), 42969-42978.
[http://dx.doi.org/10.1007/s11356-020-10192-6] [PMID: 32725566]
[106]
Imran, S.G.I.; Razuqi, N.S.R.; Aziz, G.M.A. Poly aromatic hydrocarbons degradation by lignin peroxidase produced from local isolate As-pergillus terreus SG777. J. Pet. Res. Stud., 2021, 8(2), 144-154.
[http://dx.doi.org/10.52716/jprs.v8i2.240]
[107]
Shekoohiyan, S.; Moussavi, G.; Naddafi, K. The peroxidase-mediated biodegradation of petroleum hydrocarbons in a H2O2-induced SBR using in-situ production of peroxidase: Biodegradation experiments and bacterial identification. J. Hazard. Mater., 2016, 313, 170-178.
[http://dx.doi.org/10.1016/j.jhazmat.2016.03.081] [PMID: 27060866]
[108]
Zafra, G.; Moreno-Montaño, A.; Absalón, Á.E.; Cortés-Espinosa, D.V. Degradation of polycyclic aromatic hydrocarbons in soil by a toler-ant strain of Trichoderma asperellum. Environ. Sci. Pollut. Res. Int., 2015, 22(2), 1034-1042.
[http://dx.doi.org/10.1007/s11356-014-3357-y] [PMID: 25106516]
[109]
Turkovskaya, O.; Muratova, A. Plant-bacterial degradation of polyaromatic hydrocarbons in the rhizosphere. Trends Biotechnol., 2019, 37(9), 926-930.
[http://dx.doi.org/10.1016/j.tibtech.2019.04.010] [PMID: 31130309]
[110]
Chakravarty, P.; Deka, H. Enzymatic defense of Cyperus brevifolius in hydrocarbons stress environment and changes in soil properties. Sci. Rep., 2021, 11(1), 718.
[http://dx.doi.org/10.1038/s41598-020-80854-5] [PMID: 33436992]
[111]
Guarino, C.; Zuzolo, D.; Marziano, M.; Conte, B.; Baiamonte, G.; Morra, L.; Benotti, D.; Gresia, D.; Stacul, E.R.; Cicchella, D.; Sciarrillo, R. Investigation and Assessment for an effective approach to the reclamation of Polycyclic Aromatic Hydrocarbon (PAHs) contaminated site: SIN Bagnoli, Italy. Sci. Rep., 2019, 9(1), 11522.
[http://dx.doi.org/10.1038/s41598-019-48005-7] [PMID: 31395938]
[112]
Dubrovskaya, E.; Pozdnyakova, N.; Golubev, S.; Muratova, A.; Grinev, V.; Bondarenkova, A.; Turkovskaya, O. Peroxidases from root exudates of Medicago sativa and Sorghum bicolor: Catalytic properties and involvement in PAH degradation. Chemosphere, 2017, 169, 224-232.
[http://dx.doi.org/10.1016/j.chemosphere.2016.11.027] [PMID: 27880920]
[113]
Husain, Q. Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: A review. Rev. Environ. Sci. Biotechnol., 2010, 9(2), 117-140.
[http://dx.doi.org/10.1007/s11157-009-9184-9]
[114]
Zollinger, H. Colour Chemistry-Synthesis, Properties of Organic Dyes and Pigments; VCH Publishers: New York, 1987.
[115]
Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical review on current treatment technol-ogies with a proposed alternative. Bioresour. Technol., 2001, 77(3), 247-255.
[http://dx.doi.org/10.1016/S0960-8524(00)00080-8] [PMID: 11272011]
[116]
Hao, O.J.; Kim, H.; Chiang, P-C. Decolorization of wastewater. Crit. Rev. Environ. Sci. Technol., 2000, 30(4), 449-505.
[http://dx.doi.org/10.1080/10643380091184237]
[117]
Dhankhar, P.; Dalal, V.; Mahto, J.K.; Gurjar, B.R.; Tomar, S.; Sharma, A.K.; Kumar, P. Characterization of dye-decolorizing peroxidase from Bacillus subtilis. Arch. Biochem. Biophys., 2020, 693, 108590.
[http://dx.doi.org/10.1016/j.abb.2020.108590] [PMID: 32971035]
[118]
Alneyadi, A.H.; Shah, I.; AbuQamar, S.F.; Ashraf, S.S. Differential degradation and detoxification of an aromatic pollutant by two different peroxidases. Biomolecules, 2017, 7(1), E31.
[http://dx.doi.org/10.3390/biom7010031] [PMID: 28335468]
[119]
Malani, R.S.; Khanna, S.; Moholkar, V.S. Sonoenzymatic decolourization of an azo dye employing immobilized horse radish peroxidase (HRP): A mechanistic study. J. Hazard. Mater., 2013, 256–257, 90-97.
[120]
Mani, S.; Bharagava, R.N. Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. Rev. Environ. Contam. Toxicol., 2016, 237, 71-104.
[http://dx.doi.org/10.1007/978-3-319-23573-8_4]
[121]
Yassin, M.A.; Gad, A.A.M. Immobilized enzyme on modified polystyrene foam waste: A biocatalyst for wastewater decolorization. J. Environ. Chem. Eng., 2020, 8(5), 104435.
[http://dx.doi.org/10.1016/j.jece.2020.104435]
[122]
Jankowska, K.; Zdarta, J.; Grzywaczyk, A.; Degórska, O. Kijeńska-Gawrońska, E.; Pinelo, M.; Jesionowski, T. Horseradish peroxidase immobilised onto electrospun fibres and its application in decolourisation of dyes from model sea water. Process Biochem., 2021, 102, 10-21.
[http://dx.doi.org/10.1016/j.procbio.2020.11.015]
[123]
Bilal, M.; Asgher, M. Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase. BMC Biotechnol., 2015, 15(1), 111.
[http://dx.doi.org/10.1186/s12896-015-0227-8] [PMID: 26654190]
[124]
Khan, N.; Husain, Q.; Qayyum, N. Enhanced dye decolorization efficiency of gellan gum complexed Ziziphus mauritiana peroxidases in a stirred batch process. Int. J. Biol. Macromol., 2020, 165(Pt B), 2000-2009.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.250] [PMID: 33031855]
[125]
Satar, R.; Husain, Q. Catalyzed degradation of disperse dyes by calcium alginate-pectin entrapped bitter gourd (Momordica charantia) perox-idase. J. Environ. Sci. (China), 2011, 23(7), 1135-1142.
[http://dx.doi.org/10.1016/S1001-0742(10)60525-6] [PMID: 22125906]
[126]
Svetozarević M.; Šekuljica, N.; Knežević-Jugović Z.; Mijin, D. Agricultural waste as a source of peroxidase for wastewater treatment: In-sight in kinetics and process parameters optimization for anthraquinone dye removal. Environ. Technol. Innov., 2021, 21, 101289.
[http://dx.doi.org/10.1016/j.eti.2020.101289]
[127]
Altahir, B.M.; Al-Robaiey, T.J.; Abbaas, Z.M.; Mashhadi, N.; Cordova Villegas, L.G.; Taylor, K.E.; Biswas, N. Soybean peroxidase cata-lyzed decoloration of acid azo dyes. J. Health Pollut., 2020, 10(25), 200307.
[http://dx.doi.org/10.5696/2156-9614-10.25.200307] [PMID: 32175178]
[128]
Chiong, T.; Lau, S.Y.; Lek, Z.H.; Koh, B.Y.; Danquah, M.K. Enzymatic treatment of methyl orange dye in synthetic wastewater by plant-based peroxidase enzymes. J. Environ. Chem. Eng., 2016, 4(2), 2500-2509.
[http://dx.doi.org/10.1016/j.jece.2016.04.030]
[129]
McMullan, G.; Meehan, C.; Conneely, A.; Kirby, N.; Robinson, T.; Nigam, P.; Banat, I.M.; Marchant, R.; Smyth, W.F. Microbial decolourisa-tion and degradation of textile dyes. Appl. Microbiol. Biotechnol., 2001, 56(1-2), 81-87.
[http://dx.doi.org/10.1007/s002530000587] [PMID: 11499950]
[130]
Osuji, A.C.; Eze, S.O.O.; Osayi, E.E.; Chilaka, F.C. Biobleaching of industrial important dyes with peroxidase partially purified from garlic. Sci. World J., 2014, 2014, 183163.
[http://dx.doi.org/10.1155/2014/183163] [PMID: 25401128]
[131]
Šekuljica, N.Ž. Prlainović N.Ž.; Stefanović A.B.; Žuža, M.G.; Čičkarić D.Z.; Mijin, D.Ž.; Knežević-Jugović Z.D. Decolorization of anthra-quinonic dyes from textile effluent using horseradish peroxidase: Optimization and kinetic study. Sci. World J., 2015, 2015, 371625.
[http://dx.doi.org/10.1155/2015/371625] [PMID: 25685837]
[132]
Bilal, M.; Iqbal, H.M.N.; Hussain Shah, S.Z.; Hu, H.; Wang, W.; Zhang, X. Horseradish peroxidase-assisted approach to decolorize and detoxify dye pollutants in a packed bed bioreactor. J. Environ. Manage., 2016, 183(Pt 3), 836-842.
[http://dx.doi.org/10.1016/j.jenvman.2016.09.040] [PMID: 27663907]
[133]
Altinkaynak, C.; Tavlasoglu, S.; Kalin, R.; Sadeghian, N.; Ozdemir, H.; Ocsoy, I.; Özdemir, N. A hierarchical assembly of flower-like hybrid Turkish black radish peroxidase-Cu2+ nanobiocatalyst and its effective use in dye decolorization. Chemosphere, 2017, 182, 122-128.
[http://dx.doi.org/10.1016/j.chemosphere.2017.05.012] [PMID: 28494355]
[134]
Kalsoom, U.; Ashraf, S.S.; Meetani, M.A.; Rauf, M.A.; Bhatti, H.N. Mechanistic study of a diazo dye degradation by Soybean Peroxidase. Chem. Cent. J., 2013, 7(1), 93.
[http://dx.doi.org/10.1186/1752-153X-7-93] [PMID: 23711110]
[135]
Xu, H.; Guo, M-Y.; Gao, Y-H.; Bai, X-H.; Zhou, X-W. Expression and characteristics of manganese peroxidase from Ganoderma lucidum in Pichia pastoris and its application in the degradation of four dyes and phenol. BMC Biotechnol., 2017, 17(1), 19.
[http://dx.doi.org/10.1186/s12896-017-0338-5] [PMID: 28231778]
[136]
Gaur, N.; Narasimhulu, K. PydiSetty,Y. Recent advances in the bio-remediation of persistent organic pollutants and its effect on environ-ment. J. Clean. Prod., 2018, 198, 1602-1631.
[http://dx.doi.org/10.1016/j.jclepro.2018.07.076]
[137]
Shakir, S.K.; Irfan, S.; Akhtar, B.; Rehman, S.U.; Daud, M.K.; Taimur, N.; Azizullah, A. Pesticide-induced oxidative stress and antioxidant responses in tomato (Solanum lycopersicum) seedlings. Ecotoxicology, 2018, 27(7), 919-935.
[http://dx.doi.org/10.1007/s10646-018-1916-6] [PMID: 29497917]
[138]
Maqbool, Z.; Hussain, S.; Imran, M.; Mahmood, F.; Shahzad, T.; Ahmed, Z.; Azeem, F.; Muzammil, S. Perspectives of using fungi as biore-source for bioremediation of pesticides in the environment: A critical review. Environ. Sci. Pollut. Res. Int., 2016, 23(17), 16904-16925.
[http://dx.doi.org/10.1007/s11356-016-7003-8] [PMID: 27272922]
[139]
Ge, T.; Han, J.; Qi, Y.; Gu, X.; Ma, L.; Zhang, C.; Naeem, S.; Huang, D. The toxic effects of chlorophenols and associated mechanisms in fish. Aquat. Toxicol., 2017, 184, 78-93.
[http://dx.doi.org/10.1016/j.aquatox.2017.01.005] [PMID: 28119128]
[140]
Igbinosa, E.O.; Odjadjare, E.E.; Chigor, V.N.; Igbinosa, I.H.; Emoghene, A.O.; Ekhaise, F.O.; Igiehon, N.O.; Idemudia, O.G. Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci. World J., 2013, 2013, 460215.
[http://dx.doi.org/10.1155/2013/460215] [PMID: 23690744]
[141]
Tolardo, V.; García-Ballesteros, S.; Santos-Juanes, L.; Vercher, R.; Amat, A.M.; Arques, A.; Laurenti, E. Pentachlorophenol removal from water by soybean peroxidase and iron(ii) salts concerted action. Water Air Soil Pollut., 2019, 230(6), 140.
[http://dx.doi.org/10.1007/s11270-019-4189-7]
[142]
Peterson, M.A.; McMaster, S.A.; Riechers, D.E.; Skelton, J.; Stahlman, P.W. 2,4-D Past, present, and future: A review. Weed Technol., 2016, 30(2), 303-345.
[http://dx.doi.org/10.1614/WT-D-15-00131.1]
[143]
Xia, Z-Y.; Zhang, L.; Zhao, Y.; Yan, X.; Li, S-P.; Gu, T.; Jiang, J-D. Biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid by a new isolated strain of achromobacter sp. LZ35. Curr. Microbiol., 2017, 74(2), 193-202.
[http://dx.doi.org/10.1007/s00284-016-1173-y] [PMID: 27933337]
[144]
Fernandes, M.; Souza, D.H.; Henriques, R.O.; Alves, M.V.; Skoronski, E.; Junior, A.F. Obtaining soybean peroxidase from soybean hulls and its application for detoxification of 2,4-dichlorophenol contaminated water. J. Environ. Chem. Eng., 2020, 8(3), 103786.
[http://dx.doi.org/10.1016/j.jece.2020.103786]
[145]
Warner, G.R.; Mourikes, V.E.; Neff, A.M.; Brehm, E.; Flaws, J.A. Mechanisms of action of agrochemicals acting as endocrine disrupting chemicals. Mol. Cell. Endocrinol., 2020, 502, 110680.
[http://dx.doi.org/10.1016/j.mce.2019.110680] [PMID: 31838026]
[146]
Yilmaz, B.; Terekeci, H.; Sandal, S.; Kelestimur, F. Endocrine disrupting chemicals: Exposure, effects on human health, mechanism of ac-tion, models for testing and strategies for prevention. Rev. Endocr. Metab. Disord., 2020, 21(1), 127-147.
[http://dx.doi.org/10.1007/s11154-019-09521-z] [PMID: 31792807]
[147]
Ai, J.; Zhang, W.; Liao, G.; Xia, H.; Wang, D. NH2Fe3O4@SiO2 supported peroxidase catalyzed H2O2 for degradation of endocrine disrupter from aqueous solution: Roles of active radicals and NOMs. Chemosphere, 2017, 186, 733-742.
[http://dx.doi.org/10.1016/j.chemosphere.2017.08.039] [PMID: 28820997]
[148]
Landi, S.; De Lillo, A.; Nurcato, R.; Grillo, S.; Esposito, S. In-field study on traditional italian tomato landraces: The constitutive activation of the ROS scavenging machinery reduces effects of drought stress. Plant Physiol. Biochem., 2017, 118, 150-160.
[http://dx.doi.org/10.1016/j.plaphy.2017.06.011] [PMID: 28633087]
[149]
Chovanová, K.; Kamlárová, A.; Maresch, D.; Harichová, J.; Zámocký, M. Expression of extracellular peroxidases and catalases in meso-philic and thermophilic Chaetomia in response to environmental oxidative stress stimuli. Ecotoxicol. Environ. Saf., 2019, 181, 481-490.
[http://dx.doi.org/10.1016/j.ecoenv.2019.06.035] [PMID: 31228824]
[150]
Dietz, K-J. Thiol-based peroxidases and ascorbate peroxidases: Why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Mol. Cells, 2016, 39(1), 20-25.
[http://dx.doi.org/10.14348/molcells.2016.2324] [PMID: 26810073]
[151]
Guo, J.; Liu, X.; Zhang, X.; Wu, J.; Chai, C.; Ma, D.; Chen, Q.; Xiang, D.; Ge, W. Immobilized lignin peroxidase on Fe3O4@SiO2@polydopamine nanoparticles for degradation of organic pollutants. Int. J. Biol. Macromol., 2019, 138, 433-440.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.105] [PMID: 31325503]
[152]
Wang, S.; Fang, H.; Wen, Y.; Cai, M.; Liu, W.; He, S.; Xu, X. Applications of HRP-immobilized catalytic beads to the removal of 2,4-dichlorophenol from wastewater. RSC Advances, 2015, 5(71), 57286-57292.
[http://dx.doi.org/10.1039/C5RA08688D]
[153]
Vo, H.N.P.; Koottatep, T.; Chapagain, S.K.; Panuvatvanich, A.; Polprasert, C.; Nguyen, T.M.H.; Chaiwong, C.; Nguyen, N.L. Removal and monitoring acetaminophen-contaminated hospital wastewater by vertical flow constructed wetland and peroxidase enzymes. J. Environ. Manage., 2019, 250, 109526.
[http://dx.doi.org/10.1016/j.jenvman.2019.109526] [PMID: 31521036]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy